旱作水稻/花生间作系统的氮素供应特征及产量优势
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是淡水资源非常缺乏的一个国家,65~80%的淡水用于农业灌溉用水。传统的水稻淹水栽培对淡水资源的消耗量非常巨大,但是水分利用效率非常低下。旱作水稻作为一种全新的农业节水栽培方式,一般可以节约水资源90~100%,不但具有巨大的节水效益,而且可以获得和淹水栽培相同或相近的产量。水稻(Oryza sativa L., Wuyujing 99-15)旱作的成功实践使得旱作水稻可以和豆科作物间作,而豆科作物/禾本科作物间作系统往往具有明显的产量优势和高的资源利用效率,也是可持续农业发展的重要内容。花生(Arachis hypogaea L., Zhenyuanza 9102)是一种重要的经济作物,本研究采用大田小区实验和~(15)N同位素标记盆栽实验对旱作水稻/花生间作这一新的种植方式在2001~2002进行了研究,旨在探索实现旱作水稻的新途径,揭示旱作水稻和花生间作的产量优势,并研究了旱作水稻/花生间作系统的氮素供应特征,以及这一种植方式对土壤氮素肥力的影响以及对后茬小麦生长的影响。
     1.通过2001~2002两年田间小区试验,对旱作水稻与花生间作的产量效益进行了比较研究。研究结果表明,水稻/花生间作具有明显的产量优势,通过间作可以提高产量18~41%。间作中起增产作用的作物是水稻,在水稻/花生为3∶3和4∶2两种间作方式下水稻的相对产量分别比单作水稻产量高29~37%和38%,间作对花生产量的影响不显著,但间作系统中增加水稻的种植比例会导致花生产量的下降。水稻与花生间作可以显著提高水稻的氮素含量,在水稻单作、水稻/花生间作比例分别为3∶3和4∶2的三种种植方式下,水稻的叶片含氮量分别为21.2、26.9和22.8 g kg~(-1),间作比单作分别增高27.1%和7.6%,经方差分析在P=0.05的水平有显著差异。与花生间作可以提高水稻叶片的叶绿素含量,其叶片的叶绿素含量显著的高于单作水稻的,间作花生的含氮量与单作比较没有明显差异,花生间作后其叶片含氮量有一定程度的下降。间作系统中水稻是优势作物种,竞争能力大于花生,通过与花生间作提高了水稻的有效分蘖数,显著增加了水稻的单稳重和千粒重。
     2.采用根系分隔处理的研究方法和~(15)N同位素稀释标记示踪法,在不同氮素水平下研究了水稻/花生间作系统的氮素营养优势,间作花生的生物固氮效率,2001年试验表明:1)水稻和花生间作有产量优势和氮素营养优势,在0、225和300kg N hm~(-2)三个氮肥水平,根系不分隔处理(间作)的水稻生物量分别比分隔处理的高30.03、10.1和2.2%;水稻氮素吸收量分别比根系分隔处理的高74.03、16.93和23.2%;2)
    
    一一一一一g垫些垫燮鳖垫擎勇鹭鬓
    花生在225和3的kg Nhm一2氮素水平下,分隔处理和不分隔花生固氮量分别为
    38·11、40·97%和14·81、20.49%,间作能提高花生固氮效率。2002的实验进一步
    在15、75和150 kg Nhxn一三个氮肥供应水平条件下花生生物固氮间作系统的氮素
    吸收。结果表明,在巧和75 kghm一两个氮素水平下,间作水稻比单作水稻的干
    物质量分别增加了23 .5和12.2%,在尸=0.05的水平有显著差异。间作水稻和单作水
    稻的氮素吸收量分别为134.7、142.8和1173、131.2 mg株一,,间作水稻的氮素吸收
    量分别比单作增加14.8和8.8%。不同栽培方式对花生的干物质积累和氮素吸收影响
    很小。在15认75和15 kgNhm一2三个氮素水平下,间作花生和单作花生的固氮效率
    (%NDFA)分别为50.7、53.3、76.10,0和35.4、56.5、72.8%,花生的固氮效率随氮肥
    水平的增加而显著降低,在低氮肥水平下的生物固氮显著高于高氮肥水平的,间作对
    增加和刺激花生的生物固氮有显著的促进作用,尤其是在氮肥供应水平高的情况下,
    间作能明显提高花生的生物固氮效率(%NDFA)。
     3.用花生叶片”N富积标记法和”N同位素稀释法(ID法)两种不同方法比较
    研究了对水稻/花生间作系统中花生向水稻的氮素转移,不同氮肥供应水平对氮素在
    水稻/花生间作系统转移的影响,同时,用’加的富积标记法研究了花生根系腐解对
    间作系统氮素转移的贡献。研究结果如下:在225和300 kg Nhm一的氮肥施用水平
    条件下,采用”N花生叶片标记法(%NT)和稀释法(o/oNDFL)都证明在水稻花生共生期
    间花生固氮量的2一3.5%转移到水稻体内.与花生间作能明显的提高水稻干物质产量
    和氮素吸收量,在15、75和1 50 kg N hm-2三个氮肥施用水平条件下,间作水稻和单
    作水稻的氮素吸收量分别为134.7、142.8、255.2 mg袜l和227.3、132.2和174.3mg
    株一,,间作水稻的氮素吸收量分别比单作增加14名、9.6和7.9%.不同栽培方式对
    花生的干物质积累和氮素吸收影响很小.间作系统中的氮素转移率(o/oNDFL)和转
    移量在15、75和150 kgN腼一3个氮素水平分别为12.2、9.2、6.20,0和16.3、13、
    10.4 mg株一’,氮素转移率和氮素转移量随着氮肥水平的增加而显著减少.
     花生和水稻叶片标记氮素双向转移试验表明,在15、75、1 50 kgN一hm一2三个
    氮肥水平下,间作水稻的干物质积累量和氮素吸收量分别为9.4、12.1、13.59株”和
    207.4、241.2、259.4mgN株一,,分别比单作水稻增加了21一290,0、7一296/0、18-
    30%和43.43、45.72、犯名1
Rice is one the three most important crops (rice, wheat and maize) in China and it accounts for 40% of the summer crops, about 40 million hectare per year. Waterlogged cultivation of rice is a traditional way, which can ensure the rice yield to be very high and long-term stable. However, more than 80% of the freshwater used in agriculture finds its way to rice production in waterlogged soil in China. In Jiangsu province, for example, where it receives 800~ 1000mm precipitation annually, irrigation of 10,500~ 15,000 m3 of freshwater per hectare is still needed for one crop season of rice and more irrigating freshwater is needed in the area with less rainfall. Much work has been done on water-saving cultivation of rice crop, i.e., intermittent irrigation, which saved 20~60% of freshwater compared with traditional waterlogged cultivation, varying with the different precipitations in different areas.
    A novel cultivation system of rice crop in aerobic soil is showing its great potential in water saving agriculture, especially in the areas which receive more than 800 mm of precipitation annually. The rice cultivated in aerobic soil is a complete revolution in the rice cultivation system, in which the rice crop (not upland variety but traditional paddy rice variety in waterlogged soil with high yield) is grown during whole growth stage in a soil with water content being 70~85 % of water holding capacity (WHC). Our previous three years' field experiments showed that almost the same grain yields of rice crop could be obtained in aerobic cultivation as in waterlogged only if the soil was mulched with crop straw. In Jiangsu province, for example, the yield of rice grain of 8738 kg hm'2 in aerobic cultivation could be obtained and only 11% reduction was found compared with that in waterlogged cultivation with the same rice cultivars. About 90~100 % of freshwater irrigated could be saved in aerobic cultivation co
    mpared with waterlogged one and 11% reduction in grain yield of rice cultivated in aerobic soil is nothing in terms of the freshwater saved.
    The novel cultivation of paddy rice variety in aerobic soil reveals a great potential not only for water-saving agriculture but also for the rice intercropping with legumes, both of which are closely related to sustainable development of agriculture. In this study, field experiments were carried out to investigate yield advantages in intercropping system of peanut with rice crop cultivated in aerobic soil in 2001 and 2002 and the effects of intercropping system on soil N fertility were also studied in field condition. Pot experiments were then done to examine the biological nitrogen fixation (BNF) by peanut and N transfer from peanut to rice in the intercropping system using 15N-isotope dilution
    
    
    
    method with N fertilizer application rates of 15, 75, 150, 225 and 300 kg N hm-2 in 2001 ~ 2002, and the contribution of peanut root decomposition to N transfer was investigated as well. The main results were as follows:
    1. Two-year field experiments showed that the relative advantage of intercropping, expressed as land equivalent ratio (LER), was 1.41 in 2001 and 1.18-1.36 in 2002, respectively. Yield of rice was significantly increased in intercropping system while that of peanut were not significantly different in intercropping and monocropping system. The yields of rice grain and peanut, for example, were increased by 29~38 % and 4~7% in intercropping system compared to the respective component crop in monocropping system, respectively. The N concentration of rice (21.2 g kg"1) under monocropped condition was significantly (P=0.05) lower than under intercropped (26.9 g kg"1) condition, while there was no significant difference of N concentration of peanut between mono- and intercropping. Compared to the rice in monocropping system, an increasing of 27.4 % of N concentration in rice plant was obtained in intercropping when the rice was harvested, which resulted in a higher chlorophyll content of the rice leaves. Thus, the chlorophyll content of rice leaves were
引文
Alves B J R, Resender A S, Urquiaga S and Boddey R M. Biological nitrogen fixation by two tropical forage legumes assessed from the relative ureide abundance of stem solutions: 15N calibration of the technique in sand culture. Nutrient cycling in Agroecosystem, 2000, 56: 165~176
    Anuar A R, Shamsuddin Z H and Yaacob O. Contribution of legume-N by nodulated groundnut for growth of maize on an acid soil. Soil Biol. Biochem., 1995, 27:595~601
    Ayisi K K, Putman D H and Vance C P. Strip intercropping and nitrogen effects on seed oil, and protein yields of canola and soybean. Agron. J., 1997, 89:23~29
    Azem-Ali S N. Assessing the efficiency of radiation use by intercrop. In Sinoquet and Cruz (ed-itors). Ecophysiology of tropical intercropping. INRA, Paris. 1995
    Bergersen F J, Gibson A H and Licis I. Growth and N_2-fixation of soybeans inoculated with strians of Bradyrhizobium Japonicum differing in energetic efficiency and phb utilization, 1994
    Bφckman O C. Fertilizer and biological nitrogen fixation as source of plant nutrition: Perspectives for future agriculture. Plant and Soil, 1997, 194:11~14
    Boucher D and Espinosa J. Cropping system and growth and nodulation response of soybean to nitrogen in Tabasco, Mexico. Trop. Agric (Trinidad), 59 : 250~280
    Bremer E, Gehlen H, Swerhone G D W and van Kessel C. Assessment of reference crop for the quantification of N2 fixation using natural and enrichment levels of ~(15)N abundance. Sol Biol. Biochem., 1993, 25:1197~1202
    Brophy L S, Heichel G H and Russelle M P. Nitrogen transfer from forage legumes to grass in a systematic planting design. Crop Science, 1987, 27:753~758
    Bulson H A J, Snaydon R W and Stopes C E. Effects of plant density on intercropped wheat and field beans in an organic farming system. Journal of Agricultural Science, 1997, 128:59~71
    Danso S K A, F. Zapata, G. Hardarson & M. Frid. 1987. Nitrogen fixation in fababeans as affected by plant population density in sole or intercropped system with barley. Soil Biol. Biochem., 19 : 411~415
    Danso S K A, Palmason F and Hardarson G. Is nitrogen transferred between field crops? Examining the question through a sweet-blue lupin (Lupins Angustifolius L.)- oats (Avena Sativa) intercrop. Soil Biol. Biochem., 1993, 25:1135~1137
    Danso S K A, Zapata F, Hardarson G. Nitrogen fixation in fababeans as affected by plant population density in sole or intercropped systems with barley. Soil Biol. Biochem., 1987, 19:411~415
    Davis J H C and Wolley J H. Genotypic requirement for intercropping. Field Crop Research, 1993, 34: 407~430
    
    
    Dubach M and Russelle M P. Forage legume roots and nodules and their role in nitrogen transfer. Agron. J., 1994, 86:259~266
    Eaglesham, Ayanaba A, Rao V R and Eskew D L. Short communication improving the nitrogen nutrition of maize by intercropping with cowpea, Soil Biol. Biochem., 1981,13:169~171
    Erik S J. Grain yield, symbiotic N2 fixation and interspeeific competition for inorganic N in pea-barley intercrops. Plant and Soil, 1996, 182:25~38
    Evans J, O'Connor E, Turner G L, Coventry D R, Fettell N, Mahoney J, Armstrong E L and Walsgott. N_2 fixation and its value to soil N increase in lupin, field pea and other legumes in South-Eastern Australia. Aust. J. Agric. Res., 1989, 40:791~805
    Fox R H, Myers T J K and Vallis I. The nitrogen mineralization rate of legume residue in soil influence by their polyphenol, lignin and nitrogen contents. Plant and Soil, 1990, 145:129~159
    Francis C A. Multiple cropping system. New York. Macmillan Publishing Company. Inc. 1986
    Frankenoberger W T and Abdelmagid H M. Kinetic parameters of nitrogen mineralization retas of leguminous crops incorporates into soil. Plant and Soil, 1985, 87:257~271
    Fujita K, Ofoso-Budu K G, Ogata S. Biological nitrogen fixation in mixed legume-cereal cropping system. Plant and Soil, 1992, 141:155~175.
    Fujita K, Ogata S, Matsumoto K, Masuda T, Ofosu-Budu G K and Kuwata K. Nitrogen transfer and dry matter production in soybean and sorghum mixed cropping system at different population densities. Soil Sic. Plant Nutri., 1990, 36:233~241
    Fukai S and Trenbath B R. Processes determining intercrop productivity and yields of component crops. Field Crop Research, 1993, 34:247~271
    Gentry L E, Below F E. David M B and Bergerou J A. Source of the soybean N credit in maize production. Plant and Soil, 2001, 236: 175~184
    Giller K E and Wilson K F. Nitrogen fixation in tropical cropping systems. C. A . B International Wallingford, Oxon OX10 8 DE. UK .1991.67~178
    Giller K E, Ormesher J and Awah F M. Nitrogen transfer from Phaseolus bean to intercropped maize measured using ~(15)N-enrichment and ~(15)N-isotope dilution methods. Soil Biol. Biochem., 1991, 23: 339~346
    Gregory P J and Reddy M S. Root growth in intercrop of pearl miliet/groundnut, Field Crops Research, 1982, 5:241~252
    Hamel C and Smith D L. Interspeeific N-transfer and plant development in a mycorrhizal field-grown mixture. Soil Biol. Biochem., 1991, 23:661~665
    Hamel C, Furlan V and Smith D L. N_2.fixation and transfer in a field grown mycorrhizal corn and soybean intercrop. Plant and Soil, 1991, 133:177~185
    Hardarson G, Danso S K A and Zapata F. Di-nitrogen fixation measurements in alfalfa-ryegrass swards
    
    using nitrogen-15 and influence of the reference crop. Crop Science, 1988, 28:101~105
    Hardarson G, Danso S K A, Zapata F and Reichardt K. Measurements of nitrogen fixation in fababean at different N fertilizer rates using 15N isotope dilution and A-values methods. Plant and Soil, 1991, 131:161~168
    Hauggaard-Hielsen H, Ambus P and Jensen E S. Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crop Research, 2001,70:101~109
    Herridge D F, Marcellos H, Felton W L, Turner G L and Peoples M B. Chickpea increases soil-N fertility in cereal system through nitrate sparing and N_2 fixation, Soil Biol. Biochem., 1995, 27: 545~551
    Hφgh-Jensen H and Schjoerring. Rhizodeposition of nitrogen by red clover, white clover and ryegrass leys. Soil Biol. Biochem., 2001, 33:439~448
    Ikerra S T, Maghembe J A, Smithson P C and Buresh R J. Soil nitrogen dynamics and relationships with maize yields in a gliricidia-maize intercrop in Malawi. Plant and Soil, 1999, 211:155~164
    Izaurralde R C, McGill W B and Juma N G. Nitrogen fixation efficiency, interspecies N transfer, and root growth in barley-field pea intercrop on a Black Chernozemic soil. Biology and Fertility of Soils, 1992, 13:11~16
    Janzen. H. H. Deposition of nitrogen into the rhizospere by wheat, Soil Biol. Biochem., 1990, 22:1155~1160
    Jensen E S. Barley uptake of N deposited in the rhizosphere of associated field pea. Soil Biol. Biochem., 1996b, 28:159~168
    Jensen E S. Grain yield, Symbiotic N_2 fixation and interspecific competitive for inorganic N in pea-barley intercrops. Plant and Soil, 1996a, 182:25~38
    Jensen E S. R.hizodeposition of N by pea and barley and its effects on soil N dynamics. Soil Biol. Boichem., 1996c, 28:65~71
    Jeranyama P, Hesterman O B, Waddington S R and Harwood R R. Relay-intercropping of sunnhemp and cowpea into a smallholder maize system in Zimbabwe. Agron J., 2000, 92:239~244
    Johansen A. and E. S. Jensen, Transfer of N and P from intact or decomposion roots of pea to barley interconnected by an Arbuscular Mycorrhizal fungus, Soil Biol. Biochem., 1996, 28:73~81
    Jolliffe P A and Wanjau F M. Competition and productivity in crop mixtures: some properties of productive intercrops. Journal of Agricultural Science, 1999, 132:425~435
    Jones F R. Growth and decay of transient (noncambial) roots of alfalfa. J. Am. Soc. Agron., 1943, 35: 625~635
    Jφrgensen F V and Jensen E S. Short-term effects of a dung pat on N2fixation and total N uptake in a perennial ryegrass/white clover mixture. Plant and Soil, 1997, 196:133~141
    Juo A S R and Sanchez P A. Soil nutritional aspects with a view to characterize upland rice
    
    environments. In: Progress in upland rice research. Proceeding of the Jakarta conference. IRRI, Manila, Philippines, 1985, 85~91
    Kafkafi U and Xu G H. Potassium nutrient for high crop yield, in Current aspects of potassium metabolism in crop plants. 1997. Edited Derrick Oosterhuis. ASA/CSSA/PPI. New York. USA
    Kafkafi U. The transpiration ratio limit concept as a tool in analysis of crop water use. Symposium of interdisciplinary strategies for development of desert agriculture. Feb 1997, Sede- Boqer, Israel.
    Karpenstein-Machan M and Stuelpnagel R. Biomass yield and nitrogen fixation of legumes monocropped and intercropped with rye and rotation effects on a subsequent maize crop. Plant and Soil, 2000, 218:215~232
    Kumar K, Goh K M, Scott W R and Frampton C M. Effects of 15N-labelled crop residues and management practices on subsequent winter wheat yield nitrogen benefits and recovery under field conditions. Journal of Agricultural Science, 2001, 136:35~53
    Labandera C, Danso S K A, Pastorini D, Curbelo S and Martin V. Nitrogen Fixation in a white clover-fescue pasture using three methods of nitrogen-15 application and residual nitrogen-15 uptake, Agron. J., 1988, 80:265~268
    Ledgard S F, Freney J R and Simpson J R. Assessing nitrogen transfer from legumes to associated grasses. Soil Biol. Biochem., 1985, 17:575~577
    Ledgard S F, Sprosen M S, Penno J W and Rajendram G S. Nitrogen fixation by white clover in pastures grazed by dairy cow: Temporal variation and effects of nitrogen fertilization. Plant and Soil, 2001, 229:117~187
    Li L, Sun J. H., Zhang F. S., Li X. L., Yang S. C. and Rengel Z. Wheat/maize or wheat/soybean strip intercropping I yield advantage and interspcific interactions on nutrient. Field Grop Research, 2001, 71: 123~137
    Lu R. K. Soil and Agriculture Chemistry Analysis Method. Beijing: China Agriculture Science & technology press. 1999.152~163. (in Chinese)
    McDonagh J F, Toomsan B, Limpinuntana V and Giller K E. Grain legume and green manures as pre-rice crop in Northeast Thailand. Ⅰ. Legume N_2-fixation, production and residual nitrogen benefits to rice. Plant and Soil, 1995, 177:111~126,
    McNeill A M, Zhu C and Fillery R P. Use of in site ~(15)N-lablling to estimate the total below-ground nitrogen of pasture legumes in intact soil-plant systems. Australia Journal of Agriculture research, 1997, 48: 295~304
    Mead R, Riley J, Dear Keith and Singh S P.Stability Comparison of intercropping and monocropping system. Biometric., 1986, 42:253~266
    Midmore D J. Agronomic modification of resource use and intercrop production. Field Crop Research, 1993, 34:357~380
    
    
    Morris R A and Garrity D P. Resource capture and utilization in intercropping water. Field Crop Research, 1993, 34:303~317
    Nair K P P, Patel U K, Singh R P and Kaushik M K. Evaluation of legume intercropping in conservation of fertilizer nitrogen in maize culture. J. Agric. Sci., 1979, 93:189~194
    Ofosu-Budu K G, Fujita K and Ogata S. Excretion of ureide and other nitrogenous compound by root system of soybean at different growth stages. Plant and Soil, 1990, 128:135~142
    Ofosu-Budu K G, Fujita K, Gamo T and Akao S. Dinitrogen fixation and nitrogen release from roots of soybean cultivar Bragg and its mutants Nts1116 and Nts1007, Soil Sci. Plant Nutr., 1993, 39 : 497~506.
    Ofosu-Budu K G, Noumura K, Fujita K. N2 fixation, N transfer and biomass production of soybean cv. Bragg or its supernodulating nts1007 and sorghum mixture-cropping at two rates of N fertilizer. Soil Biol. Biochem., 1995, 27:311~317.
    Olasantan F O. Effects of preceding maize (Zea mays) and cowpea (Vigna unguiculata) in sole cropping and intercropping on growth, yield and nitrogen requirement of okra (Abelmoschus esculentus). Journal of agricultural science, 1998, 131:293~298
    Oljaca S, Cvetkovic R, Kovacevic D, Vasic G and Momirovic N. Effect of plant arrangement pattern and irrigation on efficiency of maize (Zea mays) and bean (Phaeolus vulgaris) intercropping system. Journal of Agricultural Science, 2000, 135:261~270
    Ong C K. The dark side of intercropping: Manipulation of soil resources. In Sinoquet and Cruz (editors). Ecophysiology of tropical intercropping. INRA, Paris. 1995
    Palm C A and Danchez P A. Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biol. Biochem., 1991, 23: 83~88
    Papastylianou and Danso S K A. Nitrogen fixation and transfer in vetch and vetch-oats mixtures. Soil Biol. Biochem., 1991, 23:447~452
    Peoples M B, Gault R R, Lean B, Sykes J D and Brockwell J. Nitrogen fixation by soybean in commercial irrigated crop of central and southern new south wales. Soil Biol. Biochem., 1995, 27: 553~561
    Peoples M B, Herridge D F and Ladha J K. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant and Soil, 1995, 174: 3~28
    Peoples M. B., Gault R.R., Lean B., Sykes J. D. and Brockwell J., Nitrogen fixation by soybean in commercial irrigated crop of central and southern new south wales, Soil Biol. Biochem., 1995, 27: 553~561
    Phiri A. D. K, G. Y.Kanyama-Phiri & S.Snapp. Maize and sesbania production in relay cropping at three landscape positions in Malawi. Agroforestry systems, 1999, 47: 153~162
    Ranells N N and Wagger M G. Grass-legume bicultures as winter Annual cover crop. Agron. J., 1997,
    
    89:659~665
    Ranells N N and Wagger M G. Nitrogen-15 recovery and release by rye and crimson clover cover crop. Soil Science. Society of American Journal, 1997, 61:943~948
    Russell C A and Fillery I R P. In situ ~(15)N labelling of lupin below-ground biomass. Aust. J. Agric. Res., 1996, 1035~1046,
    Sawatsk N and Soper R J. A quantitative measurement of the nitrogen loss from the root system of field peas (pisum avense L.) grown in the soil, Soil Biol. Biochem., 1991, 23:255~259
    Searle P G E, Comudom Y, Shedden D C and Nance R A. Effect of maize + legume intercropping system and fertilizer nitrogen on crop yields and residual nitrogen. Field Crop Research, 1981, 4:133~145
    Sengupta K, Buattachcharyya K K and Chatterjee B N. Intercropping of upland rice with blackgram (Vigna mungo L.). Journal of Agriculture Science (Camb.), 1985, 104:217~221
    Singh S P. Summer legume intercrop effects on yield and nitrogen economy of wheat in the succeeding season. J. Agric. Sci., 1983, 101:401~405
    Snaydon R W. Above-ground and below-ground interactions in intercropping. In O Ito, C Johansen, J J Adu-Gyamfi and K Katayama. Dynamics of roots and nitrogen in cropping systems of the Semi-Arid tropics. Japan International Research Center for Agricultural Sciences 1995
    Song L, Carroll B J, Gresshoff P M and Herridge D F. Field assessment of supernodulating genotypes of soybean for yield, N_2 fixation and benefit to subsequent crop. Soil Biol. Biochem., 1995, 27: 563~569
    Sparks D. L., Page A L, Loeppert P. A., et al. Methods of soil Analysis. Part 3. Chemical Analysis. Soil Science Society of American and American Society of Agronomy. Madison, Wisconsin, USA, 1996, 1146~1157
    Sparling G P, Zhu C and Filiery I R P. Microbial immobilization of ~(15)N from legume residues in soil of differing textures: measurement by persulphate oxidation and ammonia diffusion method, soil biol. Biolchem., 1996, 28:1707~1715
    Stern W. R., Nitrogen fixation and transfer in intercrop systems. Field Crop Research, 1993, 34: 335~356
    Subedi K D. Wheat intercropped with tori (Brassica campestris var. toria) and pea (Pisum sativum) in the subsistence farming system of the Nepalese hills. Journal of Agricultural Science, 1997, 128: 283~289
    Ta T C and Faris M A. Effects of environment conditions on the fixation and transfer of nitrogen from alfalfa to associated timothy. Plant and Soil, 1988, 107: 25~30,
    Ta T C, Faris M A and MacDowall F D H. Evaluation of ~(15)N methods to measure nitrogen transfer from alfalfa to companion timothy. Plant and Soil, 1989, 114:243~247
    
    
    Ta T C., and M. A. Faris. Species variation in the fixation and transfer of nitrogen from legume to associated grasses. Plant and Soil, 1987, 98:265~274
    Tomn Go O., van Kessel C, and Alfred S E. Bi-directional transfer of nitrogen between alfalfa and bromegrass: short and long term evidence. Plant and Soil, 1994, 164:77~86
    Torbert H A, Reeves D W and Mulvaney R L. Winter legume cover crop benefits to corn: Rotation vs. fixed-nitrogen effects. Agron. J., 1996, 88:527~535
    Trainnin W S, Urquiaga S, Ibijbijen J and Cadisch G. Interspecies competition and N transfer in a tropical grass-legume mixture. Biology Fertility and Soils, 2000, 32:441~448
    Urquiaga S, Cadisch G, Alves B J R, Boddey R M and Giller K E. Influence of decomposition of roots of tropical forage species on the available of soil nitrogen. Soil Biol. Biochem., 1998, 30: 2099~2106
    Vallis I, Haydock K P, Ross P J and Henzell E F. Isotopic studies on the uptake of nitrogen by pasture plants. Australian Journal of Agricultural Research, 1967, 18:865~877
    Van der Krift T. A. J., Gioacchini P., Kuikman P. J., Berendse F., Effects of high and low fertility plant species on dead root decomposition and nitrogen mineralisation [J]. Soil Biol. Biochem,, 2001, 33: 2115~2124.
    Van Kessel C, Paul W. Singleton and Heinz J. Hoben. Enhanced N-transfer from a soybean to maize by vesicular arbuscular mycorrhizal fungi. Plant Physiol., 1985, 79:562~563
    Vandermeer J H. The ecology of intercropping. Cambridge. Cambridge University Press. 1989
    Vanotti M B and Bundy L G. Soybean effects on soil nitrogen availability in crop rotation. Agron. J., 1995, 87:676~680
    Viera-vargas M S, Octavio C and. Oliveira D E. Use of different ~(15)N labeling technique to quantify the contribution of biological N_2 fixation to legume. Soil Biol. Biochem., 1995, 27:1185~1192
    Viera-Vargas M S, Souto C M, Urquiaga S and Boddy R M. Quantification of the contribution of N_2 fixation to tropical forage legumes and transfer to associated grass. Soil Biol. Biochem., 1995, 27:1193~1200
    Wardle D A and Greenfield L C. Release of mineral nitrogen from plant nodules. Soil Biol. Biochem., 1991, 23:827~832
    Waterer J G, Vessey J K, Stobbe E H and Soper R J. Yield and symbiotic nitrogen fixation in a pea-mustard intercrop as influence by N fertilizer addition. Soil Biol. Biochem., 1994, 26: 447~453
    Willey R W and Osiru D S O. Studies on mixtures of maize and bean (Phaseolus vulgaris) with particular reference to plant population. Journal of Agriculture Science, 1972, 79: 517~529
    Willey R W. Intercropping— Its importance and research needs. Part 1. Competition and yield advantages. Field Crop Abstract, 1979, 32:1~10
    
    
    Wilson K F, Kang B T and Mulonogoy K. Alley cropping: trees as source of green manure and mulch in the tropic. Biological Agriculture and Horticulture, 1986, 3:251~267
    Wolley J N, Lepiz I R and Voss J. Bean cropping systems in the tropics and subtropics and their determinants. In: Van Schoonhoven and O Voysest. C.A.B International CIAT, Wallingford, U K, 1991, 679~706
    Wolyn D J, Attewell J, Ludden P W, Bliss F, indirect measure of N2 fixation in common bean (Phaseolus vulgaris L.) under field conditions: the role of lateral root nodules. Plant and Soil, 1989, 113:181~187
    Zhang F S and Li L. Using competitive and facilitative interacts in intercropping systems enhance crop productivity and nutrients-use efficiency. Plant and Soil, 2003, 248:305~312
    Zuo Y M, Zhang F S, Li X L, and Cao Y P. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant and Soil, 2000, 220:13~25
    山仑.我国节水农业发展中的科技问题.干旱地区研究,2003,21:1~5
    马骥,马淑云,程寅生,毛建昌,白世斌.玉米大豆间作效应分析.西北农业大学学报,1994,22:80~84
    王甲辰,刘学军,张福锁,吕世华,曾翔忠,曹一平.不同土壤覆盖物对旱作水稻生长和产量的影响.生态学报,2002,22:929~929
    卢良恕.挖掘资源潜力,发展主体农业.耕作与栽培.1990,5:1~5
    司徒淞,王和洲,张薇.中国水稻节水栽培若干问题的探讨和建议.灌溉排水,2000,19:30~33
    左元梅,刘永秀,张福锁.NO_3 态氮对花生结瘤与固氮作用的影响.生态学报,2003b,23:758~764
    左元梅,张福锁.不同间作组合和间作方式对花生铁营养状况的影响.中国农业科学,2003a,36:300~306
    左元梅,李晓林,王永歧,曹一平,张福锁.玉米花生间作对花生铁一个样的影响.植物营养与肥料学报,1997,3:153~159
    左元梅,李隆,张福锁,李晓林.根系分泌物促进间作作物营养效应研究进展.见李春俭主编,土壤与植物营养研究新动态(第四卷),中国农业大学出版社,北京,2001,198~20
    田慧梅,季尚宁.玉米草木犀间作效应分析.东北农业大学学报.1997,28:15~22.
    石英,沈其荣,峁泽圣,李伟.旱作条件下水稻的生物效应及表层覆盖的影响.植物营养与肥料学报,200,17:271~277
    刘永秀,左元梅,张福锁,毛达如.玉米-花生混作对改善花生铁营养及固氮的影响.土壤通报,1999,30:55~56
    刘巽浩主编.耕作学.中国农业出版社.北京.1996
    华珞,韦东普,白玲玉,等.氮锌硒肥配合施用对白三叶草的固氮作用与氮素转移的影响.生态学报,2001,21:588~592.
    朱忠秀,杨志忠.紫花苜蓿与老芒麦混播优势的研究.中国农业科学,1992,25:63~68.
    
    
    朱庭云.水稻旱种、旱作的灌溉制度和灌溉技术.辽宁农业科学,1986,6:21~25
    朱树秀,季良,阿米娜.玉米单作及与大豆混作中氮来源的研究.西北农业学报,1994,3:59~61
    汤广民.旱作水稻的需水规律与土壤水分调空.中国农村水利水电,2001,9:18~22
    佟屏亚.试论耕作栽培学科的发展趋势和研究重点.耕作与栽培.1993,64:1~7
    宋亚娜,王贺,李春俭,张福锁.小麦大豆间作对大豆根系质外体铁库积累与利用的影响.作物学报,2000,26:462-466
    张训忠,李伯航.高肥力条件下夏玉米大豆间混作互补与竞争效应研究.中国农业科学,1987,20:34~42
    李隆,杨思存,孙建好,李晓林,张福锁.小麦/大豆间作中作物种间的竞争作用和促进作用.应用生态学报,1999a,10:197~200
    李隆,杨思存,孙建好,李晓林,张福锁.春小麦大豆间作条件下作物养分吸收积累动态的研究.植物营养与肥料学报,1999b,5:163~171
    李隆,张福锁,李晓林.间作充分利用土壤资源的机制.见李春俭主编,土壤与植物营养研究新动态(第四卷),中国农业大学出版社.北京,2001,181~194
    迟凤琴.大豆肥田机制的研究 Ⅲ.大豆对耕层土壤含氮物质的影响.大豆科学,2001,20:35~40
    陈国安.重视生物固氮在我国农业持续发展中的地位。科技导报,1998,2:58~60
    陈明,姚允寅,张希忠.不同形态氮素对~(15)N同位素稀释法测定苜蓿固氮的影响.核农学通报,1997,18:30~33,40
    周苏玫,马淑琴,李文,张石头.玉米花生间作系统优势分析.河南农业大学学报,1998,32:17~22
    郑义方,杨丽敏,赵凤民,张云江.水稻全程覆膜节水高产栽培技术研究.黑龙江农业科学,2001,4:1~4
    俞双恩,张展羽,陶长生,王菊.江苏省水稻节水灌溉技术推广模式.灌溉排水,2001,20:33~36
    胡飞,孔垂华.花生对作物的化感作用.华南农业大学学报,2002,23:9~12
    胡锋,杨茂成,梁永超,刘满强,陈小云.地膜覆盖旱作稻田土壤肥力特征的研究.迈向21世纪的土壤科学(江苏卷),河海大学出版社,1999b,132
    胡锋,梁永超,李辉信.覆膜旱稻田土壤肥力演变与土壤管理问题.迈向21世纪的土壤科学(综合卷),中国土壤学会编,1999a,265
    骆世明,彭少麟编著.农业生态系统分析.种群系统的动态模拟.广东科技出版社.1996.259~269
    钱晓晴,沈其荣,徐勇,王娟娟,沈辉.不同水分管理方式下水稻的水分利用效率与产量.应用生态学报,2003,399~404
    陶汉之,黄文江,张玉屏,胡焱.水稻对旱作环境的响应和适应性研究.干旱地区研究,2002,20:42~48
    高秀兰.旱作水稻施肥技术研究.辽宁农业科学,1994,3:24~27
    宿庆瑞.东北玉米主产区玉米/草术樨间种轮作农牧结合综合效益的研究.中国草地,1998,4:17~
    
    20
    崔国贤,沈其荣,崔国清,李良勇.旱作水稻及对旱作环境的适应性研究进展.作物研究,2001,3:70~76
    康绍忠.新的农业科技革命与21世纪我国节水农业发展.干旱地区农业研究,1998,16:11~17
    梁永超,胡峰,杨茂成,等.水稻腹膜旱作下的节水机理.中国农业科学,1999,32:26~32
    梁永超,胡锋,沈其荣,吕世华,吴良欢,张福锁.水稻腹膜旱作研究展望.见:植物营养研究进展与展望.冯丰,张福锁,杨新泉编著.中国农业大学出版社,北京.2000,114~125
    梁森,韩莉,李娴慧,连伟.旱作水稻栽培方式及调亏灌溉指标试验研究.干旱地区研究,2002,20:12~19
    黄文江,王纪华,赵春江,黄义德,陶汉之,陶庆会.旱作水稻条件下渗透调节物质和激素含量的研究.干早地区研究,2002,20:76~80
    程旺大,赵国平,张国平等.水稻节水栽培的生态和环境效应.农业工程学报,2002,18:191~195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700