基于过渡金属材料储氢的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢气是二十一世纪最有希望替代化石能源的一种新型清洁能源燃料。目前,在氢能商业化应用的过程中遇到的最大难题之一就是如何安全、有效、经济的储氢。传统储氢方式中的高压气态储氢,液态和固态储氢都不是理想的储氢方式,难以满足未来氢储存的要求。过渡金属元素储氢在氢吸附强度与储氢能力上都表现出了室温储氢的发展潜力,因此,近年来人们做了大量利用过渡金属元素设计高密度储氢材料的研究。本论文基于密度泛函第一性原理的计算方法详细研究了单个3d过渡金属原子的氢吸附结构、吸附机制、及过渡金属原子Sc、Ti、V与满壳层过渡金属原子Pd分散在基底(8,0)碳纳米管上的氢吸附情况和氢吸附机制。其主要内容包括:
     首先详细研究了3d过渡金属原子的氢吸附能力、强度、结构和氢吸附机制。研究结果表明:所有3d过渡金属中除Cu与Zn不吸附氢以外,其他的过渡金属元素均能至少吸附8个氢分子,且吸附8个氢分子的稳定结构很相似。这些有趣的氢吸附结构的出现是由于过渡金属元素的氢吸附机制决定的。因为:(i)过渡金属元素的氢吸附结构是由过渡金属元素吸附氢后占据在d轨道的电子排布决定,氢分子分布在金属原子电荷密度分布较少的区域。因此,d轨道的电子排布不仅影响其吸附结构,而且决定了该元素的氢吸附能力。(ii)过渡金属元素的氢吸附能主要由静电吸附决定。该静电吸附是由于过渡金属原子吸附氢后,其4s→3d电荷转移,从而在金属元素周围形成了较大的极化静电场,导致氢分子的极化吸附。同时吸附的氢分子在极化电场作用下形成的超分子结构,使H2-H2之间存在较强的相互作用,进一步降低了金属对氢分子的吸附能。
     通过过渡金属单原子氢吸附的研究表明,早期过渡金属元素Sc,Ti,V具有非凡的氢吸附能力。而碳纳米管具有独特优越的性质,可作为分散衬底材料。作为示例,我们研究了Sc,Ti,V分散在(8,0)碳纳米管上的氢吸附能力。正如我们预测的一样,由于空间结构的影响,Sc,Ti,V/(8,0)SWCNT可吸附4个氢分子。如果Sc,Ti,V原子均匀分散在(8,0)SWCNT上,其储氢重量比可达8.00 wt.%,且吸附能(约–0.54 eV)在室温储氢范围内。这些计算结果表明:Sc、Ti、V与SWCNT复合体系都是一种非常优越的储氢材料,这为我们设计储氢材料提供了理论依据。此外我们还探讨了满壳层Pd原子分散在SWCNT上的氢吸附。单个Pd原子附着在SWCNT上,最多能吸附2个氢分子。如果Pd均匀分散在SWCNT上,其储氢重量比为2.88 wt.%。该计算结果与实验测量值能很好的相符,有力的佐证了我们计算方法和模型的有效性。
Hydrogen has been recognized as an ideal energy carrier to replace fossil fuels in 21st century. Recently, its commercial use as an alternate energy has substantial the most difficult challenge is how to safely, effectively and economically storage hydrogen. Conventional methods of hydrogen storage such as high-pressure gas, liquid or solid-state aren’t ideal storage methods, and cannot fulfill future storage goals. Transition metals (TM) were shown to be very promising for hydrogen storage in terms of hydrogen binding strength and storage capacity at ambient conditions. Recently, intensive research has been done for designed high density hydrogen storage material based on transition metals. In this thesis, we investigate the hydrogen adsorption structure and mechanism on isolated 3d transition metal, and Sc,Ti , V , Pd decorated on (8,0) SWCNT based on first-principle calculations.
     We first study the hydrogen storage structure, ability and storage mechanism of isolated 3d transition metal. It is found that all of 3d TM can absorb 8 hydrogen moleculars with similar structures except Cu and Zn atom. Those ingesting results are determined by the hydrogen adsorption mechanism. The adsorption binding mechanism is (i) the hydrogen adsorption structure of 3d transition metal is determined by the electron arrange of d orbit, hydrogen adsorbed at the low charge density area. Hydrogen storage structure and their adsorption ability are determined by arrangement of the electron at d orbit of transition metals; (ii) the adsorption energy of hydrogen on 3d TM is determined by the electrostatic Coulomb attraction, which is induced by the electric field due to the charge transfer from metal 4s to 3d. It was found that all those adsorbed hydrogen molecules around the metal atoms form supercell structures, and further lowers the binding energy.
     The study of 3d TM showed that Sc,Ti and V have great ability of hydrogen storage, while carbon nanotube has light weight and high surface to volume ratios. We investigated the hydrogen adsorption and binding mechanism on transition metals (Sc, Ti, V) decorated (8,0) single walled carbon nanotubes. Our results show that non-filled shell TM (Sc, Ti, V) coated on SWCNTs can uptake over 8 wt.% hydrogen with the binding energy range in room hydrogen storage (about -0.54 eV), promising potential high capacity hydrogen storage material. While full filled shell TM Pd-decorated single-walled carbon nanotubes (SWCNT), the most hydrogen storage capacity is 2.88 wt. % for the uniformly Pd-decorated SWCNT. The result is good agreement with the experimental measurement, which also proved our method and model is valid.
引文
[1] S. Satyapal, J. Petrovic, C. Read, et al. The U.S.Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements [J], Catal. Today, 2007, 120(3–4):246–256.
    [2]谢衍生,孙岳明,傅岩,等.储氢材料的发展概况[J],材料导报, 2004, 18(005):76–78.
    [3]尚福亮,杨海涛,韩海涛.金属储氢材料研究概况[J],稀有金属快报, 2006, 25(002):11–16.
    [4] H. Fujii, T. Ichikawa, Recent development on hydrogen storage materials composed of light elements[J], Physica B, 2006, 383 (1):45–48.
    [5] J. Kastner, T. Pichler, H. Kuzmany, S. Curran, W. Blau, D. N. Weldon, M. Delamesiere, S. Draper and H. Zandbergen, Resonance Raman and infrared spectroscopy of carbon nanotubes [J], Chem. Phys. Lett, 1993,221(6):53–58.
    [6] H. A. Dürr, E. Dudzik, S. S. Dhesi, et al. Chiral Magnetic Domain Structures in Ultrathin FePd Films [J], Science, 1999, 284:2166–2168.
    [7]李玲,向航,功能材料与纳米技术[M],化学工业出版社. 2002: 173–178.
    [8]胡子龙,储氢材料[M],化学工业出版社,2002:9–13.
    [9]胡子龙,储氢材料[M],化学工业出版社,2002:1–5.
    [10] G. W. Crabtree, M. S. Dresselhaus, The Hydrogen Fuel Alternative [J], MRS Bull., 2008, 33:421–428.
    [11] W. M. Muller, I. R. Blackledge and G. G. Libowitz, Metal hydrides [M], Academic Press, New York, 1968.
    [12] G. Sandrock, G. Thomas, the IEA/DOC/SNL on-line hydride databases [J], Appl. Phys. A, 2001, 72:153–155.
    [13] Y. Fukai, Site occupancy and phase stability of some metal hydrides [J], Z. Phys. Chem., 1989, 63:164–165.
    [14] J. J. Reilly, R. H. Wiswall, Formation and properties of iron titanium hydride [J], Inorg. Chem., 1974, 13 (1):218–222.
    [15] V. Vucht, F. A. Kuijpers, H. C. A. M. Bruning. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds [J], Phil. Rese. Rep., 1970, 25 (2):133–146.
    [16]钱久信,陈健,叶于浦,TiMn二合金储氢性能的研究[J],金属学报, 1987,23(6):A534–536.
    [17] S. M. Lee, T. P. Pemg, Effect of the second phase on the initiation of hydrogenation of TiFe1-xMx (M= Cr, Mn) alloys [J], Hyd., Ener., 1994, 19:265–271.
    [18] G. Laura, P. Pekka, How Many Hydrogen Atoms Can Be Bond to a Metal? Predicted MH2 Species [J], J. Am. Chem. Soc., 2004, 126:15014–15015.
    [19] J. J. Reilly, R. H. Wiswall, Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 [J], Inorg. Chem., 1968, 7 (11):2254–2256.
    [20] H. Sawa, S. Wakao, Electrochemical Properties of Zr-V-Ni System Hydrogen-absorbing Alloys of Face-centered Cubic Structure [J], Mater Trans, 1990, 31:487–492.
    [21] J. J. Reilly, R H. J. Wiswall, The Reaction of Hydrogen with Alloys of Magnesium and Copper [J], Inorg. Chem., 1968, 7:2254–2256.
    [22]周仕学,胡秀颖,吴峻青,等.第六届全国氢能会议论文集,上海,2005, 204.
    [23] R. L. Beck, Intermetallic Compounds [M], J. H. Westbrook, ed. Wilry: New York, 1967.
    [24] H. L. Su, T. D. Hu, Y. Tao, T. Liu, Preparation of Divalent Rare Earth Ions in Air by Aliovalent Substitution and Spectroscopic Properties of Ln21 [J], J. Alloys. Com. P., 2002, 282:132–138.
    [25] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S.Bethune and M. J. Heben, Storage of hydrogen in single-walled carbon nanotubes [J], Nature, 1997, 386: 377–377.
    [26] F. Darkrim, D. Levesque, High adsorption of opened carbon nanotunes at 77K [J], J. Phys.Chem. B., 2000, 104:6773–6776.
    [27] Q. Y. Wang, J. K. Johnson, Moleeular simulation of hydrogen adsorption in single–walled naoutbes and idealized carbon slit Pores [J], J. Chem. Phys., 1999, 110 (1):577–583.
    [28] Y. F. Yin, T. Myas,B. MeEnmaey, Molecular simulations of hydrogen storage in carbon nanoutbe arryas [J], Lnagmuir, 2000, 103:10521–10527.
    [29] C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhnas, Hydrogen storage in single–walled carbon nanotubes at room temperature [J], Seience, 1999, 286:1127–1129.
    [30] J Charbonnier, P. D. Rango, D. Fruchart, et al. Hydrogenation of transition element additives (Ti, V) during ball milling of magnesium hydride[J], J. Alloys Compd., 2004, 383 (1–2):205–208.
    [31] H. B. Wu, P. Chen, J. Lin and K. L. Tan, Hydrogen uptake by carbon [J], Int J Hydrogen Energy, 2000, 25:261–265.
    [32] P. Chen, X. Wu, J. Lin, K. L. Tan, High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J], Science, 1999, 285:91–93.
    [33] R. T. Yang, Hydrogen storage by alkali-doped carbon nanotubes-revisited [J], Carbon, 2000, 38:623–626.
    [34] Q. Wang, K. Johnson, Hydrogen storage in single-walled carbon nanotubes at room terperature [J], J. Chem. Phys. B., 1999, 103:4809–4813.
    [35] F. Darkrim, D. Levesque, Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes [J]. J. Chem. Phys., 1998, 109(12):4981–4984.
    [36] S. M. Lee, Y. H. Lee, Hydrogen storage in single-walled carbon nanotubes [J], Appl. Phys. Lett., 2000, 76:2877–2879.
    [35] Y. Ma, Y Xia, M. Zhao, R. Wang, L. Mei, Effective hydrogen storage in single-wall carbon nanotubes [J], Phys. Rev. B., 2001, 63:115422.
    [37]陈小华,颜永红,张高明,Ni-C合金包覆碳纳米管的研究[J],微细加工技术,(1999) 2:17–22.
    [38]沈曾民,赵东林,镀镍碳纳米管的微波吸收性能研究[J],新型碳材料,(2001) 16(1), 1–3.
    [39]曹茂盛,雷达波隐身材料若干基础问题研究[[J],北京:清华大学,20030.
    [41]曹茂盛,高正娟,朱静,CNTs/Polyester复合材料的微波吸收特性研究[J],材料工程,(2003),2, 34–36.
    [42]陈玉金,曹茂盛,李辰砂,碳纳米管的表面镀镍钻研究[J],中国表面工程,(2003) 16 (2),29–320.
    [43] T. Yildirim, S. Ciraci, Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium [J], Phys. Rev. Lett., 2005, 94:175501(4).
    [44] H. Lee, W. I. Choi and J. Ihm, Combinatorial Search for Optimal Hydrogen-Storage Nanomaterials Based on Polymers [J], Phys. Rev. Lett., 2006, 97:056104(4).
    [45] N. Park, S. Hong, G. Kim, and S.-H. Jhi, Computational Study of Hydrogen Storage Characteristics of Covalent-Bonded Graphenes [J], J. Am. Chem. Soc., 2007, 129:8999–9003.
    [46] G. Kim, N. Park, and S.-H. Jhi, Effective metal dispersion in pyridinelike nitrogen doped graphenes for hydrogen storage [J], Appl. Phys. Lett., 2008, 92:013106(3).
    [47] G. Kim, S. H. Jhi, N. Park, S. G. Louie, and M. L. Cohen, Optimization of metal dispersion in doped graphitic materials for hydrogen storage [J], Phys. Rev. B., 2008, 78:085408(4).
    [48] Y. Zhao, Y.-H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Hydrogen storage in novel organometallic buckyballs[J], Phys. Rev. Lett., 2005, 94:155504(4).
    [49] Jung Woo Lee, Hyun Seok Kim, Jai Young Lee, and Jeung Ku Kang, Hydrogen storage and desorption properties of Ni-dispersed carbon nanotubes [J], Appl. Phys. Lett., 2006, 88:143126(3).
    [50] S. Dag, Y. Ozturk, S. Ciraci and T. Yildirim, Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes [J], Phys. Rev. B., 2005, 72:155404(4).
    [51] M.Yoon, S. Y. Yang, C. Hicke; E. Wang, D. Geohegan, Z. Y. Zhang, Calcium as the Superior Coating Metal in Functionalization of Carbon Fullerenes for High-Capacity Hydrogen Storage [J], Phys. Rev. Lett., 2008, 100:206806(4).
    [52] A. K. Sabir, W. C. Lu, C. Roland and J. Bernholc, Ab initio simulations of H2 in Li-doped carbon nanotube systems [J], J. Phys.Cond. Matt., 2007, 19:086226(8).
    [53] X. B. Yang and J. Ni, High-coverage stable structures of potassium adsorbed on single-walled carbon nanotubes [J], Phys. Rev. B., 2004. 69: 12541(8).
    [54] K. R. S. Chandrakumar and Swapan K. Ghosh, Alkali-Metal-Induced Enhancement of Hydrogen Adsorption in C60 Fullerene: An ab Initio Study [J], Nano Lett., 2008, 8:13–19.
    [55] J. Chatt, L. A. Duncanson, Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes [J], J. Chem. Soc., 1953, 62:2939–2947.
    [56] M. J. S. Dewar, Mechanism of the Benzidine and Related Rearrangements [J], Nature (London), 1945, 156:784–784.
    [57] Q. Sun; P. Jena; Q. Wang; M. Marquez, First-Principles Study of Hydrogen Storage on Li12C60 [J], J. Am. Chem. Soc., 2006, 128:9741–9745.
    [58] Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben and S. B. Zhang, Hydrogen Storage in Novel Organometallic Buckyballs [J], Phys. Rev. Lett., 2005, 94:155504(4).
    [59] R. H. Crabtree, The Organometallic Chemistry of the Transition Metals [M], 3rd ed. Wiley, New York, 2001.
    [60] J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, S. Yip, Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures [J], J. Chem. Phys., 2003,119:2376–2386.
    [61] Z.T. Xiong, J. J. Hu, G. T. Wu and P. Chen, Hydrogen absorption and desorption in Mg–Na–N–H system [J], J. Alloys Compd, 2005, 395:209–212.
    [62] R. C. Lochan, M. Head-Gordon, Computational studies of molecular hydrogen binding affinities:The role of dispersion forces, electrostatics, and orbital interactions [J], Phys. Chem. Chem. Phys., 2006, 8:1357–1370.
    [63] Q. Sun, Q. Wang, P. Jena and Y. Kawazoe, Clustering of Ti on a C60 surface and its effect on hydrogen storage [J], J. Am. Chem. Soc., 2005,127:14582–14583.
    [64] S. Li and P. Jena, Combinatorial Search for Optimal Hydrogen-Storage Nanomaterials Based on Polymers [J], Phys. Rev. Lett., 2006, 97:209601(4).
    [65] G. Kresse, J. Furthmülle, The Guide of Vienna Ab-initio Simulation Package [M], Austria: Universit?t Wien, 2007.
    [66] D. Vanderbilt, Soft self-consistent pseudopotentials in generalized eigenvalue formalism [J], Phys. Rev. B., 1990, 41(11):7892–7895.
    [67] P. E. Bl?chl. Projector augmented-wave method [J], Phys. Rev. B., 1994, 50(24):17953–17959.
    [68]谢希德,陆栋.固体能带结构[M],上海:复旦大学出版社,1998.
    [69] P. Hohenberg, W. Kohn. Inhomogeneous electron gas [J], Phys. Rev., 1964,136 (3B):B864–B871.
    [70] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects [J], Phys. Rev., 1965, 140(4A):1133–1140.
    [71] W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects [J], Phys. Rev, 1965, 140(4A):A1133–A1138.
    [72] B. I. Lundquist, J. W. Wilkins, Contribution to the cohesive energy of simple metals: Spin-dependent effect [J], Phys. Rev. B., 1974, 10:1319–1327.
    [73] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior [J], Phys. Rev. A., 1988, 38(6):3098–3100.
    [74] J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas [J], Phys. Rev. B., 1986, 33(12):8822–8824.
    [75] J. P. Perdew and Y. Wang, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation [J], Phys. Rev. B, 1986, 33(12):8800–8802.
    [76] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy [J], Phys. Rev. B, 1992, 45(23):13244–13249.
    [77] D. R. Hamann, M. Schlüter, C. Chiang, Norm-Conserving Pseudopotentials [J], Phys. Rev. Lett., 1979, 43(20):1494–1497.
    [78] D. Vanderbilt, Soft self-consistent pseudopotentials in generalized eigenvalue formalism [J], Phys. Rev. B., 1990, 41(11):7892–7895.
    [79] A. B. Kunz, D. J. Mickish and P. W. Deutsch, On the interaction of a hydrogen atom with a lithium metal surface [J], Solid State Commun,1973, 13:35–38.
    [80] O. Blaschko, G. Krexner, J. N. Daou and P. Vajda, Experimental evidence of linear ordering of deuterium inα-LuDx [J], Phys. Rev. Lett., 1985, 55:2876(4).
    [81] I. S. Anderson, J. J. Rush, J. Udovic and J. M. Rowe, Hydrogen Pairing and Anisotropic Potential for Hydrogen Isotopes in Yttrium [J], Phys. Rev. Lett., 1986, 57:2822(4).
    [82] F. Liu, M. Challa, S. N. Khanna and P. Jena, Theory of hydrogen pairing in yttrium[J], Phys. Rev. Lett., 1989, 63:1396(4).
    [83] E. K. Parks, K. Liu, S. C. Richtsmeier, L. G. Pobo and S. J. Riley, Reactions of iron clusters with hydrogen. II. Composition of the fully hydrogenated products [J], J. Chem. Phys., 1985, 82:5470(5).
    [84] R. L. Whetten, D. M. Cox, D. J. Trevor and A. Kaldor, Correspondence between Electron Binding Energy and Chemisorption Reactivity of Iron Clusters [J], Phys. Rev. Lett., 1985, 54:1494(4).
    [85] D. Cox, P. Fayet, R. Brickman, M. Y. Hahn and A. Kaldor, Abnormally large deuterium uptake on small transition metal [J], Catal. Lett., 1990, 4:271–278.
    [86] J. Niu, B. K. Rao and P. Jena, Binding of hydrogen molecules by a transition-metal ion [J], Phys. Rev. Lett., 1992, 68:2277–2280.
    [87] S. Rather, R. Zacharia, S. W. Hwang, M. Naik, K. S. Naham, Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes[J], Chem. Phys. Lett., 2007, 441:261–291.
    [88] A. G. Lipson, B. F. Lyakhov, E. I. Saunin and A.Y. Tsivadze, Evidence for large hydrogen storage capacity in single-walled carbon nanotubes encapsulated by electroplating Pd onto a Pd substrate [J], Phys. Rev. B., 2008, 77, 081405(4). .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700