单节段经伤椎固定治疗AOA3.1型胸腰椎爆裂骨折的基础及临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分经骨折椎单节段与短节段椎弓根螺钉固定治疗胸腰椎爆裂骨折(A0A3.1)的离体生物力学研究
     目的:研究单节段经伤椎固定治疗胸腰椎爆裂性骨折(AO A3.1)的稳定性。
     方法:选取新鲜脊柱标本胸10-腰2节段6具。通过落锤实验机建立AO分型A3.1型胸12爆裂骨折的模型,在与骨折椎相邻的上、下椎体打入椎弓根螺钉建立短节段椎弓根螺钉固定(short segment pedicle instrumentation, SSPI)的模型;随后在骨折椎及其相邻的椎体上植入椎弓根钉,建立单节段椎弓根螺钉固定(monosegment pedicle instrumentation,MSPI)的模型。每具标本均进行完整、骨折、SSPI和MSPI固定四种状态的生物力学测试。分析MSPI固定与完整、骨折标本,SSPI固定与完整、骨折标本,SSPI固定与MSPI固定的稳定性差异。
     结果:MSPI固定组的前屈、后伸、左右侧弯的ROM(range of motion,活动范围)为0.14±0.02°、0.07±0.02°、0.74±0.13°和0.73±0.22°明显小于骨折组0.84±0.10°、1.94±0.30°、2.54±0.44°和2.33±0.56°及完整组0.46±0.05°、1.01±0.23°、1.30±0.31。和1.34±0.24°(p<0.05)。轴向旋转,当扭转角相同时,MSPI固定组所需的扭力3103.00±213.11N与完整标本2654.75±122.90N相当(p>0.05),大于骨折标本1519.60±100.82N(p<0.05)。SSPI固定的脊柱标本(胸11-腰1)前屈、后伸、左侧弯和右侧弯的ROM分别为0.32±0.07°、1.55±0.31。、1.27±0.33°和1.61±0.43°明显小于骨折组的1.23±0.24°、4.34±0.68°、3.39±0.77°和3.70±0.98°及完整组0.65±0.15°、2.31±0.22°、2.45±0.44°和2.70±0.54°(p<0.05),轴向旋转,当扭转角相同时,SSPI固定组所需的扭力3184.00±250.40的与完整标本2654.75±122.90N相当(p>0.05),大于骨折标本1519.60±100.82N(p<0.05)。SSPI固定的标本在前屈、后伸、左侧弯和右侧弯稳定指数(SPI,stable potential index)分别为0.50±0.01。、0.45±0.03°、0.52±0.02°和0.70±0.0°3。MSPI固定的标本在前屈、后伸、庄侧弯和右侧弯SPI(稳定指数)分别为0.88±0.05。、0.94±0.02。、0.81±0.19°和0.92±0.01。。MSPI固定的标本在前屈、后伸、左侧弯和右侧弯时的稳定指数明显高于SSPI固定的标本(p<0.05)。当扭转角度相同时,MSPI固定的脊柱标本所需的扭力与SSPI的脊柱标本相比,p>0.05,统计学上无显著差异。
     结论:MSPI及SSPI治疗A03.1型胸腰椎爆裂骨折,均能重建脊柱的稳定性,MSPI在前屈后伸和左右侧弯时脊柱的初始稳定性优于SSPI固定,轴向扭转时的稳定性与SSPI固定相似。
     第二部分用三维有限元方法评价经骨折椎单节段与短节段椎弓根螺钉固定治疗胸腰椎爆裂骨折(AO A3.1)的生物力学效果
     目的:用三维有限元方法比较胸腰椎爆裂骨折(AO A3.1)MSPI及SSPI固定时脊柱稳定性,内固定的应力及力矩。
     方法:基于尸体冰冻切片建立T11-L1脊柱三维有限元模型,包括完整模型,胸12骨折模型,MSPI固定的模型,SSPI固定的模型。计算前屈,后伸,侧弯及轴向旋转4种条件下脊柱的ROM,螺钉与棒所受的应力峰值,计算SSPI及MSPI在各种条件下的螺钉及棒力矩。
     结果:SSPI组固定模型T11相对于L1的ROM前屈、后伸、侧弯和轴向旋转状况下由完整状态时的0.768°、1.375°、0.905°和0.630°减小为0.762°、0.458°、0.688°和0.601。,均小于完整状态模型。MSPI组固定模型时T11对于T12的ROM前屈、后伸、侧弯和轴向旋转状况下由完整状态时的0.516°0.515°、0.332°和0.120°减小为0.51°、0.114°、0.140°和0.114°,均小完整状态模型。各个活动方向SSPI固定模型椎弓根钉应力峰值较MSPI固定模型的相应椎弓根钉应力峰值明显增高。MSPI固定模型作用于钉和棒上力矩小于SSPI固定模型。
     结论:MSPI与SSPI能重建胸腰椎爆裂骨折脊柱的稳定性。MSPI模型中作用于椎弓根螺钉及棒的力矩小于SSPI固定。MSPI内固定断裂的可能性小于SSPI固定。
     第三部分单节段与短节段椎弓根螺钉固定治疗脊柱胸腰椎爆裂骨折的回顾性对照研究
     目的:探讨后路单节段经伤椎固定治疗胸腰椎爆裂性骨折(AO A3.1和A3.2)的可行性、安全性和疗效。
     方法:回顾分析2005年4月至2010年2月胸腰椎不完全爆裂骨折资料共60例,其中单节段固定组30例,短节段固定组30例。比较两组患者手术时间,出血量,术前术后视觉模拟量表(VAS)评分和伤椎后凸角等。
     结果:单节段固定组手术平均时间(90±25)min;平均术中出血量(180±62)ml;伤椎后凸角术前17.3°±9.3。,术后1周6.5°±6.5°,末次随访时9.5。±6.4°;VAS评分术前7.5±1.4,术后1周2.5±0.7,末次随访1.4±0.8;术后未发现相邻节段退变征象。短节段固定组手术平均时间(101±28)min;平均术中出血量(203±88)ml;伤椎后凸角术前16.5。±9.1°,术后1周7.1°±6.9°,末次随访7.5。±5.2。;VAS评分术前6.7±1.5,术后1周3.0±0.4,末次随访1.1±0.6:1例患者术后36个月随访时出现固定相邻节段的退变。两组间手术时间,出血量,术前、术后1周及末次随访时伤椎后凸角和VAS评分相比差异均无统计学意义(P>0.05)。两组术后1周及末次随访时VAS评分较术前均有明显改善,伤椎后凸角度术后1周及末次随访时较术前明显减小,差异均有统计学意义(P<0.05)。
     结论:单节段经伤椎固定治疗胸腰椎爆裂骨折(AO A3.1和A3.2)安全、有效,在术中出血量、手术时间,术后VAS评分改善和伤椎后凸角恢复方面与短节固定组无显著差异。
PART I Biomechanical comparison of monosegmental versus short-segmental fixation by pedicle instrumentation in the management of thoracolumbar fracture (AO A3.1)
     Objective:To testify the biomechanical properties of thoracolumbar burst fracture (AO classification A3.1) treated with monosegmental pedicle instrumentation (MSPI).
     Methods:Six T10-L2thoracolumbar spine segments were harvested from human donors ranging in age from27to46years (mean39y). Incomplete burst fracture (AO classification A3.1) was made at the level of T12. Monosegmental pedicle instrumentation and short segmental pedicle instrumentation were applied to the specimens sequentially to restore spinal stability. Segmental instability tests were performed on specimens in condition of intact, fractured and MSPI. Range of motions (ROM) in flexion-extension, lateral bending were recorded by a2-camera VICON motion measurement system. The rotational stability was testified by a computer-torsional testing machine.
     Results:The ROM of MSPI in flexion-extension, lateral bending was0.14±0.02°,0.07±0.020°,0.74±0.13°and0.73±0.22°. The ROM of intact specimen in flexion-extension, lateral bending was0.46±0.05°,1.01±0.23°,1.30±0.31°and1.34±0.24°.The ROM of MSPI was significantly higher than that of intact in flexion-extension, lateral bending (p<0.05). MSPI group was more stable than intact group in flexion-extension, lateral bending. The torsional force of MSPI was3103.00±213.11N and that of intact was2654.75±122.90N. MSPI group was as stable as intact group in axial rotation (p>0.05). The ROM of SSPI in flexion-extension, lateral bending was0.32±0.07°,1.55±0.31°,1.27±0.33°and1.61±0.43°. The ROM of intact specimen in flexion-extension, lateral bending was0.65±0.15°,2.31±0.22°,2.45±0.44°and2.70±0.54°.The ROM of SSPI was significantly higher than that of intact in flexion-extension, lateral bending(p<0.05). SSPI group was more stable than intact group in flexion-extension, lateral bending. The torsional force of MSPI was3184.00±250.40N and that of intact was2654.75±122.90N. SSPI group was as stable as intact group in axial rotation (p>0.05). The SPI of MSPI in flexion-extension and lateral bending was0.94°,0.88°,0.81°and0.92°, respectively. The SPI of SSPI in flexion-extension and lateral bending was0.50°,0.45°,0.52°and0.70°, respectively. The SPI of MSPI was significantly higher than that of SSPI in both flexion-extension and lateral bending (p<0.05). MSPI was more stable than SSPI in both flexion-extension and lateral bending. The torsional force was3103N for MSPI and3184N for SSPI. SSPI was as stable as MSPI in axial rotation (p>0.05).
     Conclusion:Monosegmental pedicle instrumentation can provide more instant stability than SSPI with respect to the reconstruction of unstable spine (AO classification A3.1) in both flexion-extension and lateral bending. Monosegmental pedicle instrumentation can provide same instant stability as SSPI with respect to the reconstruction of unstable spine (AO classification A3.1) in axial rotation.
     PART II Biomechanical Comparison of MSPI and SSPI for thoracolumbar burst fractures (AO A3.1) using Finite Element Method
     Object:This study was designed to compare the biomechanical effects of two posterior fixations for thoracolumbar burst fractures using the finite element (FE) method.
     Methods:Four T11-L1FE models, including the intact, the fractured at T12, the monosegment pedicle intrumentation at the level of the fracture and the short-segment pedicle intrumentation with four pedicle screws were created. And four loading condi tions (flexion, extension, lateral bending and torsion) were imposed on these models and deformations in these models under different loading conditions were calculated by finite element method. The biomechanical effects of the two different pedicle screw fixations for thoracolumbar burst fractures were compared and analyzed. Results:The ROM of SSPI (T11-L1) in flexion-extension, lateral bending and was0.762°,0.458°,0.688°,0.601°. The ROM of intact specimen(T11-L1) in flexion-extension, lateral bending and axial rotation was0.768°,1.375°,0.905°,0.630°. The ROM of SSPI group was less than that of intact group in flexion-extension, lateral bending. The ROM of MSPI (T11-T12) in flexion-extension, lateral bending and axial rotation was0.51°,0.114°,0.140°,0.114°. The ROM of intact specimen (T11-T12) in flexion-extension, lateral bending and axial rotation was0.516°,0.515°,0.332°,0.120°. The ROM of MSPI (T11-T12) was less than that of intact(T11-T12) in flexion-extension, lateral bending and axial rotation. Conclusion:MSPI and SSPI could provide desirable stability for the fractured spine. The moment of force loaded onto the pedicle screw and rod of MSPI model was smaller than that of SSPI model.
     PART Ⅲ Management of thoracolumbar burst fracture:monosegmental fixation versus short-segment fixation-a retrospective controlled study.
     Objective:To investigate the safety and therapeutic effects of mono-segmental pedicle instrumentation in treating thoracolumbar burst fracture (AO classification:A3.1and A3.2).
     Methods:A retrospective analysis was conducted on60cases with thoracolumbar burst fracture (AO classification:A3.1and A3.2) between April2005and February2010. Half of the60inpatients were treated with mono-segment pedicle instrumentation (MSPI), and the other half were treated with short-segment pedicle instrumentation (SSPI). The mean operation time, blood loss, visual analog scale (VAS) and vertebral kyphotic angle before and after surgery were compared.
     Results:In the MSPI group, the mean operation time was90±25min, and the blood loss at operation was180±62ml. The vertebral kyphotic angles were17.3°±9.3°before surgery,6.5°±6.5°one week after surgery, and9.5°±6.4°for the latest follow-up. The VAS scores were7.5±1.4before surgery,2.5±0.7one week after surgery, and1.4±0.8for the latest follow-up. In the SSPI group, the mean operation time was101±28min, and the blood loss at operation was203±88ml. The follow-up duration was12-64months. The vertebral kyphotic angles were16.5°±9.1°before surgery,7.1°±6.9°one week after surgery, and7.5°±5.2°for the latest follow-up. The VAS scores were6.7±1.5before surgery,3.0±0.4one week after surgery, and1.1±0.6for the latest follow-up. There were no statistically significant differences between these two groups in the operation time, blood loss at operation, VAS score and vertebral kyphotic angle before and after surgery (P>0.05). The post-surgical VAS scores and vertebral kyphotic angles were significantly decreased in both groups, compared to before surgery (P<0.05).
     Conclusions:It is safe and effective to treat thoracolumbar burst fracture (AO3.1and AO3.2) with MSPI. The mean operation time, blood loss at operation, post-surgical VAS and vertebral kyphotic angle of the MSPI group are similar compared to the SSPI group.
引文
[1]Holdsworth FW, Fractures, dislocations and fracture-dislocations of the spine[J]. J Bone Joint Surg(Br),1963,45:6-20.
    [2]Magerl F, Aebi M, Gertzbein SD, et al. A comprehensive classification of thoracic and lumbar injuries[J]. Eur Spine,1994,3(4):184-201.
    [3]Aebi M. Classification of thoracolumbar fractures and dislocations [J]. Eur Spine,2010,19:S2-7.
    [4]Esses SI, Botsford DJ, Kostuik JP, et al. Evaluation of surgical treatment for burst fractures[J]. Spine,1990,15(7):667-73.
    [5]Criscitiello AA, Fredrickson BE. Thoracolumbar spine injuries[J]. Orthopedics,1997,20(10):939-44.
    [6]McLain RF. The biomechanics of long versus short fixation for thoracolumbar spine fractures [J]. Spine,2006,31(11 Suppl):S70-79.
    [7]Parker JW, Lane JR, Karaikovic EE et al. Successful short-segment instrumentation and fusion for thoracolumbar spine fractures:a consecutive 41/2-year series[J]. Spine,2000,25 (9):1157-1170.
    [8]Scholl BM, Theiss SM, Kirkpatrick JS. Short segment fixation of thoracolumbar burst fractures[J]. Orthopedics,2006,29(8):703-8.
    [9]Farrokhi MR, Razmkon A, Maghami Z, et al. Inclusion of the fracture level in short segment fixation of thoracolumbar fractures[J]. Eur Spine, 2010,19:1651-1656.
    [10]Ge CM, Wang YR, Jiang SD, et al. Thoracolumbar burst fractures with a neurological deficit treated with posterior decompression and interlaminar fusion[J]. Eur Spine,2011,20(12):2195-201.
    [11]Butt, M.F., et al., Management of unstable thoracolumbar spinal injuries by posterior short segment spinal fixation[J]. International Orthopaedics,2007.31(2):259-64.
    [12]Katonis, P. G., et al., Treatment of unstable thoracolumbar and lumbar spine injuries using Cotrel-Dubousset instrumentation[J]. Spine,1999, 24(22):2352-7.
    [13]Hirano T, Hasegawa K, Takahashi HE, et al. Structural characteristics of the pedicle and its role in screw stability[J]. Spine, 1997,22(21):2504-2509.
    [1]Piche M, Benoit P, Lamber J, et al. Development of a computerized intervertebral motion analysis of the cervical spine for clinical application[J]. Manipulative Physiol Ther,2007,30(1):38-43.
    [2]Zuhlke T, Fine J, Haughton VM, et al. Accuracy of dynamic computed tomography to calculate rotation occurring at lumbar spinal motion segments [J]. Spine,2009,34(6):215-218.
    [3]Lim TH, Eck JC, An HS, et al. A noninvasive, three-dimensional spinal motion analysis method[J]. Spine,1997,22(17):1996-2000.
    [4]Panjabi MM, Duranceau JS, Oxland TR, et al. Multidirectional instabilities of traumatic cervical spine injuries in a porcine model[J]. Spine,1989,14(10):1111-1115.
    [5]McLain, R.F., The biomechanics of long versus short fixation for thoracolumbar spine fractures[J]. Spine (Phila Pa 1976),2006,31(11 Suppl):S70-9; discussion S104.
    [6]Parker, J.W., et al., Successful short-segment instrumentation and fusion for thoracolumbar spine fractures:a consecutive 41/2-year series[J]. Spine (Phila Pa 1976),2000,25(9):1157-70.
    [7]Siebenga J, Leferink VJ, Segers MJ, et al. Treatment of traumatic thoracolumbar spine fractures:a multicenter prospective randomized study of operative versus nonsurgical treatment [J]. Spine (Phila Pa 1976),2006, 31(25):2881-90.
    [8]Wawro W, Konrad L, Aebi M. Single segment internal fixator device in treatment of thoracolumbar vertebral fractures[J]. Unfallchirurg,1994, 97(3):114-120.
    [9]李熙雷,周晓岗,董健,等.单节段与短节段椎弓根螺钉固定治疗胸腰椎爆裂骨折[J].中华外科杂志,2011.49(4):315-319.
    [10]Panjabi, M.M., et al., Validity of the three-column theory of thoracolumbar fractures, A biomechanical investigation[J]. Spine (Phila Pa 1976),1995.20(10):1122-7.
    [11]An, H. S., et al., Biomechanical evaluation of contemporary posterior spinal internal fixat ion configurations in an unstable burst-fracture calf spine model:special references of hook configurations and pedicle screws. Spine (Phila Pa 1976),2004.29(3):257-62.
    [12]Eichholz, K.M., et al., Biomechanical testing of anterior and posterior thoracolumbar instrumentation in the cadaveric spine. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine,2004.1(1):116-21
    [13]Goel VK, Panjabi MM. A new standard guide for the testing of spinal implant constructs, Part I:Guide for the multidirectional instability evaluation of the construct [J]. ASTM (draft version),1992,6:1-9
    [14]Goel VK, Panjabi MM, Patwardhan AG, et al. Test protocols for evaluation of spinal implants[J]. J BoneJoint Surg Am,2006,88(Suppl 2):103-109
    [15]Schmoelz W, Huber JF, Nydegger T, et al. Influence of a dynamic stabilization system on load bearing of a bridged disc:an in vitro study of intradiscal pressure[J]. Eur Spine,2006,15:1276-1285
    [16]Niosi CA, Zhu QA, Wilson DC, et al. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system:an in vitro study [J]. Eur Spine,2006,15:913-922
    [17]Zindrick, MR. The role of transpedicular fixation systems for stabilization of the lumbar spine[J]. Orthop Clin North Am,1991, 22(2):333-44.
    [18]Zindrick, MR, Wiltse LL, Widell EH, et al. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res,1986(203):99-112.
    [19]魏富鑫,刘少喻,赵卫东,等.单节段与双节段椎弓根螺钉固定胸腰椎单椎体骨折的生物力学[J].中国脊柱脊髓杂志,2007,17(1):46-50.
    [1]聂文忠,叶铭,王成焘.基于NURBS曲面的人体胸腰部骨组织三维重构.系统仿真学报,2008,(20):3738-3741.
    [2]聂文忠.脊柱胸腰部的生物力学建模与应用研究——中国力学虚拟人的基本问题探索[D],上海:交通大学,2009:
    [3]Kyungsoo Kim, Won Man Park, Yoon Hyuk Kim, et al. Stress analysis in a pedical screw fixation system with flexible rods in the lumbar spine. Journal of Engineering in Medicine,2009,224:477-485.
    [4]Won Man Park, Ye-Soo Park, Kyungsoo Kin, et al. Biomechanical comparison of instrumentation techniques in treatment of thoracolumbar burst fracture:a finite element analysis[J]. Journal of orthopaedic science,2009,14:443-449.
    [5]Liu YK, Ray G, Hirsch C. The resistance of the lumbar spine to direct shear[J]. Orthop clin North Am,1975,6:33.
    [6]Yogdnanfan N, Kumaresan S, Voo L, et al. Finite element of the human lower cervical spine:parametric analysis of the C4-C6 unit [J]. J Biomech Emg,1997,119:87.
    [7]Goel VK, Kong W, Han JS, et al. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles[J]. Spine,1993,18:1531.
    [8]Wu JS, Chen JH. Clarification of the mechanical behaviour of spinal motion segments through a three-dimensional poroelastic mixed finite element model[J]. Med Eng Phys,1996,18:215.
    [9]Gilbertson LG, Goel VK, Kong W, et al. Finite element methods in spine biomenanics research[J]. Crit Rev Biomed Eng,1995,23:411.
    [10]Nie WZ, Ye M, Wang ZY. Infinite models in scoliosis:a review of the literature and analysis of personal experience [J]. Biomed Tech (Berl).2008, 53(4):174-80.
    [11]Kato Y, Kataoka H, Ichihara K, et al. Biomechanical study of cervical flexion myelopathy using a three-dimensional finite element method[J]. J Neurosurg Spine,2008,8(5):436-41.
    [12]Rohlmann A, Zander T, Schmidt H, et al. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method[J]. J Biomech,.2006,39(13):2484-90.
    [13]Whyne CM, Hu SS, Lotz JC. Burst fracture in the metastatically involved spine:development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model[J]. Spine,2003, 28(7):652-60.
    [14]慈元,袁强,宋秀峰,等.胸腰椎骨折术后植入体断裂的相关因素分析[J].中国组织工程和研究与临床康复,2007,11(16):3164-3165
    [15]Esses SI, Sachs BL, Dreyzin V. Complications associated with the technique of pedicle screw fixation [J]. A selected survey of ABS members. Spine,18(15):2231-2239
    [16]Cunningham BW, Sefter JC, Shono Y, et al. Static and cyclical biomechanical analysis of pedicle screw spinal constructs[J]. Spine (Phila Pa 1976).1993,18(12):1677-88.
    [17]Weinstein JN, Devik BL, Rausching WR, Anatomical and technical considerations of Pedicle Screw fixation[J]. Clin orthop,1992,284:34-36.
    [1]Wawro W, Konrad L, Aebi M. Single segment internal fixator device in treatment of thoracolumbar vertebral fractures. Unfallchirurg,1994,97: 114-120.
    [2]Dvorak MF, Kwon BK, Fisher CG, et al. Effectiveness of titanium mesh cylindrical cages in anterior column reconstruction after thoracic and lumbar vertebral body resection. Spine(Phila Pa 1976),2003,28: 902-908.
    [3]Umehara S, Zindrick MR, Patwardhan AG, et al. The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine(Phila Pa 1976),2000,25: 1617-1624.
    [4]Wang, ST, Ma HL, Liu CL. et al. Is fusion necessary for surgically treated burst fractures of the thoracolumbar and lumbar spine?:a prospective, randomized study. Spine (Phila Pa 1976),2006,31:2646-2653.
    [5]魏富鑫,刘少喻,赵卫东,等.单节段与双节段椎弓根螺钉固定胸腰椎单椎体骨折的生物力学比较.中国脊柱脊髓杂志,2007,17:46-50.
    [6]魏富鑫,刘少喻,梁春祥,等.单节段复位固定治疗创伤性胸腰椎骨折.中华创伤杂志,2009,25:601-604.
    [7]海涌,鲁世保,王庆一,等.单节段伤椎椎弓根螺钉内固定治疗胸腰段骨折.首都医科大学学报,2008,29:686-689.
    [1]Holdsworth FW. Fractures, dislocations and fracture-dislocations of the spine[J]. J Bone Joint Surg(Br),1963,45:6-20.
    [2]Frankel HL, Hancock DO, Hyslop G, et al, The value of postural reduction in the initial management of closed injuries of the spine with paralegia and tetraplegia[J]. Paraplegia,1969,7:179-192.
    [3]Tropiano P, Huang RC, Louis CA, et al. Functional and radiographic outcome of thoracolumbar and lumbar burst fractures managed by closed orthopaedic reduction and casting[J]. Spine,2003,28:2459-2456.
    [4]Agus H, Kayali C Arslantas M. Nonoperative treament of burst type thoracolumbar vertebra fractures:clinical and radiological results of 29 patients[J]. Eur Spine,2005,14:536-540.
    [5]戴力扬.胸腰椎爆裂性骨折的生物力学[J].中国临床解剖学杂志,2001,19:280-281.
    [6]Farcy JP, Weidenbaum M, Glassman SD. Sagittal index in management of thoracolumbar burst fractures [J]. Spine,1990,15:58-965.
    [7]Mumford J, Weinstein JN, Spratt KF, et al. Thoracolumbar burst fractures:the clinical efficacy and outcome of nonoperative management [J]. Spine,1993,18:955-970.
    [8]Shen WJ, Shen YS. Nonsurgical treatment of three-column thoracolumbar junction burst fractures without neurologic deficit[J]. Spine,1999, 24:412-415.
    [9]McCormack T, Karaikovic E, Gaines RW. The load sharing classification of spine fractures[J]. Spine,1994,19:1741-1744.
    [10]Parker JW, Lane JR, Karaikovic EE, et al. Successful short-segment instrumentation and fusion for thoracolumbar spine fractures:a consecutive 4.5year series [J]. Spine,2000,25:1157-1169.
    [11]Aligizakis AC, Katonis PG, Sapkas G, et al. Gertzbein and loading sharing classfications for unstable thoracolumbar fractures [J]. Clin Orthop,2003,411:77-85.
    [12]Gertzbeub SI), Court-Brown CM, Marks P, et al. The neurological outcome following surgery for spinal fractures[J]. Spine,1988,13:641-644.
    [13]Willen J, Lindahl S, Nordwall A. Unstable thoracolumbar fractures: a comparative clinical study of conservative treatment and Harrington instrumentation[J]. Spine,1985,10:111-122.
    [14]Purcell GA, Markolf KL, Dawson EG. Twelfth thoracic-first lumbar vertebral mechanical stability of fractures after Harringtonrod instrumentation[J]. J Bone Joint Surg(Am),1981,63:71-78.
    [15]Carl AL, Tromanhauser SG, Roger DJ. Pedicle screw instrumentation for thoracolumbar burst fractures and fracture dislocations [J]. Spine,1992, 17:S317-S324.
    [16]McLain, RF, The biomechanics of long versus short fixation for thoracolumbar spine fractures[J]. Spine,2006,31(11 Suppl):S70-9;discussion S104.
    [17]戴力扬.胸腰椎骨折晚期后凸畸形的手术治疗[J].创伤外科杂志,2002,4:244--247
    [18]Parker, JW, Lane JR, Karaikovic EE, et al., Successful short-segment instrumentation and fusion for thoracolumbar spine fractures:a consecutive 41/2-year series [J]. Spine,2000,25(9):1157-70.
    [19]Siebenga J, Leferink VJ, Segers MJ, et al. Treatment of traumatic thoracolumbar spine fractures:a multicenter prospective randomized study of operative versus nonsurgical treatment[J]. Spine,2006, 31 (25):2881-90.
    [20]曾忠友,孙德弢,金辉,等.胸腰椎骨折术后内固定松动、断裂的原因及预防[J].临床骨科杂志,2003,6(4):307-310.
    [21]Tezeren G, Kuru I. Posterior fixation of thoracolumbar burst fracture: short-segment pedicle fixation versus long-segment instrumentation[J].
    [22]Spinal Disord Tech,2005,18(6):485-488
    [20]袁强,田伟,张贵林,等.骨折椎垂直应力螺钉在胸腰椎骨折中的应用[J].中华骨科杂志,2006,26(4):217-222.
    [23]Lakshmanan P, Jones A, Mehta J, et al. Recurrence of kyphosis and its functional implications after surgical stabilization of dorsolumbar unstable burst fractures[J]. Spine,2009,9(12):1003-1009.
    [24]金才益,曾忠友,徐阿炳,等.胸腰椎骨折单纯椎弓根螺钉系统治疗的远期结果[J].中国脊柱脊髓杂志,2002,12(5):398-399.
    [25]Zindriek, MR, The role of transpedicular fixation systems for stabilization of the lumbar spine[J]. Orthop Clin North Am,1991, 22(2):333-44.
    [26]Zindrick, MR, Wiltse LL, Widell EH, et al. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine[J]. Clin Orthop Relat Res,1986(203):99-112.
    [27]李钦亮,刘艺,储照明,等.经伤椎椎弓根椎体内植骨并植钉治疗胸腰椎骨折[J].中国修复重建外科杂志,2011,25(8):956-959.
    [28]Gelb D, Ludwig S, Karp JE, et al. Successful Treatment of Thoracolumbar Fractures With Short-segment Pedicle Instrumentation [J]. J Spinal Disord Tech,2010,23(5):293-301.
    [29]肖斌.后路单侧伤椎椎弓根钉内固定的生物力学评价[D].广州:广州医学院,2009:
    [30]Farrokhi MR, Razmkon A, Maghami Z, et al. Inclusion of the fracture level in short segment fixation of thoracolumbar fractures [J]. Eur Spine, 2010,19(10):1651-6.
    [31]董健文,戎利民,刘斌,等.经伤椎与跨节段固定治疗无脊髓损伤的胸腰段A3型骨折[J].中华外科杂志,2009,47(24):1883-1887.
    [32]Guven 0, Kocaoglu B, Bezer M, et al. The use of screw at the Fracture Level in the treatment of thoracolumbar burst fractures [J]. J Spinal Disord Tech,2009,22(6):417-21.
    [33]Hak Sun Kim, Seung Yup Lee, Ankur Nanda, et al. Comparison of Surgical Outcomes in Thoracolumbar Fractures Operated with Posterior Constructs Having Varying Fixation Length with Selective Anterior Fusion[J]. Yonsei Med J,2009,50(4):546-54.
    [34]Mahar A, Kim C, Wedemeyer M, et al. Short-Segment Fixation of Lumbar Burst Fractures Using Pedicle Fixation at the Level of the Fracture[J]. Spine (Phi la Pa 1976),2007,32(14):1503-7.
    [35]Baaj AA, Reyes PM, Yaqoobi AS, et al. Biomechanical advantage of the index-level pedicle screw in unstable thoracolumbar junction fractures [J]. J Neurosurg Spine,2011,14(2):192-7.
    [36]Shaoyu Liu, Haomiao Li, Chunxiang Liang, et al. Monosegmental Transpedicular Fixation for Selected Patients With Thoracolumbar Burst Fractures[J]. J Spinal Disord Tech.2009,22(1):38-44.
    [37]Defino HL, Scarparo P. Fractures of thoracolumbar spine: monosegmental fixation[J]. Injury,2005, (Suppl 2):B90-7.
    [38]Finkelstein JA, Wai EK, Jackson SS, et al. Single-Level Fixation of Flexion Distraction Injuries[J]. J Spinal DisordTech,2003,16(3):236-42.
    [39]魏富鑫,刘少喻,梁春祥,等.单节段复位固定治疗创伤性胸腰椎骨折[J].中华创伤杂志,2009,25:601-604.
    [40]魏富鑫,刘少喻,赵卫东,等.单节段与双节段椎弓根螺钉固定胸腰椎单椎体骨折的生物力学[J].中国脊柱脊髓杂志,2007,17(1):46-50.
    [41]Wei FX, Liu SY, Liang CX, et al. Transpedicular fixation in management of thoracolumbar burst fractures:monosegmental fixation versus short-segment instrumentation. Spine,2010,35(15):E714-20.
    [42]Xilei Li, Yiqun Ma, Jian Dong, et al. Retrospective analysis of treatment of thoracolumbar burst fracture using monosegment pedicle instrumentation compared with short-segment pedicle instrumentation[J]. European Spine Journal(on line)
    [43]海涌,鲁世保,王庆一,等.单节段伤椎椎弓根螺钉内固定治疗胸腰段骨折[J].首都医科大学学报,2008,29:686-689.
    [44]曾忠友,黄伟,张建乔,等.椎弓根螺钉系统同时经伤椎置钉固定治疗胸腰椎骨折[J].中国脊柱脊髓杂志,2009,19(8):609-613.
    [45]Korovessis P, Repantis T, Petsinis G, et al. Direct reduction of thoracolumbar burst fractures by means of bal loon kyphoplasty with calcium phosphate and stabilization with pedicle-screw instrumentation and fusion[J]. Spine,2008,33(4):E100-108.
    [46]马易群.后外侧融合与联合椎体内植骨治疗胸腰椎骨折的系统评价[D].上海:复旦大学2010:
    [47]Verlaan JJ, Diekerhof CH, Buskens E, et al. Surgical treatmentic fractures of the thoracic and lumbar spine:a systemic review of the literature on techniques, complications and outcome[J]. Spine,2004, 29:803-814.
    [48]Shono Y, Kaneda K, Abumi K, et al. Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine[J]. Spine,1998,23(14):1550-1558.
    [49]Yang JY, Lee JK, Song HS. The impact of adjacent segment degeneration on the clinical outcome after lumbar spinal fusion[J]. Spine,2008, 33(5):503-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700