激光熔覆与等离子喷涂制备Ti-Al及TiN涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,工业上对材料性能的要求越来越高,对金属间化合物以及陶瓷相的关注越来越多,它们以优良的性能被广泛应用于各个领域。模具钢由于有耐磨损、耐高温等要求而需进行表面处理。本文主要研究利用激光熔覆和等离子喷涂工艺在钢表面制备Ti-Al以及TiN涂层,达到在提高材料性能的同时降低成本的目的。
     本文首先采用机械球磨制备Ti-Al和Ti的球磨粉末,再采用DTA、XRD、SEM分析方法研究了球磨粉体的组织结构。结果表明:随着球磨过程的进行,粉末颗粒细化,过程中无金属间化合物形成。
     然后采用激光熔覆和等离子喷涂工艺在Q235钢基体表面制备Ti-Al涂层和TiN涂层,采用X射线衍射(XRD)和扫描电镜(SEM)对涂层物相和组织分别进行分析,结果表明:激光熔覆涂层与基体形成了冶金结合,而等离子喷涂则为机械结合。球磨粉末熔覆制备的涂层组织更致密,激光熔覆涂层晶粒尺寸随扫描速度的增大而减小。最后对涂层进行硬度、高温稳定性及耐腐蚀性试验,结果表明TiN涂层的硬度最高,在功率为1200W,扫描速度为600mm/min时,其硬度为1013.5HV,大约为基体的9倍。Ti-Al涂层在功率为1000W,扫描速度为600mm/min时,其硬度为949.5HV。等离子喷涂制备Ti-Al涂层硬度最高达到了535.67HV。激光熔覆涂层的硬度随扫描速度的增加而增大。两种工艺制备的涂层均有良好的高温稳定性。激光熔覆的Ti-Al涂层耐腐蚀性最好,在功率1000W,扫描速度为600mm/min时,约为600(kohm)。其它涂层耐腐蚀性由于组织不够致密而变差。
With the development of science and technology, the demand of the material properties in industry is higher and higher, intermetallic compound and ceramic phase of more and more concerned with excellent performance has been widely applied in various fields. Die steel with wear-resisting, high temperature resistant requirements needs surface treatment. Ti-Al and TiN coatings were prepared in steel surface by using laser cladding and plasma spraying in order to improve the performance of the material in the lower cost in this paper.
     Ti-Al powders and pure Ti were prepared by mechanical milling and then were studied by the differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) in this paper. The results were shown that: with the ball milling time increasing, powders particle size became smaller, however, there was no intermetallic compounds formed in this process.
     Ti-Al and TiN coatings were preparated in Q235 steel surface by using laser cladding and plasma spraying subsequently, phase and microstructure were studied by XRD and SEM,metallurgical bonding was formed in the coatings which were prepared by laser cladding, and mechanical activation by plasma spraying. Microstructure of the coatings which were prepared by mechanical milling was compact,grain size became low while the scaning speed increased. The hardness test, high temperature stability test and the corrosion test were completed. The result indicated that the hardness of the TiN coating was the highest. The hardness value of it was 1013.5HV with the power of 1200W and the scanning speed of 600mm/min, which was nine times of the matrix. The hardness value of it was 945.5HV with the power of 1000W and the scanning speed of 600mm/min.The highest hardness value of coating on Ti-Al which was prepared by plasma spraying was 535.67HV. The hardness value of laser remelting thermal barrier coatings increased with the scaning speed. The high temperature stability of the coating both of plasma and laser remelting thermal barrier process were excellent.The corrosion resistance on Ti-Al coating was about 600(kohm) with the power of 1000W and the scanning speed of 600mm/min. The corrosion resistance of the other coating was poor due to the porosity of their structure.
引文
1.苗伟,陶馄.锆、钒离子注入铝形成金属间化合物.真空科学与技术. 2001, 21(4): 269-272, 280.
    2. Yu LD, Vilaithong T, Yotsombat B, et al. Surafce modification of tool steels by combined Cr-and N-ion implantation. Surafce and Coatings Technology. 1998, 103-104: 328-333.
    3.高伟,李艳红,李镇江.用粉末烧结法制备Fe3Al金属间化合物块状材料.中国材料进展. 2009, 28(2): 48-51.
    4. Raveh A, Weiss M, et al. Graded Al-AlN, TiN and TiAlN multilayers deposited by radio-frequency reactive magnetron sputtering. Surf Coat Technol. 1999, 114: 269-277.
    5. S. A. Barnett, M. Shinn. Plastic and elastic properties of compositionally modulated thin films. Annual Review of Materials Science, 1994, 24: 481-511.
    6. U. Helmersson, S. Todorova, S. A. Barnett, et al. Growth of singlecrystal TiN/VN strained-lay superlattice with extremely high mechanical hardness. Journal of Applied Physics. 1987, 62: 481-484.
    7. Schonjahn C, Bamford M, Donohue L A, et al. Surface and Coatings Technology. 2000,125: 66.
    8. Motte P, Proust M, Torres J, et al. Microelectronic Engineering. 2000, 50: 369.
    9. Bacci T, Bertamini L, Ferrari F, et al. Materials Science and Engineering. 2000, 283: 189.
    10.沈以赴,黄因慧,余承业.低碳钢表面激光熔覆纳米TiAl合金涂层的显微组织.激光杂志. 2005, 26(2): 44-48.
    11. Leyens C, Perters M. Titanium and Titanium Alloy.陈振华等. Beijing: Chemical Indudtry Press. 2005: 307.
    12. Sun J, Wu J S, Zhao B, et al. Materials Science and Engineering. 2002, A329-331: 713.
    13. Mu Jiu-fang, Hu Fang-you. Microstructure of laser clad Ti+Al+SiO2+C powders on Ti6Al4V alloy. Journal of Materials and Metallurgy. 2006, 5(4): 300-303.
    14.刘秀波,于利根,王华明. TiAl金属间化合物激光表面合金化改性.稀有金属材料与工程. 2001, 30(3): 224-227.
    15.周笑薇,王小珍.激光熔覆技术在工业中的应用.中州大学学报. 2005, 22(4): 110-111.
    16. Chen Y, Wang H M. Microstructure of laser clad TiC/NiAl-Ni3(Al, Ti, C) wear-resistant intermetallic matrix composite coatings. Materials Letters. 2003, 57: 2029-2036.
    17. Chen Li, Gong Shuili, Yao Wei, et al. Effect of laser characteristics on the weld shape and properties of penetration laser weld of BT20 titanium alloy. China Welding. 2004, 16(1): 1-4.
    18. Castro V, Leguey T. In situ technique for synthesizing (TiB+TiC)/Ti. Scripta Materialia. 1999, 41(1): 39-96.
    19.彭华新,王德尊.反应自生Al3Ni-Al2O3-Al复合材料.材料科学与工艺. 1996, 4(3):11-16.
    20.李胜,胡乾午,曾晓雁,等.激光熔覆专用铁基合金粉末的研究进展.激光技术.2004, 28(6): 591-594.
    21.张庆茂,廖健宏,刘文今.激光熔覆层摩擦学特性的研究.光电子激光. 2006, 17(7): 887-890.
    22. K. A. Khor, Y. Murakosh, M. Takahashi, et al. Plasma spraying of titanium aluminide coatings: process parameters and microstructure. Journal of Materials Processing Technology. 1995, 48: 413-419.
    23. Keizoh Honda, Akio Hiroseb, Kojiro F, et al. Properties of titanium-aluminide layer formed by low pressure plasma spraying. Materials Science and Engineering. 1997, A222: 212-220.
    24. Tsunekawa Y, Gotoh K, Okumiya M, et al. Synthesis and high temperature stability of titanium aluminize matrix in situ composites. Journal of Thermal Spray Technology. 1992, 1(3): 223-229.
    25. Yasuhiro Hoshiyama a, Hidekazu Miyake, Kenji Murakami, et al. Composite deposits based on titanium aluminide produced by plasma spraying. Materials Science and Engineering. 2002, A333: 92–97.
    26. V. E. OlikerT, V. L. Sirovatka, Timofeeva. Formation of detonation coatings based on titanium aluminide alloys and aluminium titanate ceramic sprayed from mechanically alloyed powders Ti-Al. Surface & Coatings Technology. 2006, 200: 3573–3581.
    27. Tanaka Y, Ichimiya N, Onishi Y, et al. Structure and properties of Al-Ti-Si-N coatings prepared by the cathodic arc ion plating method for high speed cutting applications. Surf. Coatings Technol. 2001, 146-147: 215-221.
    28. Zhang WH, Hsieh JH. Tribological behavior of TiN and CrN coatings sliding against an epoxy molding compound. Surf Coatings Technol. 2000, 130: 240-247.
    29. Massiani Y, Gravier P, Marchetti F. Corrosion behaviour in acid solution of (Ti, Cr) Nxfilms deposited on glass. Thins Solid Films. 1995, 261: 202-208.
    30. Otani Y, Hofmann S. High temperature oxidation behaviour of (Ti1xCrx)N coatings. Thin Solid Films. 1996, 287: 188.
    31. Hsieh J H, Zhang WH, Li C, et al. Characterization of (TixCr0.6-x)N0.4 coatings and their tribological behaviors against an epoxy molding compound. Surf Coatings Technol. 2001, 146-147: 331-337.
    32. Wiedemann R, Weihnacht V, Oettel H. Structure and mechanical properties of amorphous Ti-B-N coatings. Surf Coatings Technol. 1999, 116-119: 302.
    33. Heau L, Terrat J P. Ultra hard Ti-B-N coatings obtained by reactive magnetron sputtering of a Ti-B target. Surf Coatings Technol. 1998, 108-109: 332.
    34. Veprek S. Nanocrystalline TiBN and related compounds. Vac Sci Technol. 1999, A17: 2401.
    35. Musil J. Hard and superhard nanocomposite coatings. Surf Coatings Technol. 2000, 125: 322.
    36. Nesladek P, Veprek S. Nanoscale TiBN films deposited by plasma enhanced chemical vapor deposition. Phys Stat Sol. 2000, A177: 53.
    37. Pierson J F, Bertran F, Bauer J P, et al. Structure and electrical properties of sputtered titanium boronitride films. Surf Coatings Technol. 2001, 142-144: 906-910.
    38.王庆学,张联盟.机械合金化-新型固态非平衡加工技术.中国陶瓷. 2002, 38(2): 36-39.
    39.计汉容.固态反应中的机械合金化技术.云南冶金. 1998, 27(1): 43-48.
    40.陈津文,吴年强,李志章.描述机械合金化过程的理论模型.材料科学与工程. 1998, 16(1): 19-23.
    41. PABI SK. Mathematical modelling of the mechanical alloying inetics. Acta Materialia. 1998, 46(10): 3501-3510.
    42. D R Maurice, T H Courtney. The physics of mechanical alloying: A First Report. New York:Metall Trans. 1990.
    43. A K Bhattacharya, E Arzt. Temperature rise during mechanical alloying. Scripta Metall. 1992, 27(6): 749-752.
    44. M Magini, A Iasonna. Energy transfer in mechanical alloying(overview). Mater Trans JIM. 1995, 36(2): 123~126.
    45.卡恩RW.材料科学与技术丛书:金属与合金工艺.北京:科学出版社. 1999, 309.
    46. Liang G, Huo T J, Boily S, et al. Hydrogen storage in mechanically milled Mg-LaNi5 and MgH2-LaNi5 composites. Journal of Alloys and Compounds. 2000, 297(2): 261-265.
    47. Ding J, Tsuzuki T, Mccorm Ick P G, et al. Structure and Magnetic Properties of Ultrafine Fe Powder by Mechanochemical Processing. Journal of Magnetism and Magnetic Materials. 1996, 162(2-3): 271-276.
    48.高岩,罗堪高,李伯林,等. Ti-Fe二元系在机械合金化过程中的结构转变及纳米晶TiFe储氢合金的制备.功能材料. 1998, 29(3): 256-259.
    49. Klug H P, Alexander LE. X-ray diffraction procedures for polystalline and amorphous materials. John Wley & Sons, Inc, London. 1954: 491-494.
    50. Farid Akhtar, Faizul Hasan. Reactive sintering and properties of FeB2 and FeC porous cermets. Materials Letters. 2008, 62: 1242-1245.
    51. S. Gedevanishvili, S. C. DeeVi. Processing of iron aluminides by pressureless sintering through Fe+Al elemental route. Materials Science and Engineering A. 2002, 325: 163-176.
    52.赵刚.机械球磨Ti/Al复合粉反应烧结及挤压工艺研究.哈尔滨工业大学硕士学位论文.
    53. Michaela Krauss, Dirk Bergmann, Udo Frisching, et al. In-situ particle temperature, velocity and size measurements in the spray forming process. Material Science and Engineering. 2002, A (326): 154-164.
    54. Nishinoiria S, Enokia M, Tomita K. In-situ monitoring of microfracture during plasma spray. Science and Technology of Advanced Materials. 2003 ,4: 623-631.
    55. Borovinskaya I P. Chemical classes of the SHS processes and materials. Pure & Appl. Chem. 1992, 64.
    56. Merzhanov A G. History and recent developments in SHS. Ceramic International. 1995, 21 (5): 371-379.
    57.魏仑,陈庆华. 40铬钢表面加碳激光合金化处理.激光技术. 2002, 26:1-3.
    58.赵名师,无明. EIS分析在防腐蚀涂层评价中的应用.油气储运. 2007, 10(26): 39-42.
    59. Marco J F, Agudelo AC, Gancendo J R, et al. Corrosion resistance of single TiN layers, Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray test:an evaluation by XPS. Surface and Interface Analysis. 1999, 27: 71-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700