贮仓—贮料—桩—地基空间相互作用系统的动力特性及随机地震响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构—地基的动力相互作用问题是伴随着工程实践而提出的。通过地震工程实践,人们越来越认识到结构和地基动力相互作用对建筑物的地震反应有着重要的影响。本论文将贮仓、贮料、桩基础及其地基均作为空间结构处理,基于有限元理论建模并采用有限元和虚拟激励法相结合的计算方法,围绕着随机地震荷载作用下贮仓—贮料—桩—地基体系的动力相互作用问题展开了较为深入、系统的研究,取得了一些有价值的成果。主要的研究工作及得出的主要结论如下:
     1.作者在查阅了大量国内、外文献的基础上,全面分析了土—结构动力相互作用的研究现状和发展水平,指出了现有研究的不足之处。由于地震荷载是一种随机荷载,因此,应该以随机过程的观点来研究地震荷载作用下结构的响应才是符合工程实际的。
     2.经文献查新,本文首次将虚拟激励法推广应用于三维桩—土—结构动力相互作用系统的随机地震响应研究中,扩大了虚拟激励法的应用范围。
     3.研究了空间自由场地基和带桩自由场地基的动力特性。数值计算结果表明:在自由场地基土中设置桩基础以后,使原有地基土的固有频率增大、固有周期缩短。影响主要表现在:桩基础对地基土的前3阶固有频率影响较小,相对误差在10%以内;随着体系固有频率的增大,桩基础对频率的影响也呈增大趋势,但当体系的固有频率增大到某一值后,桩基础对固有频率的影响将基本保持不变。采用虚拟激励法研究了随机地震动作用下自由场地基和桩—土相互作用体系的随机地震响应,得出了桩基础对自由场地基动力响应有明显的减震效应。
     4.系统建立了贮仓、贮仓—贮料相互作用体系的三维有限元计算模型。研究了刚性地基上空仓、贮仓—贮料相互作用体系的动力特性。数值计算结果表明:空仓的自振频率大于贮仓—贮料相互作用体系的自振频率。采用虚拟激励法研究了空仓、
The problem of structure-foundation dynamic interaction is raised to follow the advance of practice. By the earthquake engineering practice, it is realized that structure-foundation dynamic interaction has important influence to the seismic response of building more and more. The thesis takes silo, stock, pile, and foundation as the spatial structure. Based on the finite element theory, calculation model of three dimension silo-stock-pile-foundation dynamic interaction system is set up. By means of the finite element method and pseudo excitation method, the studies on dynamic interaction problem of silo-stock-pile-foundation under the stochastic earthquake exciation are developed, more deeply and systematically, and some worthy results are obtained in the paper. Main reseach work and get main conclusions as follows:1. The author analyzed the present research condition and the development levels of the soil- structure dynamic interaction completely, on the foundation of looking up a great deal of documents at home and abroad, and pointed out the deficiency of the existing research. Because the earthquake exciation is a kind of random load, therefore, the response of the structure on the earthquake load should be studied by the standpoint of stochastic process, which matches the engineering practice.2. Through checking the documents lately, pseudo excitation method is applied to the random seismic response research of the three-dimension pile-soil-structure dynamic interaction system in the paper at the first time, which extends the applied range of pseudo excitation method.3. Dynamic characteristics of the space free field foundation and soil-pile-raft dynamic interaction system are studied. Numerical value calculation results show that
    after establishing pile foundation on the free field foundation, the natural frequency of the original foundation soil is enlarged and the natural period is shorten. The main affection is that the influence of the pile foundation to the ex-3 natural frequency of the foundation is small, the opposite error margin is in 10%. Along with the natural frequency of the system enlarging, the influence trend of the pile foundation to the frequency enlarges too. But after the natural frequency of the system enlarging the some value, the influence of the pile foundation upon the natural frequency will basically keep constant. Using the pseudo excitation method, random seismic responses of free field foundation and pile-soil interaction system are studied. It is found that soil-pile dynamic interaction can reduce the random seismic response of the free field foundation obviously.4. Three dimension finite element calculation models of silo, silo-stock interaction system are established in a systematic way. Dynamic characteristics of silo, silo-stock interaction system are separately studied under the condition of rigid foundation. Numerical value calculation result shows that the natural frequency of the empty silo is bigger than that of silo-stock interaction system. Using the pseudo excitation method, random seismic responses of empty silo and silo-stock interaction system are studied, the influence of the stock to the silo dynamic response is analyzed also. The result from the study indicates that the displacement response power spectral density peak value of silo-stock interaction system is bigger than that of empty silo on rigid foundation, the reducing vibration effect of the stock to silo vibration is not very obvious.5. Three dimension finite element calculation models of empty silo-foundation, silo-stock-foundation spatial interaction system are established in a systematic way. Dynamic characteristics of empty silo-foundation, silb-stock-foundation spatial interaction system are separately studied. The result from the study indicates that fundamental frequency of silo-stock-foundation spatial interaction system is less than that of empty silo-foundation, the range of lowering is about 20%. However, along with the natural frequency increasing, the frequency of the silo-stock-foundation interaction system increases a little by the empty silo. Using the pseudo excitation method, random seismic responses of empty silo-foundation and silo-stock-foundation spatial interaction system are studied. The result from the study indicates that the displacement response power spectral density peak value of silo-stock-foundation spatial interaction system is less than that of empty silo-foundation, the reducing vibration effect of the stock to silo is obvious.6. Three dimension finite element calculation model of silo-stock-pile-foundation spatial interaction system is established in a systematic way. Dynamic characteristic of
    silo-stock-pile-foundation spatial interaction system is studied. Numerical value calculation result shows that the natural frequency of silo-stock-pile-foundation interaction system is bigger than that of silo-stock-foundation interaction system, the increasing range of fundamental frequency is about 55%. Using the pseudo excitation method, random seismic response of silo-stock-pile-foundation interaction system is studied, the influence of the stock and pile to the interaction system dynamic response is analyzed also. The result from the study indicates that the pile foundation can reduce the random seismic response of the silo-stock-pile-foundation interaction system obviously. Pile foundation can not only increase the strength of the foundation soil, but also decrease deformation of the foundation soil, meanwhile, under the earthquake excitation, pile foundation can also be taken as the component of eliminating energy and vibration absorber which can be used in the structure anti- earthquake.
引文
[1] C. Hoff. The Use of Reduced Finite Element Models in System Identification. Earthquake Engineering and Structural Dynamics. Vol.18, 875~887,1989
    [2] OTTO Von Estorff and Eduardo Kausel. Coupling Boundary and Finite Eiements for Soil—Structure Interaction Problems. Earthquake Engineering and Structural Dynamics, Vol. 18, 1065~1075, 1989
    [3] 贮仓结构设计手册编写组.贮仓结构设计手册.北京:中国建筑工业出版社,1999
    [4] 曹志远.相互作用分析数值方法的若干进展:结构与介质相互作用理论及其应用.南京河海大学出版社.1993,66~72
    [5] 李德葆,陆秋海.实验模态分析及其应用.北京:科学出版社,2001
    [6] 吕爱钟,蒋斌松.岩石力学反问题.北京:煤炭工业出版社,1998
    [7] Seed H B et al.Soil—Structure Interaction Analysis for Seismic Response. J GT, ASCE, 1975, 101(5): 439~457
    [8] 董建国,赵锡宏.高层建筑地基基础—共同作用理论与实践.上海:同济大学出版社,1997
    [9] 黄义,门玉明.结构—地基相互作用系统可靠性分析.陕西科学技术出版社,2000
    [10] Chandrasskarn A.R. and P.C. Jain. Effective Live Load of Storage Materials Under Dynamic Condition. Indian Concrete Journal, Vol. 42, № 9, 1968
    [11] 柴田耕一等.钢制振动特性关为研究.日本建筑学会论文报告集.第315号,昭和57年,1982
    [12] Shimamoto A., Vibration Tests for Scale Models of Cylindrical Coal Storage Silos.8th W. C. E. E., Vol. 5, P.287, 1984
    [13] 杉田稔等.模型石炭振动实验解析.清水建设研究所报,38号.1983
    [14] 李文玲等.柱承式贮仓振动的“鞭梢效应”.西安冶金建筑学院学报,1987,51(30):45-55
    [15] 孙景江,江近仁.钢筋混凝土柱承式贮仓的地震反应分析.地震工程与工程振动,10卷3期,1990
    [16] 赵衍刚,吉田顺.振动时筒仓中散粒体流动状况的仿真.地震工程与工程振动,13卷3期,1993
    [17] 赵衍刚,江近仁.筒仓结构的自振特性与地震反应分析.地震工程与工程振动,9卷3期,1989
    [18] Lysmer J,Kuhlemeyer RL.Finite Dynamic Model for Infinite Media. Proc.ASCE, 1969,95(4): 859-877
    [19] Smith W.A Non-reflecting Plane Boundary for Wave Propagation Problems. Jour. Comp. Phys.1973,15:492-503
    [20] Penzien J.etal:Seismic Analysis of Bridges on Long Piles. ASCE.1964
    [21] Penzien J.Soil-Pile Foundation Interation. Chapter 14 in Earthquake Engineering. Wiegel RL ED, Prentice-Hall, 1971, 349~381
    [22] 李小平,廖振鹏等.土体动力本构模型评述.世界地震工程,No.4 15-18,1993
    [23] 林皋.结构和地基相互作用体系的地震反应及抗震设计.《中国地震工程研究进展》,地震出版社,1992,211-225
    [24] Reissner E.Stationare, Axial Symmetrische Durch Eine Schuttelnde Mass Erregte Schwingungen Eines Homogenen Elastischen Halbraumes.Ingenieur—Archiv, 1936, 7(6):381-396
    [25] G.N.Bycroft, Forced Vibration of Rigid Circuiar Plate on A Semi—Infinite Elastic Space and An Elastic Stratum, Phil. Trans. Royal Soc. London, Vol.248, Series A,No.948, 1956, 327-368
    [26] W.T. Thomson and T. Kobori, Dynamical Compliance of Rectangular Foundation on An Elastic Half—Space, J.Appl.Mech, ASME, vol.30, 1963, 579-584
    [27] S.R.Ibrahim and E.C.Mikulcik, A Method for the Direct Identification of Vibration Parameters From time Domain Responses, Shock and Vibration Bulletin, 47 Part4, 1977
    [28] S.R.Ibrahim, E.C.Mikulcik, A Time Domain Modal Vibration Test Technique, The Shock and Vibration Bulletin, 43 Part 4 June 1973
    [29] A.H. Hadjian, W.S.Tseng, C.Y.Cheng and D.Anderson, The Learning From the Large Scale Lotung Soil—Structure Interaction Experiments, Proceeding: Scond International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Vol.Ⅲ, St.Louis, 1991
    [30] Richard A. Parmelee, Building—Foundation Interaction Effects, J. Eng. Mech. Div. ASCE, Vol. 93, 1967,131-152
    [31] J.E.Luco and R.A.Westmann, Dynamic Response of A Rigid footing bonded to An elastic Half Space, J.Appl.Mech. ASME, Vol.39, 1972,527-534
    [32] H.L.Wong and J.E. Luco, Response of Rigid Foundations of Arbitrary Shape, Int.J.Earthquake Eng. Str.Dyn. Vol.4, 1976,579-587
    [33] John P.Wolf, Classification of Analysis Methods of Dynamic Soil—Structure Interaction, Proceedings:Second International Conference on Recent Advances in Geotechnical Earthquke Engineering and Soil Dynamics, Vol.Ⅲ, St, Louis, 1991
    [34] 大型模型原子炉建屋地盘动的相互作用试验,日本建筑学会大会学术讲演梗概集,1984-1987
    [35] 地基—基础及上部足尺结构共同工作的抗震性能试验研究(报告).北京工业大学土木系.北京,1993.12
    [36] 丁文镜,周町.液体晃动力学参数的辨识.清华大学学报(自然科学版),1989(5):96-102
    [37] Ibrahim S R. Advances in Time Domain Modal Identification and Modeling of Strutures. Second Interna. Symp. Aeroelas. and Struc. Dynamics, 1985, 581-594
    [38] Ibrahim S R, etc. A Method for The Direct Identification of Vibration Parameters from the Free Respones. The Shock and Vibration Bulletin, 1977, Vol.47, 183-198
    [39] Ibrahim S R, etc. A Time Domain Modal Vibration Test Technique. The Shock and Vibration Bulletin, 1973, Vol.43, 21-37
    [40] Ibrahim S R.Double Least Squares Approach for Use in Structural Modal Identification. AIAA J. 1986, Vol. 24(3), 499-503
    [41] Ibrahim S R. An Approach for Reducing Computation Requirements in Modal Identification. AIAA J. 1986, Vol.(24), 1725-1727
    [42] Hjelmstad K. D, Banman Mo R and Banan Ma R, Time—domain Parameter Estimation Algorithm for Structure Ⅰ: Computation Aspects. J.Eng. Mech, 1995, 121(3),424-434
    [43] Wang D and Haldar A, Element—level system Indentifition With Unknow Input. J. Eng. Mech.,1994, 120(1), 159~176
    [44] Koh C. G. ,See L M and Balendra T., Estimation of Structure Parameters in Time Domain: A Substructure Approach. Earthquake Eng. & Struc. Dynamics, 1991, 20(8):787~802
    [45] Gysin H. Comparison of Expansion Methods for FE Modeling Error Localization Proc. of 8th Mac. 1990, 195~204
    [46] Guyan R J. Reduction of Mass and Stiffness Matrices. AIAA Joural,1990,3
    [47] O'callahan J. Comparison of Reduced Model Concepts. Proc. of 8th IMCA, 1990: 422~430
    [48] Bettess P. Infinite Elements.Int.J.Num. Meth. eng., 1977, 11 (1):53~64
    [49] Beer G and Meek J L.Infinite Domain Element. Int. J. Num. Meth. Eng., 1981, 17(1): 43~52
    [50] 赵衍刚,江近仁.筒仓结构自振频率的简化计算,世界地震工程,1989年第3期
    [51] 耿树江,徐国彬.筒承式贮仓实用地震反应分析方法,土木工程学报,第25卷第5期
    [52] 马建勋,梅占馨.筒仓在地震作用下的计算理论,土木工程学报,1997,30(1):25~29
    [53] 刘定华,魏宜华.钢筋混凝土筒仓侧压力的计算与测试,建筑科学,1998,14(4):14~18
    [54] H.Lamb, On the Propagation of Tremors Over the Surface of An Elastic Solid, Phil. Trans. Roy. Soc. Lond. Sre. A, Vol.203,1~42,1904
    [55] C. L. Pekeris, The Seismic Surface Pulse, Proc. Nat. Acad. Sci., Vol. 41, 469~480, 1955
    [56] 王贻荪,半无限体表面在竖向集中谐和力作用下表面竖向位移的精确解,力学学报Vol.12,No.4,386~391,1980
    [57] E.Kausel, J.M. Roesett and G.Waas, Dynamic Analysis of Circular Foundation, J.Eng. Mech. Div., ASCE, Vol.101. 679~693, 1975
    [58] S.H., Seale and E. Kausel, Point Loads in Cross—anisotropic Layered Halfspaces, J. Eng. Mech., ASCE, Vol. 115, 509~524, 1989
    [59] 曾三平,曹志远.多层地基的瞬态波动解,地震工程与工程振动,Vol.11,No.3,33~44,1991
    [60] 曾三平,曹志远.层状弹性半空间轴对称动力问题的奇异解,力学学报,Vol.24,No.4,446~457,1992
    [61] 王立忠,陈云敏等.饱和弹性半空间在低频谐和集中力下的积分形式解,水利学报,No.2,84~88,1996
    [62] 杨峻,吴世明等.弹性层状饱和半空间体系稳定动力响应,土木工程学报,Vol.30,No.3,39~47,1997
    [63] J. Ghaboussi And E.L. Wilson, Flow of Compressible Flow in Porous Elastic Solids, Int. J. Numer. Meth. Eng., Vol.5, 419~442, 1973
    [64] B.R.Simon, O.C. Zinkiewicz And D.K. Paul, Evaluation of U—W And U—P Finite Element Methods for The Dynamic Response of Saturated Porous Media Using One—dimensional Models, Int. J. Num. Anal. Meth. Geomech, Vol.10, 461~482, 1986
    [65] 楼梦麟,林皋.粘弹性地基中人工边界的被动反射效应,水利学报,1986(6):20~30
    [66] Tajimi H. A Stastical Method of Determining THe Maximum Response of A Building Structure During An Earthquake. Proc. of The 2nd World Conference on Earthquake Engineering, 2, Tokyo, Japan, July, 1960
    [67] Key D. Earthquake Design Practice for Building [M]. London: Thomas Telford, 1988,37~39
    [68] 薛素铎,曹资等.多维地震作用下网壳结构的随机分析方法,空间结构,Vol.8,No.1,44~51,2002
    [69] 林家浩.随机地震响应功率谱快速算法,地震工程与工程振动,1990,10(4),38~46
    [70] 黄义,尹冠生等.不同地基条件下筒仓的振动实验研究[A].第七届全国振动理诡及其应用学术会议论文集[C],1999,佛山
    [71] 黄义,尹冠生.考虑散粒体与仓壁相互作用时筒仓的动力计算,空间结构,Vol.8,No.1,3~7,2002
    [72] G.M.萨布尼斯等著,米世杰等译,结构模型和试验技术,北京:中国铁道出版社,1989.12
    [73] 黄玉平,刘季.双向水平地震动的空间相关性[J].哈尔滨建筑工程学院学报,1987(3),10~14
    [74] 陈清军,赵云峰等.振动台模型试验中地基土域的数值模拟,力学季刊,Vol.23,No.3,407~411,2002
    [75] 张治勇,孙柏涛等.新抗震规范地震动率谱模型参数研究[J],世界地震工程,16(3):33~38.2000
    [76] Lai P.S-S.Statistical characterization of strong ground motions using power spectral density function[J]. Bulletin of the Seismological Society of Americal. 1982,72(1):259-273
    [77] 欧进萍,牛获涛等.设计用随机地震动模型及其参数确定[J].地震工程与工程振动,11(3):45-53
    [78] 汪近仁,洪峰.功率谱与反应谱的转换和人造地震波[J].地震工程与工程振动,1985,5(4):13-27
    [79] Novak M.Pile under dynamic loads[J]. Proc 2th Int Conf: Recent Advances in Geotech. Earthq Eng & Soil Dyn, St Louis, Missouri(USA), 1991(3):250-273
    [80] Hirokazu Takemiya, Yoshikazu Yamada. Layered soil-pile-structure dynamic interaction[J]. Earthquake Engineering and Structural Dynamic, 1981 (9):437-457
    [81] 姜忻良,丁学成.桩土物理模型及结构—桩—土相互作用[J].振动工程学报,1993,6(2):143-152
    [82] 曲乃泗,张钟鼎等.储液罐和火箭储液仓的动力可靠性分析[J].计算结构力学及其应用,Vol.4,No.4,45-51,1987
    [83] 曹彩芹,黄义等.大型筒仓与地基静力相互作用研究[J].空间结构,Vol.10,No.2:17-25,2004
    [84] 王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997
    [85] 徐芝纶.弹性力学(下册)[M].北京:高等教育出版社,1990
    [86] Wilson E.et al. A clarification of the orthogonal effects in a three-dimensional seismic analysis[J]. Earthquake Spectra 1995, 11(4): 659-666
    [87] Lopez O A, Torres R.Discussion of A clarification of the orthogonal effects in a three-dimensional seismic analysis by E.L. Wilson, I. Suharwardy, and A. Habibullah[J]. Earthquake Spectra, 1996,12(2): 357-361
    [88] Smeby W, Kiureghian A D. Modal combination rules for multi-component earthquake excitation[J]. Earthquake Engineering and Structural Dynamics, 1985, 13(1): 1-12
    [89] Menun C. Kiureghian A D. A replacement for the 30%, 40%, and SRSS ruies for multicomponent seismic analysis[J]. Earthquake Spectra, 1998,14(1): 153-163
    [90] 李宏男.结构多维地震反应[D].哈尔滨:国家地震局工程力学研究所,1990
    [91] 刘季.结构多维地震动反应的组合问题[J].哈尔滨建筑工程学院学报,1987,(2):1-9
    [92] 王君杰.多点多维地震动随机模型及结构的反应谱分析方法[D].哈尔滨:国家地z震局工程力学研究所,1992
    [93] 胡松,王肇民.洛阳电视塔的结构抗震分析[J].建筑结构,2000,30(1):57-59
    [94] 张誉,王卫.双向地震作用下不规则框架的扭转分析[J].土木工程学报,1994,27(5):37-51
    [95] 胡聿贤,周锡元.弹性体在平稳和平稳化地面运动下的反应[A].地震工程研究报告集第一集[C].北京:科学出版社.1962:33-50
    [96] 刘季,王前信.多维与多支座地震输入及结构扭转反应[A].中国工程抗震研究四十年[C].北京:地震出版社,1989
    [97] 王光远.建筑结构的振动[M].北京:科学出版社,1978
    [98] 李国豪.工程结构抗震动力学[M].上海:上海科学技术出版社.1980
    [99] Zerva A. Lifeline response to spatially variable ground motions[J]. Earthquake Engineering and Structural Dynamics, 1988,16(3): 361-379
    [100] Lee M C. Penzien J. Stochastic analysis of structures and piping systems subjected to stationary multiple support excitations[J]. Earthquake Engineering and Structural Dynamics,1983,11(1): 91-110
    [101] Masri S F. Response of a multi-degree-of-freedom system to nonstationary random excitation [J]. Journal of Applied Mechanics. ASME. 1978,45(3): 649-656
    [102] 林家浩,钟万勰.关于虚拟激励法与结构随机响应的注记[J].计算力学报,1998,15(2):217-223
    [103] Harichandran R S, Vanmarcke E H. Stochastic variation of earthquake ground motion in space and time[J]. J Engineering Mechanics, ASCE, 1986, 112(2): 154-175
    [104] 耿树江,白力更等.贮仓与贮料相互作用的试验与计算分析[J].工业建筑,1998,28(5):21-24
    [105] 自力更,耿树江等.采用连续体与集中质量组合模型计算筒型结构的自振特性[J].工业建筑,1996,26(12):27-31
    [106] 郑忠双.结构随机响应分析及其动力可靠性研究现状及趋势[J].福建筑,2002(1):25-28
    [107] 张耀华,梁启智等.频率密集复合结构非平稳随机地震反应分析[J].华南理工大学学报,2000,28(3):22-27
    [108] 李创第,邹万杰.基础转动结构随机地震响应分析的复模态法[J].工业建筑,2003,33(7):29-32
    [109] 林家浩,钟万勰.关于虚拟激励法与结构随机响应的注记[J].计算力学学报,1998,15(2):217-222
    [110] 林家浩,易平.线性随机结构的平稳随机响应[J].计算力学学报,2001,18(4):402-407
    [111] Ariaratnam S. T., Schueller, G. L., and Elishakoff, I. eds., Stochastic Structural Dynamics, Progress in Theory and Applications, Elsevier Applied Science, 1988
    [112] Crandall S. H., Random Vibration, Appl. Mech. Rev., 12(1959), 739-742.
    [113] Vanmarke E. H., Some recent development in random vibration, Appl. Mech. Rev., 32(1979), 1197-1202
    [114] Crandall S. H., and Zhu W.,Q., Random vibration: a survey of recent developments, J. Appl. Mech., 50(1983), 50th Anniversary Issue, 953-962
    [115] Lin Y. K., et al, Methods of stochastic structural dynamics, Structural Safety, 3(1986), 167-194.
    [116] Robert J. B., Response of nonlinear mechanical systems to random excitation, Part 1: Markov method, The Shock and Vibration Digest, 13(1981), 4, 17-28
    [117] Robert J. B., Response of nonlinear mechanical systems to random excitation, Part 2: Equivalent linearization and other methods, The Shock and Vibration Digest, 13(1981), 5, 15-29
    [118] Spanos P. D., Stochastic linearization in structural dynamics, Appl. Mech. Rev., 34(1981), 1-8
    [119] Robert J. B. and Spanos P. D., Stochastic averaging: an approximate method of solving random vibrations, Int. J. Non-inear Mechs., 21(1986), 111-134.
    [120] Zhu W. Q., Stochastic averaging methods in random vibration, Appl. Mech. Rev., 41(1988), 5, 189-199
    [121] Crandall S. H., Random Vibration of one-and two-dimensional structures, in Developments in Statistics, Krishnaiah, P. R. ed., Vol. 2, Academic Press, 1979
    [122] Bendat, J. S., and Piersol, A. G., Engineering Applications of Correlations and Spectral Analysis. Wiley, 1980.
    [123] Arnold, L., Stochastic Differential Equations: Theory and Application, Wiley, 1974.
    [124] Adelman, H. M. Sensitivity analysis of discrete structural systems AIAA J 1986, 24(5) 823—832
    [125] Alvin K. F. Method for determining minimum-order mass and stiffness matrices from modal test data. AIAA J. 1995, 128-135
    [126] 罗英,等.筒承式群仓自振基频的简化公式[J].工程抗震,2002(2):24-26
    [127] 袁兴隆,等.圆筒仓中贮料有效质量研究[J].特种结构,2000(1):37-39
    [128] 滕锦光,赵阳.大型钢筒仓的结构行为与设计[J].土木工程学报,2001(4):46-52
    [129] 施卫星,朱伯龙.钢筋混凝土圆形筒仓地震反应试验研究[J].特种结构,1994(4):55-58
    [130] 曹资,薛素铎著.空间结构抗震理论与设计[M].北京:科学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700