细菌固定化及其强化生物浸出的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统生物浸出难浸金矿工艺中细菌与矿物直接接触,矿浆中逐渐积累的有毒有害离子、搅拌产生的巨大的剪切力及矿物对O_2和CO_2传递的阻碍等作用抑制细菌生长繁殖和生物活性,造成其对矿物和Fe2+氧化速率降低,延长生物浸出周期,限制生物浸出技术在工业上的推广应用。
     为了改善浸矿周期长的问题,从上述现象入手,基于间接浸出机理,本实验采用有效分离间接生物浸出(Indirect Bioleaching with Effects Separation,IBES)工艺,将细菌生长过程和细菌氧化Fe2+产物Fe3+化学浸出难浸金矿过程分开,分别控制两段反应条件,使各自在最佳条件下进行,提高各段反应速率,进而缩短整个反应周期。实验中的生物反应阶段采用固定化细胞技术提高浸矿菌活性,固定化载体为聚氨酯泡沫,用于固定化的浸矿菌为嗜中温氧化亚铁硫杆菌( Acidithiobacillus ferrooxidants, At.f)和中度嗜热西伯利亚硫杆菌(Sulfobacillus sibiricu,S,s),用于浸出的目标矿物为难浸高砷金精矿。实验结果表明,利用聚氨酯泡沫固定化中度嗜热西伯利亚硫杆菌大幅度提高该菌对Fe2+的氧化速率,在温度为50℃,通气量为4 L/min的条件下,固定化中度嗜热西伯利亚硫杆菌在5h内将浓度为10g/L的Fe2+转化95%,约是相同条件下,接种量为10%的该游离菌摇瓶实验反应时间(36h)的七分之一。酸性硫酸铁溶液浸出高砷金精矿的速率优于细菌直接浸矿体系,70℃,10g/L的酸性硫酸铁溶液连续浸出高砷金精矿,4天内As的浸出率达到71%.实验证明采用有效分离间接生物浸出工艺浸出高砷金精矿更为有利。
In the traditional bioleaching progress of refractory gold ore, bacteria lives with pulp density directly, the steadily accumulated poison and harmful ion、the huge shearing force produced by stirring and the high density blocks the transformation of O_2 and CO_2, all these affect bacteria growth and activity, leading to low oxidation rate of Fe~(2+), longing the leaching time, which limit the apply of the bioleaching technology.
     In order to increase the leaching rate, base on the indirect mechanism, this thesis adopts Indirect Bioleaching with Effects Separation process, imparts the two stages of bioleaching, so that both stages can react in their own condition which can rise the rate of two stages separately, shorter the whole reaction time. In the experiment, we use cell immobilization technique to enhance the bacteria activity, the carrier is polyurethane foam, bacteria using in the immobilization are Acidithiobacillus ferrooxidants and Sulfobacillus sibiricu,the target mineral is rich-arsenic gold concentration. The result is, the rate of S.s oxidize Fe~(2+) is raised by immobilization, under the air rate of 4L/min, 10g/L Fe~(2+) converse 95% takes 5h by immobilization S.s, which is one-seventh of the 10% free S.s (36h). The system of acid ferric sulfate solution leaching rich-arsenic gold concentration is better than bioleaching system, at 70℃, the leaching rate of rich-arsenic gold concentration achieve 71% takes 4 days by 10g/L Fe3+ solution. The result show that IBES progress leaching rich-arsenic gold concentration is more effective.
引文
[1]彭艳平,余水静.我国生物冶金研究的发展概况[J].矿业快报,2006,22(12):8~10.
    [2]李学亚,叶茜.微生物冶金技术及其应用[J].矿业工程,2006,4(2):49~51.
    [3]周吉奎,钮因健.硫化矿生物冶金研究进展[J].金属矿山,2005(4):24~30.
    [4]王玉棉,李军强.微生物浸矿的技术现状及展望[J].甘肃冶金,2004,26(1):36~39.
    [5]姚国成,阮仁满,温建康.生物冶金常用浸矿菌种及改良育种的基本方法[J].金属矿山,2002(11): 26~29.
    [6]张广积,方兆珩.生物氧化浸矿机理和动力学[J].国外金属矿选矿,2000,37(06):17~20.
    [7]格罗捷夫SN,范先锋.金生物浸出的现状和前景[J].国外金属矿选矿,1995(07):15~16.
    [8]林稚兰,田哲贤.微生物对重金属的抗性及解毒机理[J].微生物学通报,1998,25(1):36~39.
    [9]杨洪英,杨立,魏绪钧.细菌氧化难浸金矿石的矿物学研究探讨[J].有色金属,2000(01):86~90.
    [10]刘汉钊.难处理金矿石难浸的原因及预处理方法[J].黄金,1997(09):44~48.
    [11]王康林,汪模辉,蒋金龙.难处理金矿石的细菌氧化预处理研究现状[J].黄金科学技术,2001(01):19~24.
    [12]陈红轶,姚国成.难浸金矿预处理技术的现状及发展方向[J].金属矿山,2009(09):81~83.
    [13] Igles N.,黄宗良.含金难处理矿石处理方法的评述和生物工艺技术的最新进展[J].湿法冶金,1994(3):33~38.
    [14]胡春融,杨凤,杨廻春.黄金选冶技术现状及发展趋势[J].黄金,2006, 27(07):29~36.
    [15]黄宗良.难浸金矿预氧化工艺的研究和应用[J].湿法冶金,1994(02):5~11.
    [16]方兆珩.矿业中的生物技术[J].国外金属矿选矿,1998,35(06):26~28.
    [17] Carranza F, Iglesias N, Romero R, et al. Kinetics improvement of high-grade sulphides bioleaching by effects separation[J]. FEMS Microbiology Review, 1993, 11(1-3): 129~138.
    [18] Carranza F, Palencia I, Romero R. Silver catalyzed IBES process: application to a Spanish copper-zinc sulphide concentrate[J]. Hydrometallurgy, 1997, 44(1-2): 29~42.
    [19] Palencia I, Romero R, Carranza F. Silver catalyzed IBES process: Application to a Spanish copper-zinc sulphide concentrate. Part 2. Biooxidation of the ferrous iron and catalyst recovery[J]. Hydrometallurgy, 1998, 48(1): 101~112.
    [20] Romero R, Palencia I, Carranza F. Silver catalyzed IBES process: application to a Spanish copper-zinc sulphide concentrate: Part 3. Selection of the operational parameters for a continuous pilot plant[J]. Hydrometallurgy, 1998, 49(1-2): 75~86.
    [21] Carranza F, Iglesias N. Application of IBES process to a zn sulphide concentrate: Effect of Cu2+ ion[J]. Hydrometallurgy, 1998, 11(4): 385~390.
    [22] Palencia I, Romero R, Mazuelos A, et al. Treatment of secondary copper sulphides (chalcocite and covellite) by the BRISA process[J]. Hydrometallurgy, 2002, 66(1-3): 85~93.
    [23] Romero R, Mazuelos A, Palencia I, et al. Copper recovery from chalcopyrite concentrates by the BRISA process[J]. Hydrometallurgy, 2003, 70(1-3): 205~215.
    [24] Carranza F, Iglesias N, Mazuelos A, et al. Treatment of copper concentrates containing chalcopyrite and non-ferrous sulphides by the BRISA process[J]. Hydrometallurgy, 2004, 71(3-4): 413~420.
    [25] Kinnunen P H M, Heimala S, Riekkola-Vanhanen M L, et al. Chalcopyrite concentrate leaching with biologically produced ferric sulphate[J]. Bioresource Technology, 2006, 97(14): 1727~1734.
    [26] Munoz J A, Dreisinger D B, Cooper W C, et al. Silver-catalyzed bioleaching of low-grade copper ores.: Part I: Shake flasks tests[J]. Hydrometallurgy, 2007, 88(1-4): 3~18.
    [27] Munoz J A, Dreisinger D B, Cooper W C, et al. Silver catalyzed bioleaching of low-grade copper ores. Part III: Column reactors[J]. Hydrometallurgy, 2007, 88(1-4): 35~51.
    [28] Munoz J A, Dreisinger D B, Cooper W C, et al. Silver-catalyzed bioleaching of low-grade copper ores. Part II: Stirred tank tests[J]. Hydrometallurgy, 2007, 88(1-4): 19~34.
    [29] Cordoba E M, Munz J A, Blaquez M L, et al. Leaching of chalcopyrite with ferric ion. Part I: General aspects[J]. Hydrometallurgy, 2008, 93(3-4): 81~87.
    [30] Ruitenberg R, Hansford G S, Reuter M A, et al. The ferric leaching kinetics of arsenopyrite[J]. Hydrometallurgy, 1999, 52(1): 37~53.
    [31]周洪波,曾伟民,李莹等.硫化矿高温生物浸出工艺研究和应用进展[J].金属矿山,2006(10):5~8.
    [32]罗志雄,张广积,方兆珩.采用中温菌和常温菌浸出含砷金精矿[J].中国有色金属学报,2007,17(08):1342~1347.
    [33]崔建涛,李建新,王育红等.细胞固定化技术的研究进展[J].农产品加工(学刊),2007(01):24~26.
    [34]张磊,张烨,侯红萍.固定化细胞技术的研究进展[J].畜牧兽医科技信息,2006(02):17~18.
    [35]邱建辉,邸进申,赵新巧.氧化亚铁硫杆菌固定化技术研究[J].生物技术,2002,12(02):18~20.
    [36]李冀新,张超,高虹.固定化细胞技术应用研究进展[J].化学与生物工程,2006,23(06):5~7.
    [37]王新,Com Y,李培军等.固定化细胞技术的研究与进展[J].农业环境保护,2001,20(02):120~122.
    [38]黄亚洁,陈宁,梁颖等.氧化亚铁硫杆菌固定床生物反应器运行的工艺条件[J].化工进展,2008,27(03):421~425.
    [39]徐绍霞.生物脱硫中氧化亚铁硫杆菌的固定化及培养基优化研究[D].四川大学,2007.
    [40]李志章,羊依金.生物脱硫中氧化亚铁硫杆菌固定化技术的研究[J].微生物学通报,2006,33(06):57~61.
    [41]李志章,杨家文,陈斌等.氧化亚铁硫杆菌的固定化及动力学研究[J].云南冶金,2007,36(03):24~27.
    [42]李志章,徐晓军.生物法再生铁离子溶液对铁闪锌矿的浸出[J].矿业研究与开发,2007,27(04):39~42.
    [43]李志章,徐晓军.氧化亚铁硫杆菌对低品位锰矿浸出的试验研究[J].金属矿山,2006(11):50~53.
    [44]李志章.生物法再生铁离子溶液脱除气体中硫化氢的研究[D].昆明理工大学,2008.
    [45]郑辉杰,陈洵,邸进申.固定床生物反应器中氧化亚铁硫杆菌氧化Fe2+的研究[J].石油化工,2008,37(06):628~632.
    [46]邸进申,赵新巧,耿冰.氧化亚铁硫杆菌分离复壮及固定化的研究[J].微生物学报,2003,43(04):487~491.
    [47]李师翁,王玉建,涂玮等.PVA-Ca(NO_3)_2法固定化氧化亚铁硫杆菌对Fe2+的氧化及动力学研究[J].环境污染与防治,2007,29(01):14~17.
    [48]王艳锦,巢雁加,郑正等.载体对氧化亚铁硫杆菌氧化活性的影响及生物量分析[J].环境工程学报,2007,1(08):136~139.
    [49]赵东胜,刘桂敏,赵艳丽等.气升式反应器研究进展[J].化工进展,2007,26(06):810~813.
    [50]罗林,康瑞娟.氧化亚铁硫杆菌在气升式反应器中培养条件对其生长特性的影响[J].过程工程学报,2001,1(4):365~368.
    [51]柳建设,王铧泰,闫颖等.气升式反应器中细菌氧化预处理难浸金精矿的浸出参数优化[J].矿冶工程,2008,28(5):35~39.
    [52]胡家俊,周群英.环境工程微生物学[M].北京:高等教育出版社,1988.
    [53]清华大学化学化工系统分析教研组.定量分析实验讲义[M].北京:1984.
    [54]李雅芹,何正国.一株中度嗜热嗜酸铁氧化细菌特性研究[J].微生物学通报,2001,28(6):45~47.
    [55] Leathen W W, Mcintyre L D, Brady S A. A Medium for the study of bacterial oxidation of ferrous iron[J]. Science. 1951, 114: 280~281.
    [56] Cordoba E M, Munoz J A, Blaquez M L, et al. Passivation of chalcopyrite during its chemical leaching with ferric ion at 68 oC[J]. Minerals Engineering, 2009, 22(3): 229~235.
    [57] Iglesias N, Carranza F. Treatment of a gold bearing arsenopyrite concentrate by ferric sulphate leaching[J]. Minerals Engineering, 1996, 9(3): 317~330.
    [58] Breed A W, Harrison S T L, Hansford G S. A preliminary investigation of the ferric leaching of a pyrite/arsenopyrite flotation concentrate[J]. Minerals Engineering. 1997, 10(9): 1023~1030.
    [59] Iglesias N, Carranza F. Refractory gold-bearing ores: a review of treatment methods and recent advances in biotechnological techniques[J]. Hydrometallurgy, 1994, 34(3): 383~395. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700