模态域信号处理在水声中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空中目标因其高效的搜索性能和机动性强的特点,在海空对抗中占据优势地位,对水下平台的生存构成威胁。本文以海空对抗中被动声探测技术为研究对象,对海空对抗声纳涉及的若干关键技术进行了研究,旨在为发展、实现海空对抗声纳进行有益的探索。
     希尔伯特黄变换是一种非线性信号处理理论,通过仿真研究了经验模态分解的突出信号局部特征与多分量信号分离特性,总结提出了不同用途下固有模态函数(IMF-Intrinsic Mode Functions)选取的原则,可用于信号去噪、互相关峰检测和多目标分辨等多种场合;回顾了平均声强器、互谱、能量加权直方图与解析声强流等常见的基于单矢量传感器的方位估计理论;将接收阵元组成阵,介绍了阵列输出模型及均匀直线阵的自然指向性,突出了阵增益及矢量的优势。
     空中目标辐射噪声频谱包括线谱和连续谱两部分,相比于宽带连续谱,线谱是其主要噪声源;从线谱和连续谱特征提取出发,提出了一种基于经验模态分解(EMD-Empirical Mode Decomposition)的线谱和连续谱分离算法。声波经过空-水界面后,部分声能透射到水中,激发的水下声场亦具有明显的线谱特征。在低频段,声波的声压、振速存在相位差,声能流在有功分量和无功分量间发生“串漏”,传统测向算法是有偏的。本文从试验的角度探索了基于水下声场的空中目标测向方法,分析讨论了将辐射噪声的线谱集中频段、多普勒频偏相对于原频率的比率和线谱的方位(变化趋势)信息作为特征量的空中目标的检测与识别方案;同时,目标的大致方位信息有利于水下平台对其的规避和有效的攻击,有望改善其的对空劣势。
     物体的入水声、水下目标启动声等是对目标探测非常重要的一类瞬态信号,从物体入水声形成机理上研究了其波形特性,为物体入水声的识别和击水声的源级预报提供理论基础。结合EMD的特性和平均声强器适合连续谱明显的单目标方位估计的优势,提出了模态声强器算法,利用模态声强器(MAIA-Mode Acoustic Intensity Averager method)算法可有效实现平台干扰下,物体入水声、目标启动声的检测和测向,能实现对瞬态信号信号检测。
     矢量阵最小方差无畸变响应波束形成算法可实现全空间内信号的空间谱估计,但该算法对弱目标的检测能力较差。基于此,结合IMF窄带特性与MVDR(Minimum Variance Distortionless Response)的窄带信号要求,提出了矢量阵模态域MVDR波束形成算法,将分解得到的声压、振速对应阶IMF利用MVDR波束形成估计其方位谱,并将中心频率的概念应用于IMF,综合利用声压、振速对应阶IMF求解中心频率,以此中心频率作为MMVDR (Mode domain Minimum Variance Distortionless Response)算法的中心频率。海试结果表明:MMVDR算法在保持强干扰空间谱能量不变的情况下,有效的增大了弱目标所在方位空间谱的能量,可实现强干扰下弱目标的检测,增加弱目标的有效探测距离。
     指向最小方差波束形成是一种高分辨波束形成算法,具有低旁瓣和主瓣更窄的优势。通过分析算法的计算量的影响因素,指出STMV(Steered Minimum Variance algorithm)算法计算量近似正比于阵元数M的三次方。当阵阵元数M较大时,STMV波束形成算法需很大计算开销,限制了其应用。基于此,结合α滤波器的积分器特性和矩阵求逆迭代公式,提出了一种STMV快速迭代算法,其计算量近似正比于M2;仿真验证了该算法在计算量降低的同时,保持了STMV算法高方位分辨力和弱目标检测的优点;应用于48元阵海试数据处理,计算量降低了约24倍,有利于算法的实时实现;同时可在多个目标信噪比相差较大和多个目标方位比较接近时,有效地检测到弱目标。
The air targets such as helicopters are dominant in the aeronaval antagonism system because of its efficient hunting performance and agile maneuverability, which is a great threat to the existence of submarines.The subjects investigated in this dissertation are some pivotal passive detecting techniques related to the aeronaval antagonism system aimed to do some helpful research in the development and realization of aeronaval-antagonism SONAR system.
     Hilbert-Huang Transform (HHT) is a kind of nonlinear signal processing theory. Simulation results have approved that empirical mode decomposition (EMD) can emphasize the local instantaneous characters of original signals and decomposes the multi-component signals into mono-component signals. Aiming at different actual applications, the selection principles of intrinsic mode functions (IMF) are proposed, which could be used in denoising, cross-correlation peak detection and multiple-target recognition. The common single vector sensor azimuth estimation theories are reviewed such as acoustic intensity averager, cross-spectrum method, energy weighted histogram and analytic acoustic intensity method. Extending to array signal processing, the output and natural directivity of the uniform line array are introduced. Meanwhile, the array gain and vector advantage were emphasized.
     The noise spectrum radiated from air targets consists of line and continuous spectrum, in which the line spectrum noises are principal noise sources.In order to extract line and continuous spectrum, a new algorithm based on EMD was proposed. Some sound energy is transmitted into water when sound goes by the air-water interface, so its underwater field also holds obvious line spectrum characteristic. In low-frequency stage, there is phase different between p and v, so the sound energy leaks out between active and reactive component of acoustic intensity flux, which made conventional azimuth estimation theories biased. Based on lake and sea experiment, this dissertation probes into azimuth estimation methods of air targets using the information of underwater field, and a scheme including detection and identification of air targets has been proposed in which considered the waveband of line spectrum, the ratio of Doppler frequency offset to original frequency and the azimuth (movement changing tendency) of line frequency as the characteristic of air targets.Meanwhile the approximate azimuth information is advantaged for underwater platform to dodge and attack air targets effectually, which is helpful to improve submarines inferior position.
     The transient signals such as splashes sound of target's water entry and underwater target-starting sound are very important for targets'detection. The character of targets'water entry splash sound and its waveform are studied in this dissertation which can provide a theoretical basis for the identification of water-entry sound and the forecast of impact sound's source level.Combining the character of EMD and the advantage of acoustic intensity averager in single target azimuth estimation, mode acoustic intensity averager (MAIA) method is proposed in this dissertation. By MAIA algorithm, water-entry sound and underwater target-starting sound could be detected and their azimuth could be estimated in the strong interferences flat-form, which was helpful for transient signals detection.
     The vector array MVDR beam forming algorithm can estimate the omni-directional spatial spectrum effectively, but it's difficult to detect weak targets. Combining the IMF's narrow-band character and its advantage of weak signal detection, the vector array mode domain MVDR algorithm is proposed in this dissertation, in which the decomposed IMFs of the same order from pressure and particle velocity are used to estimate their spatial spectrum.Meanwhile applying the central frequency conception in each IMF, the central frequencies of different order are obtained by the IMF of pressure and particle velocity, and the IMF's central frequencies are considered as the central frequency of MMVDR algorithm. The sea trial results show MMVDR algorithm can enhance the weak signal's spatial spectrum energy effectively meanwhile keep the interference spectrum energy unchanged, and can detect the weak target effectively in strong interference, which can increase the detection distance of weak targets.
     The steered minimum variance (STMV) algorithm is a kind of high resolution beam-forming algorithm which holds the lower side lobe and narrower main lobe advantages.It could be concluded that its calculation cost has direct ratio with the cube of sensors number M. When the towed line array's sensors number M is larger, the calculation cost of STMV algorithm is much more which limited its application. Considering this limitation, combining the integral function of one-order recursive filter with iterative formula of the inverse matrix, STMV iterative algorithm is proposed in the dissertation, and its calculation cost has direct ratio with M2 approximately. Simulation results showed iterative algorithm could reduce the calculation cost, meanwhile could preserve the high resolution and weak signal detection characteristics of STMV synchronously. When applied in experiment of 48 sensors line array, the calculation cost is reduced to 1/24 of original algorithm, which is much easier for its real-time realization. Meanwhile the proposed algorithm can estimate each target's azimuth even when the sources'power differs in large scales or the sources azimuths are adjacent.
引文
[1]惠俊英,生雪莉.水下声信道.国防工业出版社,2007
    [2]刘伯胜,雷家煜.水声学原理.哈尔滨工程大学出版社,1993
    [3]姚蓝,韩明连.潜艇对抗空投鱼雷系统技术研究.声学技术,2002,21(1):88-90页
    [4]石秀华,王晓娟.水中兵器概论(鱼雷分册).西北工业大学出版社,2005
    [5]孙国仓,惠俊英,郭龙祥,蔡平.阵列声强器及其应用.系统仿真学报,2008,20(6):1551-1558页
    [6]C H Harrison. Formulas for ambient noise level and coherence.J. Acoust. Soc. Am.,1996,99(4):2055-2066P
    [7]W A Kuperman, F Inegenito.Spatial correlation of surface generated noise in a stratified ocean. J. Acoust. Soc. Am.,1980,67(6):1988-1996P
    [8]L科恩著.时频分析:理论与应用.白居宪译.西安交通大学出版社,1998
    [9]Youn O H. Short time Fourier transform using a bank of low-pass filter. IEEE Transactions on Acoustics, Speech and Signal Processing,1985,33(2): 182-185P
    [10]Auslander L, Buffalano C, Orr R, Tolimieri R. A comparision of the Gabor and short-time Fourier for signal detection and feature extraction in noisy environment. Proc.SPIE.Conf,1990,1348:230-247P
    [11]Jeong J, Williams J. Kernel Design for Reduced Interference Distribution. IEEE Transactions on Signal Processing,1992,40(2):402-411P
    [12]Altes R A. Wide-band Proportional Bandwidth Wigner-Ville Analysis. IEEE Transactions on Acoustics, Speech and Signal Processing,1990,38(6): 1005-1012P
    [13]邹红星,戴琼海,李衍达,卢旭光.不含交叉干扰且具有WVD聚集性的时频分布之不存在性.中国科学E辑,2001,31(4):31-36页
    [14]Hlawatsch F, Boudreaux-Bartels G F.Linear and Quadratic Time-Frequency Representations.IEEE Transactions on Signal Processing,1992,9(2): 21-67P
    [15]Coifman R R, Wickerhauser M V.Entropy-based algorithms for best basis selection. IEEE Tansactions on Information Theory,1992,38(2):713-718P
    [16]David E Newland. Harmonic wavelet analysis.Proc.R.Soc.Lond, 1993,443(A):203-205P
    [17]Huang N E, Shen Z, Long S R et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstation time series analysis. Proc R Soc,1998,454(A):903-995P
    [18]Norden E Huang, Steven R Long. A New View of Nonlinear water waves: the Hilbert Spectrum. Annual Review of Fluid Mechanics,1999,131: 417-457P
    [19]W Huang, Z Shen, N E Huang, Y C Fung. Nonlinear Indicial Response of Complex Nonstationary Oscillations as Pulmonary Pretension Responding to Step Hypoxia. Proceedings of the National Academy of Sciences of the United States of America,1999,96(5):1834-1839P
    [20]Boudraa A O,Cexus J C, Salzenstein F, Guillon L. IF estimation using empirical mode decomposition and nonlinear Teager energy operator. IEEE International Symposium on Control Communication and Signal Processing,2004:45-48P
    [21]盖强.局域波时频分析方法的理论研究与应用.大连理工大学博士学位论文,2001
    [22]胡爱军,安连锁,唐贵基.Hilbert-Huang变换端点效应处理新方法.机械工程学报,2008,44(4):154-158页
    [23]Deering R, Kaiser J F. The use of a masking signal to improve empirical mode decomposition. IEEE Transactions on Acoustics, Speech and Signal Processing,2005,4:485-488P
    [24]Vasudevan K, Cook F A. Empirical mode skeletonization of deep crustal seismic data:Theory and applications.Journal Of Geophysical Research-Solid Earth,2000,105(B4):7845-7856P
    [25]Chin-Hsiung Loh, Tsu-Chiu Wu, Huang N E. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses Bulletin of the Seismological Society of America,2001,91(5):1339-1357P
    [26]Huang K, Shen Z, Huang N E, Fung YC.Engineering analysis of biological variables:An example of blood pressure over 1 day. Proceedings of the national academy of science of the USA,1998,95(9):4816-4821P
    [27]Echeverria J C, Crowe J A, Woolfson M S,Hayes-Gill B R. Application of empirical mode decomposition to heart rate variability analysis.Medical and Biological Engineering and Computing,2001,39(4):471-479P
    [28]Liang H, Lin Z, McCallum R W. Artifact reduction in electrogastrogram based on empirical mode decomposition method. Medical and Biological Engineering and Computing,2000,38(1):35-41P
    [29]Komm R W,Hill F, Howe R. Empirical mode decomposition and Hilbert analysis applied to rotation residuals of the solar convection zone. Astrophysical Journal,2001,558(1):428-441P
    [30]余泊.自适应时频分析方法及其在故障诊断中的应用.大连理工大学博士学位论文,1998
    [31]张海勇.基于局域波法的非平稳随机信号分析中若干问题的研究.大连理工大学博士学位论文,2001
    [32]钟佑明,秦树人,汤宝平.Hilbert-Huang变换中的理论研究.振动与冲击,2002,21(4):13-17页
    [33]王逸林.希尔伯特黄变换在矢量信号处理中的应用研究.哈尔滨工程大学博士论文,2006
    [34]张宾,孙长瑜,孙贵青.基于经验模式分解的拖曳式声呐拖船噪声抵消研究.应用声学,2007,26(2):68-73页
    [35]张小蓟,张歆,孙进才.基于经验模态分解的目标特征提取与选择.西北工业大学学报,2006,24(4):453-456页
    [36]姚熊亮,康庄,戴伟,SADIQ Salman.经验模态分解(EMD)法及其在流噪声实验研究中的应用.哈尔滨工程大学学报,2007,28(1):49-54页
    [37]朱广平,孙辉,陈文剑,张明辉.基于经验模态分解的水下目标回波提取.大连海事大学学报,2008,34(2):65-68页
    [38]马涛.希尔伯特黄变换在地声信号处理中的应用研究.哈尔滨工程大学硕士论文,2009
    [39]钟佑明,秦树人,汤宝平.Hilbert-Huang变换中的理论研究.振动与冲击,2002,21(4):13-17页
    [40]钟佑明,秦树人.希尔伯特-黄变换的统-理论依据研究.振动与冲击,2006,25(3):40-43页
    [41]秦毅,秦树人,毛永芳.改进的Hilbert-Huang变换在信号瞬态特征提取中的应用.振动与冲击,2008,7(11):129-181页
    [42]Zhaohua Wu, Huang N E. A Study of the characteristics of white noise using the empirical mode decomposition method. Proc.R. Soc,2002,460: 1597-1611P
    [43]Patrick Flandrin, Gabriel Rilling, Paulo Goncalves.Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters,2004,11(2): 112-114P
    [44]李关防,惠俊英.基于经验模态分解的模态域MVDR方法研究.电子学报,2009,37(5):942-946页
    [45]D罗斯.水下噪声原理.海洋出版社,1983
    [46]Richardson E G. The Sound of Impact of a Solid on a Liquid Surface. Proc Phys Soc.1949,64(4):352-367P
    [47]G J Franz. Splashes as Sources of Sound in Liquid. J. Acoust. Soc. Am., 1959,31(8):1080-1096P
    [48]May A, Woodhull J C.The virtual mass of sphere entering water vertically. Applied Physics,1950,21:1285-1289P
    [49]McMillen J H. Shock wave pressures in water produced by impact of small spheres. Physical Review,1945,68(9):198-209P
    [50]Charles B Leslie.Underwater Noise Produced by Bullet Entry. J.Acoust. Soc. Am.,1964,36(6):1138-1144P
    [51]Stefannia Colonnese, Gaetano Sxarano.Transient signal detection using higher order moments.IEEE Transaction on Signal Processing.1999,47(2): 515-520P
    [52]Chichereau Claire, Chichereau J Louis, Blanpain R, Dassot G. Short delay detection of a transient in additive Gaussian noise via higher order statistic test. IEEE Digital Signal Workshop Proceedings,1996:299-302P
    [53]Wang Zhen, Willett P. A performance study of some transient detectors. IEEE Transaction on Signal Processing.2000,48(9):2682-2685P
    [54]Kirsteins I, Mehta S,Fay J. Power-law processors for detection unknown signals in colored noise. IEEE Transactions on Acoustics, Speech and Signal Processing,1997,1:483-486P
    [55]WANG Zhen, Willett P. All-purpose and plug-in power-law detectors for transient signals. IEEE Transaction on Signal Processing.2001,49(11): 2454-2466P
    [56]鲍筱玲,汤渭霖.击水声特性研究.哈尔滨船舶工程学院学报,1981,(1):27-38页
    [57]陈久锡,颜开用.MAC方法计算平头物体垂直等速入水空泡.水动力学研究与进展,1985,1:14-26页
    [58]陈学农,何友声.平头物体三维带空泡入水的数值模拟.力学学报,1990,22(2):129-137页
    [59]时胜国,王三德,刘星等.低速物体入水溅落声特性研究.舰船科学技术,2005,27(5):51-54页
    [60]惠俊英,孙国仓,赵安邦.Pekeris波导中简正波声强流及其互谱信号处理.声学学报,2008,33(4):300-304页
    [61]E G Richardson. Technical Aspects of Sound. New York:Mclntyre and Moore Inc,1935
    [62]H F Olson. System Responsive to the Energy Flow in Sound Wave. Unite States Patent,1932(6):1357-1359P
    [63]Irving Wolff, Frank Massa. Use of Pressure Gradient Microphones for Acoustical Measurements.J. Acoust. Soc. Am.,1933,4(3):217-234P
    [64]C B Leslie, J M Kendall, and J L Jones.Hydrophone for measuring particle velocity. J.Acoust. Soc. Am.,1956,28(4):711-715P
    [65]Boyer G L, Instrumentation for measuring underwater acoustic intensity, J. Acoust. Soc. Amer.,1960,32(11):1519P
    [66]Benjamin A Cray, West Kinston. Acoustic Vector Sensor.United states Patent US,2002(B1):113-126P
    [67]姚直象.单矢量传感器及矢量阵信号处理研究.哈尔滨工程大学博士论文,2006
    [68]Clark J A, Tarasek G. Localization of radiating sources along the hull of a submarine using a vector sensor array, IEEE Oceans 2006:1-3P
    [69]Gerald L D'Spain, James C Luby, Gary R Wilson, Richard A Gramann. Vector sensors and vector sensor line arrays:Comments on optimal array gain and detection. J. Acoust. Soc.Am.,2006,120(1):171-185P
    [70]Shchurov V A. The properties of the vertical and horizontal power flows of the underwater ambient,J.Acoust. Soc. Amer.,1991,90(2):1002-1004P
    [71]Shchurov V A. Coherent and diffusive fields of underwater acoustic ambient noise,J. Acoust. Soc. Am.,1991,90(2),991-1001P
    [72]Shchurov V A, Ilyichev V I, Kuleshov V P, and Kuyanova M V.The interaction of energy flows of underwater ambient and a local source. J. Acoust. Soc. Am.,1991,90(2):1002-1004P
    [73]Nehorai A, Paldi E. Acoustic vector-sensor array processing. The twenty-sixth Asilomar Conference on Signals, Systems and computers, 1992,(1):192-198P
    [74]Hochwald B,Nehorai A.Identifiability in array processing models with vector-sensor applications.IEEE Transactions on Signal Processing, 1996,44(1):83-95P
    [75]李春旭.声压、振速联合信息处理.哈尔滨工程大学工学博士学位论文,2000
    [76]陈新华.矢量阵信号处理技术研究.哈尔滨工程大学博士论文,2004
    [77]孙贵青.矢量水听器检测技术研究.哈尔滨工程大学博士学位论文,2001
    [78]岳剑平,王德俊,惠俊英等.单矢量传感器的互谱估计与方位估计.哈尔滨工程大学学报,2004,25(3):299-304页
    [79]姚直象,惠俊英,殷敬伟,杨娟.基于单矢量水听器的四种方位估计方法.海洋工程,2006,24(1):122-127页
    [80]孙国仓.浅海矢量场及其信号处理.哈尔滨工程大学博士学位论文,2008
    [81]James A Cadzow, Young S Kim, Dong C Shiue.General direction of arrival estimation:a signal subspace approach. IEEE Transactions on Aerospace and Electronic Systems,1989,25(1):31-46P
    [82]Rao B D, Hari K V S.Performance analysis of Root-MUSIC.IEEE Trans. on ASSP,1989,37(12):1939-1949P
    [83]Clergeot H, Tressens S,Ouamri A. Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989,37(11):1703-1720P
    [84]Bhaskar D Rao, K S Arun. Model based processing of signals:a state space approach. Proceeding of IEEE,1992,80(2):283-309P
    [85]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法.清华大学出版社,2004
    [86]K T Wong. Novel techniques of polarization diversity & extended aperture spatial diversity for sensor-array direction fingding in radar, sonar,& wireless communications:[Dissertation].Purdue University,1996
    [87]陈华伟,赵俊渭.声矢量传感器阵宽带相干信号子空间最优波束形成.声学学报,2005,30(1):76-82页
    [88]鄢社锋,马远良,侯朝焕.宽带波束域相干信号子空间高分辨方位估计.声学学报,2006,31(5):418-424页
    [89]张揽月,杨德森.基于ESPRIT算法的L型矢量阵源方位估计.哈尔滨工程大学学报,2005,26(3):340-343页
    [90]孙国仓,惠俊英,徐海东,郭龙祥.基于解析振速的ESPRIT算法.系统仿真学报,2008,20(13):3363-3370页
    [91]Harry L Van Trees.最优阵列处理技术.汤俊译.清华大学出版社,2008
    [92]Harry L Van Trees.Optimum array processing. John Wiley & Sons Inc., 2002
    [93]Capon J.High resolution frequency-wavenumber spectrum analysis. Proceeding of IEEE,1969,57(8):1404-1418P
    [94]G L D'Spain, W S Hodgkiss, G L Edmonds et al.Initial analysis of the data from the vertical DIFAR array. Mastering the Oceans Through Technology Proceedings, Ocean'92,1992,1:346-351P
    [95]Wang H, Kaven M. Coherent signal-subspace processing for the detection and estimation of angles of atrival of multiPle wide-band sources.IEEE Transactions on Acoustics, Speech and Signal Processing,1985,33(8): 823-831P
    [96]Jeffery Krolik, David Swingler. The detection performance of coherent wideband focusing for a spatially resampled array. IEEE Transactions on Acoustics, Speech and Signal Processing,1990,5:2827-2830P
    [97]Byung-Chul Kim, I-Tai Lu. High resolution broadband beamforming based on the MVDR method. IEEE Oceans Conference,2000,2:1025-1028P
    [98]Krolik Jeffrey, Swingler David. The performance of minimax spatial resampling filters for focusing wide-band arrays.IEEE Transactions on Signal Processing,1991,39(8):1899-1903P
    [99]Krolik.Jeffrey, Swingler.David. Multiple broadband source location using steered covariance matrices.IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37(10):1481-1494P
    [100]Marvin S Weistein, Alan G Henney.Wave Solution for Air-to-Water Sound Transmission,J Acoust Soc Am,1965,37(5):899-901P
    [101]布列霍夫斯基赫著.分层介质中的波.杨训仁译.科学出版社,1985
    [102]R J Urick. Noise Signature of an Aircraft in Level Flight over the Sea, J. Acoust. Soc.Am.,1972,52(3):993-999P
    [103]David M F Chapman, Peter D Ward. The Normal-Mode Theory of Air-to-Water Sound Transmission in the Ocean,J. Acoust. Soc.Am.,1990, 87(2):601-618P
    [104]张翼鹏.空气中声源产生的水下声场建模与分析.西北工业大学博士学位论文,2007
    [105]Michael J. Buckingham, Eric M.Giddens, Fernando Simonet, Thomas R. Hahn. Propeller noise from a light aircraft for low-frequency measurements of the speed of sound in marine sediment. Journal of Computational Acoustics,2002,10(4):445-464P
    [106]Michael J. Buckingham, Eric M.Giddens.Theory of sound propagation from a moving source in a three-layer Pekeris waveguide.J. Acoust. Soc. Am.,2006,120(4):1825-1841P
    [107]马远良.声波从空气进入水中的现象及研究.水声情报交流会论文集.宜昌,1972
    [108]吕俊军,吴国清.运动声源简正波模型稳相点的射线多普勒近似.声学学报,2004,29(5):403-408页
    [109]鄢锦,张仁和.海面波浪对空气中声源激发的浅海声场的影响.自然科学进展,2003,13(3):243-247页
    [110]L Cohen. Time Frequency Analysis:theory and applications.Englewood Cliffs.NJ:Prentice Hall,1995
    [111]L.Mandel.Interpretation of instantaneous frequency. American Journal of Physics,1974,42(10):840-846P
    [112]陈东方,吴先良.采用EMD方法消除瞬态散射回波中的高斯白噪声干扰.电子学报,2004,32(3):495-498页
    [113]王明阳,柳征,周一宇.基于希尔伯特-黄变换的冲击无线电信号检测.2006,22(4):581-584页
    [114]惠俊英,刘宏,余华兵等.声压振速联合信号处理及物理基础初探.声学学报,2000,25(4):303-307页
    [115]王德俊.矢量声场与矢量信号处理理论研究.哈尔滨工程大学博士学位论文,2004
    [116]徐海东.基于声矢量阵的高分辨方位估计技术研究.哈尔滨工程大学博士学位论文,2004
    [117]M Hawkes, A Nehorai.Acoustic vector-sensor beamforming and Capon direction estimation. IEEE Transactions on Signal Processing,1995,3: 1673-1676P
    [118]胡维平,莫家玲,龚英姬等.经验模态分解中多种边界处理方法的比较研究.电子与信息学报,2007,29(6):1394-1398页
    [119]孙贵青,杨德森等.基于矢量水听器的最大似然比检测和最大似然方位估计.声学学报,2003,28(1):66-72页
    [120]苏中元,贾民平.基于希尔伯特-黄变换周期平稳类微弱故障信号检测.东南大学学报,2006,36(3):389-392页
    [121]张贤达.矩阵分析与应用.清华大学出版社,2004
    [122]王华明,张强,胡章伟,包劲松.AS350B2直升机飞行噪声的试验研究.声学学报,2003,28(2):177-181页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700