脊柱微创手术机器人系统(遥控型)及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手术的精准化、数字化和智能化是现代外科技术的标志,也是未来外科技术的发展方向。
     发达国家在以手术机器人为代表的自动化、智能化手术设备的研发上投入巨大,且发展迅速。其中,最具代表性的就是美国研制的Da Vinci系统。但由于该系统是根据内窥镜技术需要而设计的主从式(主端--医生控制端、从端--机器臂控制端)机器人,所针对的手术对象主要是内窥镜可达、需要实时三维视觉及触觉反馈辅助操作的脏器。但对于需要影像学设备辅助进行患处显示、疾病诊断及相关手术操作的骨骼,该机器人系统并不具有优势。鉴于上述原因,Da Vinci系统目前并未在骨科应用。
     骨科手术机器人的研究与临床应用已有20年历史,但这些手术机器人主要集中在关节外科领域。由于脊柱特殊的解剖结构(邻近重要的神经和血管),要求手术操作具有极高的精确性、安全性和稳定性。虽然德国、以色列、美国、日本、韩国等对脊柱外科手术机器人系统进行了多年的研究,但目前商品化系统仅有能引导医生进行打孔操作的SpineAssist系统。
     微创脊柱外科是脊柱外科主要的发展方向之一,具有手术创伤小、术中出血少、术后恢复快等特点,深受患者喜爱。为尽量减少手术创伤,微创脊柱外科医生需要反复使用C型臂X线机影像辅助手术操作,以确保其精确性与安全性。而长时间和大剂量的X射线辐照不但能造成医护人员的损伤,也阻碍了微创脊柱外科事业的发展。同时,其较开放手术小得多的微创“锁孔”术野,不仅为微创脊柱外科医师进行手术操作增加了难度,也限制了微创脊柱外科医师的培训。近年来基于图像引导的计算机辅助手术(computer assisted surgery, CAS)则有望解决上述难题。
     针对国内外现状,结合微创脊柱外科的特点,在导师的指导下,我们设计、研制了脊柱微创手术机器人系统,并构建了该系统的实验环境。在此基础上,对该手术机器人系统操作性及精准性进行相关实验研究,主要内容包括:
     1.脊柱微创手术机器人系统关键技术设计与实验环境的构建
     着眼学科发展前沿并结合本科室特点,研究者设计、研制了脊柱微创手术机器人系统(遥控型)。为配合该系统进一步的实验研究,同时也为该手术机器人系统的后续升级、完善奠定基础,研究者对脊柱微创手术机器人系统及相关仪器的安全操作与注意事项、实验人员责任等问题进行了规范,并根据实际情况确定了该手术机器人系统实验环境内各仪器的位置。
     在上述实验结果的基础上,我们对实验用动物标本进行了初步研究,并确定使用牛腰椎骨标本进行实验。根据实验所需,确定牛脊锥骨标本标签格式;根据牛脊锥骨形态特点及实际应用效果自制牛脊锥骨夹具;通过该手术机器人系统灵活性分析(依据实验性操作及各关节活动范围实测数值)确定木质实验台的高度,根据实验用动物情况确定木质实验台的长、宽等参数并制作该实验台,确保了该手术机器人系统进一步研究的顺利进行。
     2.脊柱微创手术机器人系统操作性的研究
     在上述研究的基础上,通过长时间、多次数、多角度的操作方式,对手术机器人系统各关节温度及位移角度与方向等进行测量,并对该手术机器人系统操作稳定性及安全性进行初步评价。结果显示该系统操作灵活、稳定,但仍存在纵深移动操纵杆“自行移动”等现象。通过一系列“重力补偿”实验,证明该现象是由于纵深移动操纵杆力矩传感器测量值随时间漂移导致重力补偿不足引起。该问题目前可通过在医生控制台手动执行“骨钻钻孔”—“停止操作”—“骨钻钻孔”的循环操作实现重力补偿,从而减免“自行移动”现象的发生,而此问题的根本解决还有赖于下一步对脊柱外科专用机械臂系统的设计与研发。
     3.脊柱微创手术机器人系统精准性的研究
     基于上述实验结果,结合该手术机器人系统现状,我们通过单纯依赖实验中C型臂X线机辅助以及结合实验前CT扫描与实验中C型臂X线机影像辅助等方法对脊柱微创手术机器人系统进行了牛脊椎骨标本实验研究。结果显示遥控操作该手术机器人系统进行打孔可避免操作过程中X射线对医生的损害,且打孔精确,满足临床应用需求。其中,单纯依赖实验中C型臂X线机辅助脊柱微创手术机器人系统打孔结果显示“克氏针置入计划”角度与克氏针放置的实际角度之间无统计学差异,其侧位偏离在1mm内的占91.6%,在2mm内的占99.5%,全部偏差均在3mm内;正位偏离在1mm内的占71.1%,在2mm内的占89.6%,在3mm内的占94.8%。此外,结合实验前CT扫描与实验中C型臂X线机影像辅助脊柱微创手术机器人系统打孔结果显示通过实验中C型臂X线机的辅助,该手术机器人系统可依据术前CT扫描数据制定的打孔计划精确打孔,实际打孔结果与术前制定的打孔计划无统计学差异。此外,上述两种方法的实验中均有明显的学习曲线存在。
     通过实验室及相应实验器具的设计、实验标本选择等为脊柱微创手术机器人系统营造了一个适当的实验环境。在该实验环境中,针对遥控型脊柱微创手术机器人系统的操作性及精准性进行相关实验,结果表明该手术机器人系统操作灵活、稳定,打孔安全,精度满足临床所需,同时可避免打孔过程中X射线对医生的损害。虽然,该系统具有一定的学习曲线,但熟悉该系统后,通过影像学设备辅助该手术机器人打孔置入的克氏针与打孔前计划无统计学差异。
Precision, digital and intelligent is the sign of modern surgical techniques, but also thefuture direction of development of surgical techniques.
     Developed countries invested heavily in research and development of automation,intelligent surgical equipment which is on behalf of surgical robot, and the milestone is the DaVinci system developed by the United States. However, the system is designed asmaster-slave structure robotic system (i.e., main side-doctor control and slave side-manipulator control) based on the technology needs of endoscopy. Therefore, the operativeobject of the Da Vinci system aimed is endoscopic, real-time3D visual needed, and tactilefeedback surgery, such as general surgery. Hence, for the surgeries which need fluoroscopicequipment assisted, there is no benefit. In view of the above restrictions, the Da Vincisystem is not currently used in orthopedics.
     Throughout the history of research and clinical application of orthopedic surgery robot, itis more than20years. But all these surgical robots are mainly concentrated in the area of joint.Due to the special structure of the spine, close to important nerves and blood vessels, thespinal surgeries need a very high accuracy, security and stability. Has been Germany, Israel,the United States, Japan, Korea and other countries on the spine surgical robotic systems withyears of research, the commercialization is still only one robotic system, the SpineAssistsystem, which could guide the surgeons to drill in spinal surgeries.
     Minimally invasive Spinal surgery is one of the main directions of the spinal surgery.Less lesion, bleed losing and recovery time make the patients like the minimal invasivesurgery more. For the minimizing of the surgical trauma, the surgeon requires to use theintraoperative fluoroscopy repeat to ensure the accuracy and safety of the operation. While,long time and large doses of X-ray direct irradiation not only cause the bodily harm, but alsohindered the development of minimally invasive spinal surgical. And the "keyhole" surgical field, which is much smaller, compared with the open surgery, not only for the surgeons ofminimally invasive spinal surgery to perform procedures more difficult and also limits thetraining of them. In recent years, based on image-guided computer-assisted surgery may bepossible to solve the problems above.
     For this situation, combined with the characteristics of the minimally invasive spinalsurgery, under the guidance of instructors, our team design and developed the minimallyinvasive spinal surgery robotic system, and experimental environment. On this basis, thesurgical robot system operational and accurate experimental studied. And the main contents:
     1.The establishment of the minimally invasive spinal surgery robotic experimentalenvironment
     Focus on the development of orthopedics and our department, combination ofdepartment characteristics, we designed and development the minimally invasive spinalsurgery robotic system (remote type). To specify the operation of the robotic system, thematter need attention and the duty of the experimenters is very necessary for laying thefoundation for the further experiments with the minimally invasive spinal surgical roboticsystem. And at the same time, we need to determine the position of the instruments in thelaboratory related with this study.
     We did a preliminary study on experimental animals and decided to use the bovinelumbar spine as the experiment subject on the basis of the above experimental results. Andafter that, we design a note to identify the bovine lumber spine specimens, and manufacturedthe cattle spine clamp base on the morphology and the effect of the practical application of thebovine lumber spine. And then determine the size of the wooden bench according to theflexibility analysis of the surgical robotic system. After that we made it to ensure theexperiment implementing smoothly.
     2.The operational performance of minimally invasive spinal surgery robotic system
     We evaluate the temperature of the joints and the angle of displacement of themanipulator after long time, repeated and multi-angle operation. On the basis of the abovestudy, we assess stability and security preliminarily. And we found that this robotic system issafe and stable. But there is autonomous phenomenon of the “Depth mobile”. A series of"gravity compensation" experiments proved that the phenomenon is caused by measurementvalues drift of the torque sensor. This issue is currently conquered by shifting the levers as follow,“drilling”-“stop operation”-“drilling”. And the ultimate solution depends on theresearch and development of the specific manipulator of spinal surgery.
     3.Punching accuracy research of minimally invasive spinal surgical robotic system
     Though solely rely on the C-arm and the combination of CT scan and intraoperativeC-arm image assisted the robotic system methods, we drill on the bovine spine specimens inthe experiments. And the results showed that the operation of the surgical robot system fordrilling could avoid the X-ray damage to the surgeons. And the accuracy of punching satisfiedthe clinical needs. There was no statistical difference between the plan and the punching. Andthe deviation within1mm accounted for91.6%, accounting for99.5within2mm; alldeviations are3mm of lateral film using solely C-arm assisted. And with the other way toassist, there were still3Kirschner wire not in the bovine spine specimens pedicle, besides thefact of no significant difference between the actual punch and the punch plan designed by thepreoperative CT scan. In addition, both of the two methods show obvious learning curveexists.
     We create an appropriate environment for the pre-clinical experiments of minimallyinvasive spinal surgical robotic system (remote) by designing laboratory and apparatus. In thisexperimental environment, we did research against the operating performance and precisionof minimally invasive spinal surgical robotic system (remote type). The results show that thissurgical robotic system operate security, stability, and can avoid the X ray damage to thedoctors during punching process. Although the robotic system has a certain learning curve,there is no significant difference between the Kirschner wire placed and the punch plan usingthis surgical robot assisted by the imaging equipment after familiar with the system.
引文
[1]戴尅荣.骨科手术原理及技术进展[M]//邱贵兴,戴尅荣.骨科手术学.第3版.北京:人民卫生出版社,2010:61-69.
    [2] Jeffrey H, Igor DeCastro, Dennis E. McDonnell. Minimally invasive spine technologyand minimally invasive spine surgery: a historical review[J]. Neurosurg Focus,27(3):E9,1-15.
    [3] Smith L, Garvin PJ, Jennings RB, et al. Enzyme dissolution of the nucleus pulposus[J].Nature1963,198:1311-1312.
    [4] Hijikata S. Percutaneous nucleotomy: A new concept technique and12years’experience[J]. Clin Orthop.1989,238:9-23.
    [5] Kambin P, Gellman H. Percutaneous lateral discectomy of the lumber spine: Apreliminary report[J]. Clin Orthop.1983,174:127-132.
    [6] Onik G, Helms CA, Ginsberg L, et al. Percutaneous lumbar discectomy using a newaspiration probe: Porcine and cadaver model[J]. Radiology.1985,155:251-252.
    [7] Ascher PW, Heppner F. CO2-Lazer in neurosurgery[J]. Neurosurg Rev.1984,7:123-133.
    [8] Kambin,P, Brager MD. Percutaneous posterolateral discectomy. Anatomy andmechanism[J]. Clin-Orthop-Relat-Res.1987,10(223):145-54
    [9]池永龙.微创脊柱外科技术概论[M].//池永龙.脊柱微创外科学.北京:人民军医出版社,2006:1-33.
    [10] Isadora H L, Daisuke T, Mark M K, et al. Bone-mounted miniature robotic guidancefor pedicle screw and translaminar facet screw placement: part I—Technicaldevelopment and a test case result[J]. Neurosurgery2006,59(3):641-650.
    [11] W Sukovich, S Brink-Danan, M. Hardbrook. Miniature robotic guidance for pediclescrew placement in posterior spinal fusion: early clinical experience with theSpineAssist[J]. Int J Med Robotics Comput Assist Surg2006,2:114-122.
    [12] Devito DP, Kaplan L, et al. Clinical Acceptance and Accuracy Assessment of SpinalImplants Guided With SpineAssist Surgical Robot: Retrospective Study[J]. Spine,2010,35:2109-2115.
    [13] Young RF. Application of robotics to stereotactic neurosurgery[J]. Neurol Res.1987,9(2):123-128.
    [14] Davies BL, Hibberd RD, Coptcoat MJ, et al. A surgeon robot prostatectomy--alaboratory evaluation[J]. J Med Eng Technol.1989,13(6):273-277.
    [15] Kwoh YS, Hou J, Jonckheere EA, et al. A robot with improved absolute positioningaccuracy for CT guided stereotactic brain surgery[J]. IEEE Trans Biomed Eng,1988,35:153-160.
    [16] Yuan Fang Wang, Darrin R. Uecker, Yu Lun Wang. A new framework forvision-enabled and robotically assisted minimally invasive surgery. ComputerizedMedical Imaging and Graphics[J].1998,(22):429-437.
    [17] Sung GT, Gill IS, Hsu TH. Robotic-assisted laparoscopic pyeloplasty: a pilot study[J].Urology.1999Jun;53(6):1099-103.
    [18] Loi-Wah Sun, Van Meer, Chung Kwong Yeung. Design and development of a Da VinciSurgical System Simulator[C]. Mechatronics and Automation2007InternationalConference.1050-1055.
    [19] Yang MS, Yoon do H, Kim KN, et al. Robot-assisted anterior lumbar interbody fusionin a Swine model in vivo test of the da vinci surgical-assisted spinal surgery system[J].Spine.2011,36(2):E139-43.
    [20] Kim MJ, Ha Y, Yang MS, et al. Robot-assisted anterior lumbar interbody fusion (ALIF)using retroperitoneal approach[J]. Acta Neurochir.2010,152(4):675-679.
    [21] Ponnusamy K, Chewning S, Mohr C. Robotic approaches to the posterior spine[J].Spine.2009,34(19):2104-9.
    [22] Bach CM, Winter P, Nogler M, et al. No functional impairment after Robodoc total hiparthroplasty: gait analysis in25patients. Acta Orthop Scand,2002,73:386-391.
    [23] Honl M, Dierk O, Gauck C, Carrero V, Lampe F, Dries S, Quante M, Schwieger K,Hille E, Morlock MM. Comparison of robotic-assisted and manual implantation of aprimary total hip replacement. A prospective study. J Bone Joint Surg(Am),2003,85:1470-1478.
    [24] Petermann J, Kober R, Heinze J. Computer-assisted planning and robot-assistedreconstruction[J]. Operat Tech Orthop,2000,10:50-55.
    [25] Petermann J, Kober R, Heinze J, et al. Computer-assisted planning and robot-assistedsurgery in anterior cruciate ligament reconstruction[J]. Operat Techn Orthop,2000,10:50-55.
    [26] Siebert W, Mai S, Kober R,et al. Technique and first clinical results of robot-assistedtotal knee replacement[J]. Knee,2002,9:173-180.
    [27] Davies BL, Fan KL, Hibberd, et al. ACROBOT-using robots and surgeonssynergistically in knee surgery[C]. ICAR97, Monterey:CA,1997,7-9.
    [28] Mitsuishi M, Warisawa SN. Development of a bone cutting robot for total kneearthroplasty[R]. IROS,2004, Sandal Japan,2004.
    [29] Pierre M, Benin N, Lucien B, et al. BRIGIT, a robotized tool guide for orthopedicsurgery[R]. ICRA,2005,211-216.
    [30] Stefano B, Pietro C, Ivan E. An application of a hybrid robot in the total knee replacementprocedure[R].12thIFToMM World Congress, Besangon (France),2007,8-21.
    [31] Brandt G, Zimolong A, Carrat L, et al. CRIGOS: a compact robot for image-guidedorthopedic surgery[J]. IEEE Trans Inf Technol Biomed,1999,4:252-260.
    [32] Kwon DS, Yoon YS, Lee JJ, et al. ARTHROBOT: a new surgical robot system for totalhip arthroplasty[J]. In Proc. IEEE/RSJ Int. Confi Intelligent Robots and Systems,2001,1123-1128.
    [33] Wolf A, Jaramaz B, Lisien B, et al. MBARS: mini bone-attached robotic system forjoint arthorplasty[J]. International Journal of Medical Robotics and Computer AssistedSurgery,2005,2:101-121.
    [1] Yuan Fang Wang, Darrin R. Uecker, Yu Lun Wang. A new framework forvision-enabled and robotically assisted minimally invasive surgery. ComputerizedMedical Imaging and Graphics,1998,(22):429-437.
    [2] Sung GT, Gill IS, Hsu TH. Robotic-assisted laparoscopic pyeloplasty: a pilot study.Urology.1999Jun;53(6):1099-103.
    [3] Loi-Wah Sun, Van Meer, Chung Kwong Yeung. Design and development of a Da VinciSurgical System Simulator. Mechatronics and Automation2007InternationalConference1050-1055.
    [4] Marescaux J, Leroy J, Gagner M, et al. Transatlantic robot-assisted telesurgery. Nature,2001,413:379-380.
    [5] Taylor RH, Paul HA, Kazandzides P, et al. An image-directed robotic system forprecise orthopaedic surgery. IEEE Trans Robot and Automation,1994,10:261-275.
    [6] Bach CM, Winter P, Nogler M, et al. No functional impairment after Robodoc total hiparthroplasty: gait analysis in25patients. Acta Orthop Scand,2002,73:386-391.
    [7] Honl M, Dierk O, Gauck C,et al. Comparison of robotic-assisted and manualimplantation of a primary total hip replacement. A prospective study. J Bone JointSurg(Am),2003,85:1470-1478.
    [8] Petermann J, Kober R, Heinze J. Computer-assisted planning and robot-assistedreconstruction. Operat Tech Orthop,2000,10:50-55.
    [9] Petermann J, Kober R, Heinze J, et al. Computer-assisted planning and robot-assistedsurgery in anterior cruciate ligament reconstruction. Operat Techn Orthop,2000,10:50-55.
    [10] Siebert W, Mai S, Kober R,et al. Technique and first clinical results of robot-assistedtotal knee replacement. Knee,2002,9:173-180.
    [11] Davies BL, Fan KL, Hibberd, et al. ACROBOT-using robots and surgeonssynergistically in knee surgery. ICAR97, Monterey:CA,1997,7-9.
    [12] Brandt G, Zimolong A, Carrat L, et al. CRIGOS: a compact robot for image-guidedorthopedic surgery. IEEE Trans Inf Technol Biomed,1999,4:252-260.
    [13] Kwon DS, Yoon YS, Lee JJ, et al. ARTHROBOT: a new surgical robot system for totalhip arthroplasty. In Proc. IEEE/RSJ Int. Confi Intelligent Robots and Systems,2001,1123-1128.
    [14] Wolf A, Jaramaz B, Lisien B, et al. MBARS: mini bone-attached robotic system forjoint arthorplasty. International Journal of Medical Robotics and Computer AssistedSurgery,2005,2:101-121.
    [15] Pladms C, Cinquin P, and Lavalles S, et al. Praxiteles: a miniature bone-mounted robotfor minimal access total knee arthroplasyt. Intermational Journal of Medical Roboticsand Computer Assisted Surgery,2005,4:67-79.
    [16] Pierre M, Benin N, Lucien B, et al. BRIGIT, a robotized tool guide for orthopedicsurgery. ICRA,2005,211-216.
    [17] Isadora H L, Daisuke T, Mark M K, et al. Bone-mounted miniature robotic guidancefor pedicle screw and translaminar facet screw placement: part I—Technicaldevelopment and a test case result[J]. Neurosurgery2006,59(3):641-650.
    [18] W Sukovich, S Brink-Danan, M. Hardbrook. Miniature robotic guidance for pediclescrew placement in posterior spinal fusion: early clinical experience with theSpineAssist[J]. Int J Med Robotics Comput Assist Surg2006,2:114-122.
    [19] Devito DP, Kaplan L, et al. Clinical Acceptance and Accuracy Assessment of SpinalImplants Guided With SpineAssist Surgical Robot: Retrospective Study. Spine,2010,35:2109-2115.
    [1]陈德兴.胆道微创外科手术学[M].北京:人民卫生出版社,2008:1.
    [2] Smith L, Garvin PJ, Jennings RB, Gesler RM. Enzyme dissolution of the nucleuspulposus[J]. Nature1963,198:1311-1312.
    [3] Hijikata S. Precutaneous nucleotomy: A new concept technique and12years’experience[J]. Clin Orthop.1989,238:9-23.
    [4] Onik G, Helms CA, Ginsburg L, Hoaglund FT, Morns J. Percutaneous lumberdiscectomy using a new aspiration probe[J]. AJR Am J Roentgenol.1985,144:1137-1140.
    [5] Ascher PW, Holzer P, Sutter B, Trittart H, Schrottner O. Laser denaturation of thenucleus pulposus of herniated intervertebral disc, in Kambin P(ed). ArthoscopicMicrodiscectomy Minimal Intervention in Spinal Surgery. Baltimore, Williams&Wilkins.1991, pp137-140.
    [6] Kambin P, Gellman H. Percutaneous lateral discectomy of the lumber spine: Apreliminary report[J]. Clin Orthop.1983,174:127-132.
    [7]李兵兵,黄子强.电容式多点触摸屏的器件设计及算法实现[J].液晶与显示.2011,2(2):216-219.
    [8]李攀.触摸屏手机的目标提取方法研究与实现[D].湖南大学,2010,04
    [9]闫瑞瑞.手机触摸屏及其目标提取方法[J].现代显示.2011,127:47-51
    [10]吴非.触摸屏的现状及发展趋势[J].价值工程.2011,16:168.
    [11] Rick Downs.电阻式触摸屏实现人机接口[J].电子产品世界.2006,11:156-158.
    [1] Taylor R H, Paul H A, Kazandzides P, et al. An image-directed robotic system forprecise orthopaedic surgery[J]. IEEE Trans Robot and Automation,1994,10:261-275.
    [2] Honl M, Dierk O, Gauck C,et al. Comparison of robotic-assisted and manualimplantation of a primary total hip replacement. A prospective study. J Bone JointSurg(Am),2003,85:1470-1478.
    [3] Bauer A, Borner M, Lahmer A. Primary and revision total hip replacement usingROBODOC system. In: Proc Comp Aided Orthop Surg Conf149. Pittsburgh, Pa: CentOrthop Res, Shadyside Hosp,1998.
    [4] Bach CM, Winter P, Nogler M, et al. No functional impairment after Robodoc totalhip arthroplasty: gait analysis in25patients. Acta Orthop Scand,2002,73:386-391.
    [5] Petermann J, Kober R, Heinze J. Computer-assisted planning and robot-assistedreconstruction[J]. OPerat Tech Orthop,2000,10:50-55.
    [6] Siebert W, Mai S, Kober R,et al. Technique and first clinical results of robot-assistedtotal knee replacement. Knee,2002,9:173-180.
    [7] Davis BL, Fan KL, Hibberd, et al. ACROBOT–using robots and surgeonsynergistically in knee surgery[R]. ICAR97, Monterey: CA,1997,7-9.
    [8] Isadora H L, Daisuke T, Mark M K, et al. Bone-mounted miniature robotic guidancefor pedicle screw and translaminar facet screw placement: part1-Technicaldevelopment and a test case result[J]. Neurosurgery,2006,59:641-650.
    [9] Konovalov, N A, Shevelev, I N, Kornienko, V N, et al. Application of roboticassistance in surgical treatment of degenerative disease of lumbosacral spine[J]. ZhVopr Neirokhir Im N N Burdenko,2011,3:10-15.
    [10] Devito D P, Kaplan L, Dietl R, et al. Clinical Acceptance and Accuracy Assessment ofSpinal Implants Guided With SpineAssist Surgical Robot: Retrospective Study[J].Spine,2010,35:2109-2115.
    [11] Konovalov, N A, Shevelev, I N, Kornienko, V N, et al. Application of roboticassistance in surgical treatment of degenerative disease of lumbosacral spine[J]. ZhVopr Neirokhir Im N N Burdenko,2011,3:10-15.
    [12] Devito D P, Kaplan L, Dietl R, et al. Clinical Acceptance and Accuracy Assessment ofSpinal Implants Guided With SpineAssist Surgical Robot: Retrospective Study[J].Spine,2010,35:2109-2115.
    [13] Chung G B, Kim S, Yi B J, et al. Cadaver study for spinal fusion surgery using animage-guide surgical robotic system[J]. International Journal of Control Automationand System,2010,8(3):564-573.
    [14] Lee F, Hwang I, Kim K, et al. Cooperative robotic assistant with drill-by-wireend-effector for spinal fusion surgery[J]. Ind Robot: An int J,2009,
    [15] Ortmaier T, Weiss H, Dobele S, et al. Experiments on robot-assisted navigated drillingand milling of bones for pedicle screw placement[J]. Int J Med Robot,2006,2(4):350-363.
    [16] Zemiti N, Morel G, Ortmaier T, et al. Mechatronic design of a new robot for forcecontrol in minimally invasive surgery[J]. IEEE/ASME TRANSACTIONS ONMECHATRONICS,2007,11(12):143-147.
    [17] Hussong A, Rau T S, Ortmaier T, et al. An automated insertion tool for cochlearimplants: another step towards atraumatic cochlear implant surgery[J]. Int J ComputAssist Radiol Surg,2010,5(2):163-171.
    [18] Leung KS. Fluoro-navigation in Orthopaedic Trauma. Osteosynthesis and TraumaCare,2004,12:163-169.
    [19]梁国穗,邓宁,余浩然。应用透视图像导航(Fluoro-Navigation)进行Gamma-AP钉手术的早期临床经验。中华创伤骨科杂志,2004,6:491-494。
    [20] Daisuke Togawa, Mark M. Kayanja, Mary K. Reinhardt, et al. Bone-mountedminiature robotic guidance for pedicle screw and translaminar facet screw placement:part2-evaluation of system accuracy[J]. Neurosurgery.2007,60, ons129-139.
    [21]张鹤,韩建达,周跃.脊柱微创手术机器人系统辅助打孔的实验研究[J].中华创伤骨科杂志,2011,13(12):65-68
    [22]邱贵兴.骨科常用器械及使用方法[M]//邱贵兴,戴尅荣.骨科手术学.第3版.北京:人民卫生出版社,2010:13.
    [1] Dessenne V, Lavallee S, Julliard R, et al. Comouter-assisted knee anterior cruciateligment reconstruction: first clinical tests. J Image Guid Surg,1995,1:59-64.
    [2] Rohr K. Stiehl HS, Sprengel R, et al. Landmark-based elastic registration usingapproximating thin-plate splines IEEE Trans Med Imaging,2001,20:526-534.
    [3] Audette MA, Paters TM. An algorithmic overview of surface registration techniquesfor medical imaging [J]. Med Image Anal,2000,4:201-217.
    [4] Nolte LP, Slomczykowski MA, Berlemann U. A new approach to computer-aided spinesurgery:fluoscopy-based surgical navigation. Eur Spine J,2000,9:78-88.
    [5] Isadora H L, Daisuke T, Mark M K, et al. Bone-mounted miniature robotic guidancefor pedicle screw and translaminar facet screw placement: part I—Technicaldevelopment and a test case result. Neurosurgery,2006,59:641-650.
    [6] W Sukovich, S Brink-Danan, M. Hardbrook. Miniature robotic guidance for pediclescrew placement in posterior spinal fusion: early clinical experience with theSpineAssist. Int J Med Robotics Comput Assist Surg,2006,2:114-122.
    [7] Ioannis P, George K, Martin E, et al. Percutaneous placement of pedicle screws in thelumbar spine using a bone mounted miniature robotic system. Spine,2000,34:392-398.
    [8] Mihalko W M, Stockheim M, Kamp M, et al. Computer-assisted navigation increasesprecision of component placement in total knee arthroplasty [J]. Clin Orthop Relat Ras,2005,(433):281-282.
    [9] Mihalko W M, Krackow K A. Differences between extramedullary, intramedullary, andcomputer-aided surgery tibial alignment techniques for total knee arthroplasty. J KneeSurg,2006,19:33-36.
    [10]王豫,贠超,张丰全等.双平面导航机器人系统在不同骨科适应证中的应用研究.机器人,2007,3:200-206
    [11] Wang jun-qiang, Zhao chun-peng, Wang man-yi, et al. Computer-assisted auto-framenavigation system for distal locking of tibial intramedullary nails: a preliminary reporton clinical application. Chinese Journal of Traumatology,2006,9:138-145.
    [12] Lining S, Jian Z, Zhijiang D, et al. A fluoroscopy based orthopaedic system for lockingintramedullary nails. ISIST,2004:621-625.
    [13] Sugano N. Computer-assisted orthopedic surgery. J Orthop Sci,2003,8:442-448.
    [14] Wolf A, Jaramaz B, Lisien B, et al. MBARS: mini bone attached robotic system forjoint arthroplasty. International Journal of Medical Robotics and Computer AssistedSurgery,2005,2:101-121.
    [15] Pladms C, Cinquin P, Lavalles S, et al. Praxiteles:a miniature bone mounted robot forminimal access total knee arthroplasty. International Journal of Medical Robotics andComputer Assisted Surgery,2005,4:67-79.
    [16] Pierre M, Benin N, Lucien B, et al. BRIGIT,a robotized tool guide for orthopedicsurgery. ICRA,2005:211-216.
    [17] Stefano B, Pietro C, Ivan E. An Application of a hybrid robot in the total kneereplacement procedure.12th IFToMM World Congress, Besangon(France),2007:8-21.
    [18] Devito DP, Kaplan L, Dietl R, et al. Clinical Acceptance and Accuracy Assessment ofSpinal Implants Guided With SpineAssist Surgical Robot: Retrospective Study. Spine,2010,35:2109-2115.
    [19]肖湘,梁国穗.第一届自动化于计算机辅助矫形外科研讨会既要.中华骨科杂志,2005,25:319-320.
    [20]肖德明.计算机辅助骨科导航技术面临的主要问题。中华创伤骨科杂志,2005,7:617-619.
    [1] Halvorsen FH, Elle OJ, Fosse E, et al. Simulators in surgery. Minim Invasive TherAllied Technol2005;14(4):214-223.
    [2] Cosman PH, Cregan PC, Martin CJ, et al. Virtual reality simulators: current status inacquisition and assessment of surgical skills. ANZ J Surg2002;72(1):30-34.
    [3] Basdogan C, Sedef M, Harders M, et al. VR-based simulators for training in minimallyinvasive surgery. IEEE Comput Graph Appl2007;27(2):54-66.
    [4] Meier AH, Rawn CL, Krummel TM. Virtual reality: surgical application challengefor the new millennium. J Am Coll Surg,2001,192(3):372-384.
    [5] Mohan A, Proctor M. Virtual reality--a 'play station' of the future. A review of virtualreality and orthopaedics. Acta Orthop Belg2006;72(6):659-663.
    [6]武青海,张丽颖.医学图像三维分割技术[J].吉林农业科技学院学报,2008,17(3):37-39.
    [7] Zhang H, Fritts JE, Sally A, et al. Image segmentation evaluation: A survey ofunsupervised methods. Computer Vision Image Understanding2008;110(2):260-280.
    [8]张涛.机器人引论[M].北京:机械工程出版社,2010,246.
    [9] Lv W. The research of3D medical image reconstruction technology [D]. MasterDissertation of Nanjing University of Aeronautics and Astronautics.2003:6.
    [10]王晓敏,张艳,王鹏程.医学三维可视化方法以及算法平台的研究进展[J].中国医学装备,2007,4(10):5-9.
    [11]薛健,田捷.基于3D Widgets的三维人机交互平台的设计与实现[J].计算机仿真,2006,24(1):230-235.
    [12] Otmane S, Ouramdane-Djerah N, Mallem M, et al. Towards a Collaborative3DInteraction Model for Cooperative Design in Virtual Environments [C]. ComputerSupported Cooperative Work in Design,11th International Conference on26-28April2007:198-203
    [13]代耀军,曹珺,何飞.骨科虚拟手术系统的研究现状与应用[J].中国组织工程与临床康复,2008,12(30):5957-5960.
    [14]罗述谦.医学图像配准技术[J].国外医学:生物医学工程分册,1999,22(1):1-7.
    [15] Zhang J, Han G. Computation of mutual information in medical image registrationbased on mutual information. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi2008;25(1):12-17.
    [16] Russakoff DB, Rohlfing T, Adler JR Jr, et al. Intensity-Based2D-3D spine imageregistration incorporating a single fiducial marker. Acad Radiol.2005;12(1):37-50.
    [17] Zitova S, Flusser J. Image registration methods: a survey. Image Vision Computing2003;21(11):977-1000.
    [18] Wang ZJ, Ziou D, Armenaltis C, et al. A comparative analysis of image fusion methods.IEEE Trans Geoeciences Remote Sensing2005;43(6):1391-1402.
    [19]谈泉,林家瑞.多模态医学图像融合技术的研究与进展[J].国际生物医学工程杂志,2006,29(3):158-160
    [20] Townsend DW, Beyer T. A combined PET/CT scanner: The path to true imagefusion[J]. Br J Radiol,2002,75:S24-S30.
    [21] Aiazzi B, Alparone L, Baronti S, et al. Contex-driven fusion of high spatial andspectral resolution images based on over sampled multi-resolution analysis[J]. IEEETrans Geosci Remote Sens,2002,40(10):2300-2312.
    [22] Seel MJ, Hafez MA, Eckman K, et al. Three-dimensional planning and virtualradiographs in revision total hip arthroplasty for instability. Clin Orthop Relat Res2006;442:35-38
    [23] Caloss R, Atkins K, Stella JP. Three-dimensional imaging for virtual assessment andtreatment simulation in orthognathic surgery. Oral Maxillofac Surg Clin North Am2007;19(3):287-309
    [24] Wang P, Becker AA, Jones IA. A virtual reality surgery simulation of cutting andretraction in neurosurgery with force-feedback.Comput Methods Programs Biomed2006;84(1):11-18
    [25] Szpala S, Wierzbicki M, Guiraudon G, et al. Real-time fusion of endoscopic views withdynamic3-D cardiac images: a phantom study. IEEE Trans Med Imaging2005;24(9):1207-1215
    [26] Heng PA, Cheng CY, Wong TT, et al. Virtual reality techniques. Application toanatomic visualization and orthopaedics training. Clin Orthop Relat Res2006;442:5-12
    [27]曹珺,何飞,余伟巍,等.脊柱虚拟手术系统的构建与功能实现[J].中国脊柱脊髓杂志,2011,21(5):408-411.
    [28]王玫,张月东,尚宪刚,等.虚拟记住手术系统的设计[J].计算机技术与发展,2011,21(7):179-182.
    [29]于博,潘家辉,田京,等.脊柱疾病虚拟手术系统的初步研究[J].山东医药,2008,48(41):21-23.
    [30]曹珺,何飞,李超,等.脊柱虚拟手术系统测量下颈椎椎弓根固定相关参数精确性的实验研究[J].中国修复重建外科杂志,2011,25(3):316-322.
    [31]李超,陈昊,何飞,等.脊柱虚拟手术系统术前测量胸腰椎椎弓根置钉准确性的实验研究[J].中国修复重建外科杂志,2011,25(4):451-455.
    [32] Ortmaier T, Weiss H, Dobele S, et al. Experiments on robot-assisted navigated drillingand milling of bones for pedicle screw placement[J]. Int J Med Robot,2006,2(4):350-363.
    [33] Zemiti N, Morel G, Ortmaier T, et al. Mechatronic design of a new robot for forcecontrol in minimally invasive surgery[J]. IEEE/ASME TRANSACTIONS ONMECHATRONICS,2007,11(12):143-147.
    [34] Hussong A, Rau T S, Ortmaier T, et al. An automated insertion tool for cochlearimplants: another step towards atraumatic cochlear implant surgery[J]. Int J ComputAssist Radiol Surg,2010,5(2):163-171.
    [35] Isadora H L, Daisuke T, Mark M K, et al. Bone-mounted miniature robotic guidancefor pedicle screw and translaminar facet screw placement: part1—Technicaldevelopment and a test case result[J]. Neurosurgery,2006,59:641-650.
    [36] Daisuke T, Mark M K, Isadora H L, et al. Bone-mounted miniature robotic guidancefor pedicle screw and translaminar facet screw placement: part2—Evaluation ofsystem accuracy[J]. Neurosurgery,2007,60:129-139.
    [37] Chung G B, Kim S, Yi B J, et al. Cadaver study for spinal fusion surgery using animage-guide surgical robotic system[J]. International Journal of Control Automationand System,2010,8(3):564-573.
    [38] Lee F, Hwang I, Kim K, et al. Cooperative robotic assistant with drill-by-wireend-effector for spinal fusion surgery[J]. Ind Robot: An int J,2009,1(36):60-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700