水包合物H_2-(H_2O)_(12)结构和稳定性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水包合物(clathrate hydrates)是由主体水笼和包含在水笼中的客体气体分子组成的,其中主体水笼由氢键连接的水分子构成。目前水包合物储存和运输氢气的作用得到了广泛的关注。
     本课题的理论基础是分子轨道从头算,使用自洽场(HF)方法和多种电子相关方法,例如二阶微扰论(MP2)、耦合簇(CCSD(T))、密度泛函(DFT)等方法并应用6-311++G**基组,由浅入深的研究了水包合物H2-(H_2O)_(12)的结构和稳定性,以及氢气客体被主体水笼捕获和从水笼内逃逸的可能性。研究的具体内容和得到的主要结果如下:重点在B3LYP/6-311++G**水平下研究了水笼团簇(H_2O)_(12)的成键机制及稳定性,并分析了水笼团簇(H_2O)_(12)的几何结构、解离能、H_2O分子间相互作用等内容。结果表明H_2O分子间非近邻相互作用导致了水笼团簇(H_2O)_(12)的收缩;在对水笼团簇(H_2O)_(12)研究的基础上,对水包合物H_2-(H_2O)_(12)的结构和稳定性进行了研究。同时分析了水包合物的各项性质,计算得到的结果表明主体水笼与客体氢气分子之间存在弱相互作用,因此在常温常压下其稳定性要高于水笼团簇;
     在关于水包合物的结构和稳定性研究的基础上,进一步研究了氢气客体是否能在水笼中迁移及水包合物形成后是否能将氢气释放出来的相关动态问题。应用电子结构计算确定了氢气在水包合物中迁移的势垒。计算了氢气分子从水笼中心通过六边形面迁出的一维势能曲线图。在MP2水平下应用6-311G*基组计算的势垒为2.751kcalmol-1。这个势垒可用于估算氢气由水笼中逃逸的速率,同时需要考虑逃逸速率的隧道效应。研究显示氢气在水包合物中的迁出能够发生并且动力学因素对于决定水包合物的结构和储氢能力十分重要。
The clathrate hydrates is made up with the host water cage which is linked byhydrogen-bonded and guest gas molecules . At present, more and more attention havepaid on the use of storing and transporting by the clathrate hydrates for H2.In this paper, the theoretical basis is ab initio method of molecular orbit al theory,the method is self-consistent field and electronic structure calculations, investgatingthe structure and stability about water cage cluster (H_2O)_(12) and the possibility of theguest H2 molecular capturing and escaping by the host water cage at HF, MP2,CCSD(T) and DFT level with 6-311++G** basis set.
     Investigate the Bonding mechanism and stability at B3LYP/6-311++G** levelemphasizely, and analysis the geometry, dissociation energy and interaction betweenmoleculars and so on. The result indicated the interaction between non-neighborsmoleculars lead to shrinkage for water cage cluster(H_2O)_(12).At the basic of the study about the water cage (H_2O)_(12), meantime studying thestructure and stability of the clathrate hydrates H2-(H_2O)_(12). To analyze the respectivefeature of the clathrate hydrates, the result indicate that the weak interaction existsbetween the host water cage and the guest H2 molecules .So the stability of theclathrate hydrates H2-(H_2O)_(12) is stronger than the water cage (H_2O)_(12) at normaltemperature and pressure.
     At the basic of the structure and stability of clathrate hydrates, open questions inthe study are whether the H2 guest molecules can migrate between the clathrate cagesand whether H2 is released from the clathrate once it is formed. Electronic-structurecalculations are used to estimate the energy barriers to the escape of H2 guestmolecules from the cages of the clathrate hydrates. We have calculated theone-dimensional energy profile towards to the H2 molecules moving from the cagecenter through the center of hexagonal faces. The energy barriers calculated at theMP2 level with the 6-311G* basisi set are 2.751kcalmol-1. The energy barriers areused to estimate the escape rates from the cage, tunneling contributions to the escaperates are also considered at the same time. These studies indicate that H2 can migratethrough clathrate hydrates and that kinetic considerations can be very important indetermining the structure and H2-storage capacity of clathrate hydrates.
引文
1 A. L. Konstantin, Y. Zhao. Storing Hydrogen in Crystalline Molecular Cages ofWater. Los Alamos Science. 2006, 30: 139-145
    2 H. Lee, J. Lee, D. Y. Kim. Tuning Clathrate Hydrates for Hydrogen Storage.Nature. 2005, 434: 712-713
    3 S. Alavi, J. A. Ripmeester. Hydrogen-Gas Migration through Clathrate HydrateCages. Angew Chem. 2007, 46(32): 6102-6105
    4张建平,赵林,王林双.水分子簇中氢键作用.化学通报. 2005, 68: w137
    5 W. L. Vos, L. W. Finger, H. K. Mao. Phys . Rev. Lett. Novel H2-H_2O clathrates athigh pressures. 1993, 71: 3150–3153.
    6 W. L. Mao, H. K. Mao, A. F. Goncharov. et al. Hydrogen Clusters in ClathrateHydrate. Science. 2002, 27: 2247–2249.
    7 W. L. Mao, H. K. Mao. Hydrogen Clusters in Clathrate Hydrate. PNAS. 2004,101: 708–710.
    8 A. Talyzin. Feasibility of H2–THF–H_2O clathrate hydrates for hydrogenstorage applications. Int. J. Hydrogen Energy. 2008, 33: 111-115
    9 D. Y. Kim, H. Lee. Spect roscopic identification of the mixed hydrogen andcarbon dioxide clathrate hydrate [J] . J. Am.Chem. Soc. 2005 ,127 :9996
    10 T. R. Dyke, K. M. Mack, J. S. Muetner. The Structure of Water Dimer fromMolecular Beam Electric Resonance Spectroscopy. J. Chem. Phys. 1977, 66(2):498-510
    11 S. S. Xantheas, T. H. Dunning. Ab Initio Studies of Cyclic Water Clusters(H_2O)n, n=1-6. I. Optimal Structures and Vibrational Spectra. J. Chem. Phys.1993, 99(11): 8774-8792
    12 B. J. Mhin, J. Kim, S. Lee. What is the Globa Minimum Energy Structure ofthe Water Hexamer? The Importance of Nonadditive interactions. J. Chem. Phys.1994, 100(6): 4484-4486
    13 C. Lee, H. Chen, G. Fitzgerald. Structures of the Water Hexamer Using DensityFunctional Methods. J. Chem. Phys. 1994, 110(5): 4472-4473
    14 S. Lee, J. Kim, S. J. Lee. Novel Structures for the Excess Electron State of theWater Hexamer and the Interaction Forces Governing the Structures. Phys .Rev.Lett. 1997, 79(11): 2038-2041
    15 J. Sadlej. Ab Initio Study of Bending Modes in Water Cage Clusters, (H_2O)n,n=6-10. Int. J. Quantum Chem. 2002, 90(3): 1191-1205
    16 Y. A. Dyadin, E. G. Larionov, A. Y. Manakov, et al. Clathrate hydrates ofhydrogen and neon [J] . Mendeleev Commun . 1999, 9: 209
    17 K. A. Lokshin, Y. Zhao, D. He, et al. Structure and dynamics of hydrogenmolecules in the novel clathrate hydrate by high pressure neut ron diff raction[J] . Phys . Rev. Lett. 2004, 93: 125503
    18 S. N. Ishmaev, I. P. Sadikov, B. A. Chernyshov, et al. In the high-pressure (upto 2. 5GPa) neut ron2diff raction studies of H2 and D2 [J] . Sov. Phys. J. ETP.1983, 84: 228
    19 L. J. Florusse, C. J. Peters, J. Schoonman, et al. Stable low-pressure hydrogenclusters stored in a binary clathrate hydrate [J] . Science. 2006, 306: 469
    20 H. Lee, J. W. Lee, D. Y. Kim, et al. Structure and dynamics of hydrogenmolecules in the novel clathrate hydrate by high pressure neutron diffraction[J ] .Nature. 2005 ,434 :743
    21 S. Patchkovskii, J. S. Tse. Thermodynamic stability of hydrogen clathrates [J] .Pro c. Nat. Acad. Sci. 2003, 100: 14645
    22 K. A. Lokshin, Y. Zhao. Fast synthesis method and phase diagram of hydrogenclathrate hydrate [J] . Appl. Phys . Lett. 2006, 88: 131909
    23 T. A. Strobel, C. J. Taylor, K. C. Hester, et al. Molecular hydrogen storage inbinary THF+H2 clathrate hydrates [J] . J.Phys . Chem. B. 2006, 110: 17121
    24 R. Anderson, A. Chapoy, B. Tohidi. Phase relations and binary clathrate hydrateformation in the system H2-THF-H_2O [J] . Langmuir. 2007, 23: 3440
    25 S. Hashimoto, T. Sugahara, H. Sato, et al. Thermodynamicstability of H2 +tetrahydrofuran mixed gas hydrate in nonstoichio metric aqueous solutions [J] .J. Chem. Eng . Data. 2007, 52: 517
    26 A. Chapoy, R. Anderson, B. Tohidi. Low-pressure molecular hydrogen storagein semi-clathrate hydrates of quaternary ammonium compounds [J] . J. Am.Chem. Soc. 2007, 129: 746
    27 S. Hashimoto, S. Mugahara, T. Sugahara, et al. Thermodynamic and Ramanspectroscopic studies on H2 + tetrahydrofuran + water and H2 + tetra-n-butylammonium bromide +water mixtures containing gas hydrates [J] . Chem. Eng.Sci. 2006, 61: 7884
    28 T. A. Strobel , K. A. Koh, E. Dendy. Hydrogen storage properties of clathratehydrate materials [J] . Fluid Phase Equilib . 2006, 7: 1
    29 A. Talyzin. Feasibility of H2-THF-H_2O clathrate hydrates for hydrogen storageapplications [J] . Int. J. Hydrogen Energy. 2008, 33(1): 111
    30樊栓狮.天然气水合物储存与运输技术[M] .化学工业出版社, 2005: 9
    31孙志高.氢水合物固态储存技术探讨[J] .可再生能源,2008, 26(2): 58
    32 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M.Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C.Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C.Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman,J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G.Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith,M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople . Gaussian 03,Revision E.01, Gaussian, Inc. Wallingford CT, 2004.
    33 C. C. J. Roothaan. Self-Consistent Field Theory for Open Shells of ElectronicSystems. Rev. Mod. Phys. 1960, 32: 179-185
    34 J. A. Pople, R. K. Nesbet. Self-Consistent Orbitals for Radicals. J. Chem. Phys.1954, 22: 571-572
    35 P. O. Lowdin. Correlation Problem in Many-Electron Quantum Mechanics. Adv.Chem. Phys. 1959, 2: 207
    36 H. J. Silverstone, O. Sinanoglu. Many-Electron Theory of Nonclosed-shellAtoms and Molecules I. Orbital Wavefunction and Perturbation Theory. J.Chem. Phys. 1966, 44(5): 1899-1907
    37 A. Pipano, R. R. Gilman, I. Shavitt. Invariance of Inner Shell CorrelationEnergy with Geometry Changes in a Polyatomic Molecule. Chem. Phys. Lett.1970, 5: 285-287
    38 H. Popkie, H. Kistenmacher, E. Clementi. Study of the Structure of MolecularComplexes IV. The Hartree-Fork Potential for Water Dimer and its Applicationto the Liquid State. J. Chem. Phys. 1973, 59: 1325-1336
    39 G. D. Purvis, R. J. Bartlett. A Full Coupled-Cluster Singles and Doubles Model:The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 20(8): 1910-1918
    40 C. M?ller, M. S. P. Note on an Approximation Treatment for Many-ElectronSystems. Phys. Rev. 1934, 46: 618-622
    41 M. Head-Gordon, J. A. Pople, M. J. Frisch. MP2 Energy Evaluation by DirectMethods. Chem. Phys. Lett. 1988, 153(6): 503-510
    42 J. A. Pople, J. S. Binkley, R. Seeger. Theoretical Models Incorporating ElectronCorrelation. Int. J. Quant. Chem. Symp. 1976, 10: 1-19
    43 M. Head-gordon, J. A. Pople, M. J. Frich. Theory and Application of MP2.Chem. Phys. Lett. 1988, 153: 503-508
    44 M. Gutowski, G. Chalasihski. Critical Evaluation of Some ComputationalApproaches to the Problem of Basis Set Superposition Error. J. Chem. Phys.1993, 98(7): 5540-5554
    45 F. B. Van Duijneveldt, J. G. C. M. Van De Rijdt, J. H. Van Lenthe. State of theArt in Counterpoise Theory. Chem. Rev. 1994, 94(7): 1873-1885
    46 R. A. Kendall, Jr Thorn H. Dunning, R. J. Harrison. Electron Affinities of theFirst-row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem.Phys. 1992, 96(9): 6769~6806
    47 Joan. Ab Initio Study of Bending Modes in Water Cage Clusters (H_2O)n ,n=6–10. J. Chem. 2002, 90: 1191-1205
    48王阳.对水笼团簇(H_2O)6氢键的理论分析.哈尔滨工业大学硕士学位论文.O561. 539.19. 2009: 29
    49 H. Zeng, H. Lu, C. I. Ratcliffe, et al. unpublished results.
    50 S. Alavi, A. John. Ripmeester. Hydrogen-Gas Migration through ClathrateHydrate Cages. Angew. Chem. Int. Ed. 2007, 46: 6102-6105
    51 a) L. J. Florusse, C. J. Peters, J. Schoonman, K. C. Hester, C. A. Koh, S. F. Dec,K. N. Marsh, E. D. Sloan. Stable Low-Pressure Hydrogen Clusters Stored in aBinary Clathrate Hydrate. Science. 2004, 306: 469-471; b) S. Hashimoto, S.Murayama, T. Sugahara, H. Sato, K. Ohgaki. Intensification of methane andhydrogen storage in clathrate hydrate and future prospect. Chem. Eng. Sci. 2006,61: 7884-7888
    52 K. C. Hester, T. A. Strobel, E. D. Sloan, et al. Molecular hydrogen occupancy inbinary THF-H2 clathrate hydrates by high resolution neutron diffraction. J. Phys.Chem. B 2006, 110: 14024-14027.
    53 C. Eckart. The Penetration of a Potential Barrier by Electrons. Phys. Rev. 1930,35: 1303.
    54 a) A. W. C. van den Berg, S. T. Bromley, N. Ramsahye . An ab Initio Study in theGas Phase and in a Water ClusterJ. Phys. Chem. B 2004, 108: 5088-5094; b) A.W. C. van den Berg, S. T. Bromley, E. Flikkema,et al. Molecular-dynamicsanalysis of the diffusion of molecular hydrogen in all-silica sodalite. J. Chem.Phys. 2004, 120: 10285-10289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700