机械活化黄铁矿粉体在不同介质中的界面行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了系统研究机械球磨黄铁矿粉体在液相介质中的界面行为,本文采用多种表征方法从体系的分散性、润湿性、表面张力、运动粘度等方面研究黄铁矿超细粉体在不同有机酸、有机醇介质中的界面行为;研究了多种钠盐添加剂对黄铁矿粉体界面行为的影响并进行了理论计算,利用量子化学中密度泛函理论平面波赝法对FeS2晶体机械活化前后的结构模型的态密度、费米能级等微观结构进行研究,并推导出态密度、费米能级和机械化学晶格畸变之间的本质联系。得到了如下主要结论:
     (1)制备黄铁矿粉体时,加入助磨剂六偏磷酸钠湿磨得到尺寸均匀,粒径较小的超细粉体。XRD结果显示:添加助磨剂六偏磷酸钠使晶粒尺寸减少和晶格畸变程度增大。对所制备的黄铁矿粉体在无水乙醇中的Zeta电位进行测量,结果表明粉体的Zeta电位为负值,说明所制备粉体带负电。相同条件下,黄铁矿粉体在一定浓度的有机酸-乙醇溶液中的润湿性能由强至弱的顺序依次为油酸、己酸、乙酸、丙酸、乳酸、甲酸,且在油酸-乙醇溶液中具有最佳分散性能。通过分光光度法得到了黄铁矿粉体在油酸-无水乙醇体系中的最佳分散工艺条件,即:pH≤2,油酸添加量为体积百分比为2%,超声时间为30min。
     (2)四种有机醇对黄铁矿粉体的润湿效果为:甲醇>乙醇>正丁醇>环己醇,而四种有机醇表面张力的大小顺序为:乙醇<甲醇<正丁醇<环己醇,分散性能顺序为:乙醇<甲醇<正丁醇<环己醇,可见,黄铁矿粉体在有机醇类中的分散性能与有机醇的表面张力大小顺序具有一致性。加入不同分子量的聚乙二醇分散剂后可显著提高其黄铁矿粉体的分散稳定性,其中在添加8%的PEG-20000中的黄铁矿粉体溶液的分散稳定性最好。润湿性能实验结果表明,PEG-20000溶液对黄铁矿粉体的润湿性能最好,其中适宜的pH值为5-6之间,超声分散功率为100W。红外光谱分析表明,黄铁矿矿石粉体颗粒与聚乙二醇之间是靠氢键吸附结合在一起,两者并没有发生化学反应生成新的化合物;黄铁矿矿石粉体表面吸附聚乙二醇后,增加了颗粒间的空间位阻作用,有效地阻止了黄铁矿矿石粉体在水溶液中的凝聚,提高了其分散稳定性。
     (3)根据黄铁矿粉体在六偏磷酸钠、油酸钠、硅酸钠、多聚磷酸钠、十二烷基硫酸钠5种钠盐添加剂中的分散效果,油酸钠与十二烷基硫酸钠的分散效果明显好于其他三种添加剂。不同添加剂,对于浓度为2g/L的粉体悬浮液,其最佳悬浮条件各异,其中油酸钠作为添加剂时控制浓度为0.008mo1/L,pH在1-3,超声时间45min左右对黄铁矿粉体有最佳的分散效果;十二烷基硫酸钠为添加剂时最佳浓度为0.008mo1/L,pH值在10-11,超声45min左右可得最佳分散效果。油酸钠和十二烷基硫酸钠对黄铁矿粉体的润湿性能较蒸馏水好,且油酸钠优于十二烷基硫酸钠。计算结果表明:在不同pH值的十二烷基硫酸钠水溶液中,溶剂化作用能占主导地位,即黄铁矿颗粒间良好的分散稳定性主要依靠溶剂化作用。随着pH值的降低,黄铁矿颗粒间的总作用能升高,在pH值较低的十二烷基硫酸钠水溶液中的黄铁矿粉体的分散稳定性最好。在不同pH值的油酸钠水溶液中,黄铁矿颗粒间的总作用能均为正值,黄铁矿粉体均具有良好的分散稳定性。但在pH=1或10的油酸钠水溶液中,主要依靠静电作用能实现黄铁矿颗粒间的分散;而在pH=6的油酸钠水溶液中,主要依靠溶剂化作用能实现黄铁矿颗粒间的分散;在碱性条件下的油酸钠水溶液中总作用能较高,黄铁矿粉体的分散稳定性最好。
     (4)随着机械活化过程的进行,晶格畸变程度的增大,FeS2的能隙降低,费米能级升高;体系的态密度峰降低,且有向低能量移动的趋势,能量的分布范围增大;晶格畸变作用下的FeS2出现了更多的价键重叠和轨道杂化现象,且晶格畸变作用下其被氧化能力增大了,电化学反应活性增大,表面吸附特性发生显著变化。
To systematically study the interfacial behavior of mechanical ball-milling pyrite powder in liquid medium, this thesis utilized various characterization techniques to investigate the interfacial behavior of pyrite powder dispersed in organic acids and organic alcohols from disperisibility, wettability, surface tension and kinematic viscosity. The effects of sodium salt additives on the interfacial behavior of pyrite powder as well as the related theoretical calculations were demonstrated. Moreover, the density functional theory-plane wave pseudopotential method was employed to study the density of states of structure model and Fermi level before and after mechanical activation of FeS2crystal. The essential relations among density of states, Fermi level and mechanochemical lattice distortion were deduced. The main conclusions were summarized as follows.
     (1) For preparation of pyrite powder, adding sodium hexametaphosphate as grinding additive could obtain ultrafine powder with uniform size and small diameter. The XRD results indicated that adding sodium hexametaphosphate as grinding additive reduced the crystal size but increased the lattice distortion degree. The Zeta potential for obtained pyrite in ethanol was negative, indicating that the prepared pyrite was negatively charged. Under the same condition, the wettability of pyrite powder in organic acid-ethanol solutions followed the order: oleic acid> hexanoic acid> acetic acid> propionic acid> lactic acid> formic acid. Moreover, oleic acid-ethanol showed the best dispersibility to pyrite powder. The optimum technical condition for pyrite dispersed in oleic acid-ethanol was obtained by the UV-visible spectrometric measurement, namely pH≤2,2%volume percentage of added oleic acid, and ultrasonication time of30min.
     (2) The wettability of four alcohols to pyrite powder followed the order:methanol> ethanol> butyl alcohol> cyclohexanol. However, the surface tension of four alcohols followed the order:ethanol     (3) According to the dispersion stability of pyrite in five sodium salt additives namely sodium hexametaphosphate, sodium oleate, sodium silicate, sodium polyphosphate, and sodium dodecyl sulfate, the dispersion effects of sodium oleate and sodium dodecyl sulfate were obvious better than other three additives. For2g/L pyrite powder suspended in different additives, the optimum suspension conditions were different. When sodium oleate was employed as the additive, the optimum concentration was0.008mol/L, pH was1-3, ultrasonication time was45min. While sodium dodecyl sulfate was employed as the additive, the optimum concentration was0.008mol/L, pH was10-11, ultrasonication time was45min. The wettability of sodium oleate and sodium dodecyl sulfate to pyrite powder was much better than that of distilled water and sodium oleate was superior to sodium dodecyl sulfate. The calculation results for pyrite in sodium dodecyl sulfate aqueous solution at different pH showed that the solvation interaction played the main role. That was to say, the excellent dispersion stability between pyrite particles were mainly dependent upon the solvation interaction. With decreasing pH, the total interaction potential between pyrite particles was increased, and sodium dodecyl sulfate aqueous solution at low pH showed the best dispersion stability of pyrite. While in sodium oleate aqueous solution at different pH, the total interaction potential between pyrite particles was always positive, and the pyrite powder had excellent dispersion stability. In sodium oleate aqueous solution at pH1or10, the dispersion of pyrite particles was mainly dependent upon electrostatic interaction. Nevertheless, the dispersion of pyrite particles was mainly dependent upon solvation interaction for sodium oleate aqueous solution at pH6. In sodium oleate aqueous solution under alkaline conditions the total interaction potential was high, thus the pyrite powder had the best dispersion stability.
     (4) During the mechanical activation, the lattice distortion degree was increased, the energy gap of FeS2was decreased and Fermi level was increased. With the process of mechanical activation, the lattice distortion degree was increased; the density peak of state was decreased and showed the tendency to shift to low energy; whereas the energy distribution domain was increased. The FeS2under the interaction of lattice distortion showed more phenomenons of valance bond overlapping and orbital hybridization, and its oxidized ability was improved. This further demonstrated that the lattice distortion caused by the mechanical activation could promote the activity of pyrite. With the increase of the lattice distortion degree, the energy of FeS2gap reduced, and the Fermi level increased, the electrochemical reaction activity increased, thus the surface adsorption characteristics change significantly.
引文
[1]徐晓慧.我国石油对外依存度分析[J].对外经贸实务,2010,(11):27-30.
    [2]戈冬梅,姜磊.基于能源安全考量中国经济发展与石油依赖[J].能源研究与利用,2010,(3):5-9.
    [3]王连勇等.煤代油技术研究进展[J].中国冶金,2005,(8):32-35.
    [4]孙海,席酉民.煤制油产业化:我国未来运输能源安全战略的路径选择[J].现代管理科学,2009,(7):5-8.
    [5]周忠科.推动中国煤代油产业发展[J].洁净煤技术,2006,12(3):14-16.
    [6]陈东周.煤直接液化的技术及经济性探讨[J].化工工程与装备,2011,(11):138-140.
    [7]刘乾辰,张海英,李正飞.煤直接液化技术研究与发展阴.企业技术开发,2011,30(12):175-176.
    [8]高晋生,张德祥.煤液化技术[M].北京:化学工业出版社,2010.
    [9]张建军.煤直接液化催化剂研究与发展[J].山西煤炭,2010,(11):63-65.
    [10]易海波,王亚明,陈秋玲.媒直接液化催化剂研究进展[J].化工时刊,2006,20(10):52-55.
    [11]范立明,高俊文,张勇.媒直接液化催化剂研究进展[J].工业催化,2006,14(11):17-22.
    [12]任相坤.煤直接液化技术开发新进展[J].化工进展,2010,(3):200.
    [13]郝学民,张浩勤.煤液化技术进展及展望[J].煤化工,2008,(4):28-30.
    [14]盖彩虹,艾晓玉.煤炭直接液化技术及其发展趋势[J].广东化工,2010,37(10):242-243.
    [15]李克健,史士东,李文博.德国IGOR煤液化工艺及云南先锋褐煤液化[J].煤炭转化,2001,24(2):13-15.
    [16]李好管.煤直接液化技术进展及前景分析[J].煤化工,2002,(3):8-11.
    [17]ZHU J, YANG J, LIU Z, et al. Improvement of Characterization of an Impregnated Iron based Catalyst for Direct Coal Liquefaction [J]. Fuel Processing Technology,2001,72(3):199-214.
    [18]马凤云等.铁基催化剂的硫化及其对煤直接液化的影响[J].煤炭转化,2010,33(3):49-51.
    [19]李育珍张,曹端林,庞稳绩.铁系催化剂在煤直接液化中的应用研究进展[J].工业催化,2005,(10):20-23.
    [20]孙林兵等.煤直接液化铁基催化剂研究进展[J].煤炭技术,2002,21(11): 65-67.
    [21]李雷.在煤液化过程中铁、硫的催化效应[J].煤炭分析及利用,1992,(4):36-38.
    [22]METHAKHUP S, NGAMPRASERTSITH S, PRASASSARAKICH P. Improvement of oil yield and its distribution from coal extraction using sulfide catalysts [J]. Fuel Processing Technology,2007,86(15):2485-2490.
    [23]HU H, BAI J, ZHU H, et al. Catalytic Liquefaction of Goal with Highly Dispersed FeS Impregnated In-situ [J]. Energy and Fuels,2001,15(4):830-834.
    [24]郭蘅,杨建丽,刘振宇.原位担载型铁系煤直接液化催化剂的表征[J].煤炭转化,2000,23(3):53-58.
    [25]李克健,史士东.煤直接液化是中国能源可持续发展的一项技术途径[J].煤炭科学技术,2001,29(3):1-3.
    [26]IKEDA K, SAKAWAI K, NOGAMI Y. Kinetic evaluation of progress in coal liquefaction in the lt/d PSU for the NEDOL process [J]. Fuel Processing Technology,2000,79(3-4):373-378.
    [27]KANEKO T, TAZAWAK, KOYAMAT. Properties and residual activities of iron based catalyst after direct coal liquefaction [J]. Nihon Enerugi Gakkaishi,1999, 78 (6):416-427.
    [28]王村彦,朱晓苏,吴春来.煤直接液化催化剂及其高分散化[J].煤炭转化,1998,21(2):14-16.
    [29]煤炭科学研究总院北京煤化工研究分院.一种高分散铁基煤直接液化催化剂及其制备: 中国, CN1231326A [P/OL].2006-09-13].http://www.aptchina.com/faming/1676788/.
    [30]三井造船株式会社.煤液化高活性催化剂的制造方法:中国,CN1744947[P/OL].2006-03-08]. http://chemyq.com/patentfm/pt76/754949_A0EF0.htm.
    [31]煤炭科学研究总院北京煤化学研究所.浆状高分散铁基煤液化催化剂的制备 :中国 , CN1231326 [P/OL].1999-10-13].http://www.patent-cn.com/C10L/CN1231326.shtml.
    [32]HLRANO K. Activation of pyrite for coal liquefaction catalyst [J]. Nippon Enerugi Gakkaishi,1996,75(10):909-915.
    [33]HLRANO K. Catalsis of pyrite for coal liquefaction reaction [J]. Nippon Enerugi Gakkaishi,1996,75(11):977-986.
    [34]陈明秀,史士东,何平.NEDOL模式下神华煤液化试验中的催化剂活性比较[J].洁净煤技术,1996,8(4):24-29.
    [35]ELKOEHRI A, CHOROWIEZ J. Synsedimentary tectonics and ejective tectonic style in the Mesozoic cover of the eastern High Atlas(Morocco)-Example of the mougueur eroded anticline [J]. Bulletin de la Societe geologique de France,2000, 4(4):541.
    [36]孙家忠,崔之栋.煤炭液化复合铁系催化剂的研究[J].燃料化学学报,1989,17(4):302-308.
    [37]杨华明,陈德良,邱冠周.超细粉碎机械化学的研究进展[J].中国粉体技术,2002,8(2):32-35.
    [38]李冷,曾宪滨.粉碎机械化学在材料开发中的应用[J].武汉工业大学学报,1993,15(1):23-26.
    [39]PETERS K. Mechanochemische Peaktionen [M]. Frankfurt,1962.
    [40]宋晓岚,邱冠周,杨华明.机械化学及其应用研究进展[J].金属矿山,2004,(11):34-36.
    [41]杨华明,邱冠周,王淀佐.超细粉碎过程粉体的机械化学变化[J].金属矿山,2000,(11):25-27.
    [42]彭秧锡,陈启元,刘士军,胡惠萍,金小容.机械化学的研究发展现状与展望[J].材料科学与工艺,2009,17(2):113-115.
    [43]IGUCHI Y, SENNA M. Mechanochemical polymorphic transformation and its stationary state between aragonite and cacite [J]. Powder Technology,1985, (43): 155-162.
    [44]SENNA M. Polymorphic transformation of PbO by isothermal wet ball-milling [J]. Journal of the American Ceramic Society,1971,54(5):259-262.
    [45]LIN I J. Kinetics of massicot-litharge transformation during comminution [J]. Journal of the American Ceramic Society,1973,56(2):62.
    [46]李冷,彭长琪.硅灰石球磨过程中晶体结构的变化[J].武汉化工学院学报,1993,15(1):84-90.
    [47]郝保红.粉石英在行星球磨过程中的晶体结构的变化[J].矿冶工程,1998,19(1):31-34.
    [48]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005.
    [49]RUSANOV A I. Thermodynamic fundamentals of mechanochemistry [J]. Russian Journal of General Chemistry,2000,70(3):329-338.
    [50]BUTYAGIN P. Rehbinder's prediction and advances in mechanochemistry [J]. Colliods and Surfaces A,1999,160(2):107-115.
    [51]FORSSBERG E. Surface and structural changes in wet ground minerals [J]. Powder Technology,1991,68:23-29.
    [52]邹俭鹏,陈启元,尹周澜等.机械活化黄铁矿物理性能和表面结构变化的表征[J].湖南有色金属,2001,47(5):36-39.
    [53]黎铱海.机械活化作用下载金矿物的形貌特征[J].金属矿山,2001,295(1):31-33.
    [54]李洪桂,赵中伟,赵天从.机械活化黄铁矿的物理化学性质[J].中南工业大学学报,1995,26(3):349-352.
    [55]MOHAMED I, WAKEEL A I. Effect of mechanical treatment on the mineralogical constituents of Abu-Tartour phosphate ore [J]. International Journal of Mineral Processing,2005,75(1):101-112.
    [56]EYMERY J P, YLLI F. Study of a Mechanochemical transformation in iron pyrite [J]. Joural of Alloys and Compounds,2000,298(1):306-309.
    [57]WARRIS C J, MCCPRMOCK P G. Mechanochemical Proeessing of Refractory Pyrite [J]. Mineral Engineering,1997,10(10):1119-1125.
    [58]张清岑,刘建平,肖奇.黄铁矿超细粉磨过程的氧化[J].中南工业大学学报,2003,34(3):235-237.
    [59]陈启元,胡慧萍,尹周澜.硫化矿机械活化机理研究现状与展望[J].中国稀土学报,2004,22(1):117-127.
    [60]邹俭鹏,尹周澜,陈启元等.机械活化黄铁矿的活性与失效性[J].中国有色金属学报,2002,12(1):201-204.
    [61]肖忠良.机械活化硫化矿能量学研究[D].长沙;中南大学,2003.
    [62]胡慧萍,陈启元,尹周澜等.机械活化黄铁矿的热分解动力学[J].中国有色金属学报,2002,12(2):611-614.
    [63]张超,刘士军,陈启元.机械活化黄铁矿的储能研究[J].有色金属(冶炼部分),2009,(3):
    [64]胡慧萍.机械活化硫化矿结构与性质变化规律的基础研究[D].长沙;中南大学,2003.
    [65]董青海,孙伟.黄铁矿浮选过程的机械电化学行为研究[J].矿冶工程,2006,26(1):32-36.
    [66]卢治斌.机械活化黄铁矿在有机介质中的电化学行为与界面行为[D].长沙;中南大学,2008.
    [67]任俊,卢寿慈.固体颗粒的分散[J].中国粉体技术,1998,4(1):25-32.
    [68]杨永康等.超细粉体在液体中的分散[J].建材技术与应用,2006,(5):17-19.
    [69]张宇,刘家祥.颗粒分散[J].材料导报,2003,17(9):158-162.
    [70]许荣玉.固体颗粒的分散[J].山西化工,2008,28(1):32-5.
    [71]崔洪梅,刘宏,王继扬,李霞,韩峰.纳米粉体的团聚与分散[J].机械工程材料,2004,28(8):38-40.
    [72]罗电宏,马荣骏.对超细粉末团聚问题的探讨[J].湿法冶金,2002,21(2):57-61.
    [73]王觅堂,李梅,柳召刚,胡艳宏.超细粉体的团聚机理和表征及消除[J].中国粉体技术,2008,14(3):46-47.
    [74]任俊,卢寿慈,沈健,胡柏星.微细颗粒在水、乙醇及煤油中的分散行为特征[J].科学通报,2000,45(6):
    [75]宋晓岚,吴雪兰,曲鹏等.纳米SiO2分散稳定性能影响因素及作用机理研究[J].硅酸盐通报,2005,(1):3-7.
    [76]刑颖.纳米二氧化硅水悬浮液的稳定性研究[J].涂料工程,2006,36(8):58-60.
    [77]任俊,卢寿慈.在水介质中分散剂对微细颗粒分散作用的影响[J].北京科技大学学报,1998,20(1):8-10.
    [78]赵国玺.表面活性剂合成物理化学[M].北京:北京大学出版社,1984.
    [79]STEPHEN P S. Low Viscosity Magnetic Fluid Obtained by the Colloidal Suspension of Magnetic Particles:USA,3215572 [P/OL].1965-11-02]. http://www.freepatentsonline.com/3215572.html.
    [80]KITAHARA A. Stability of dispersion in polar media [J]. Advance in Colloid and Interface Science,1992, (38):1-11.
    [81]刘景富,陈海洪,夏正斌,陈中华,陈剑华.纳米粒子的分散机理、方法及应用进展[J].合成材料老化及应用,2010,39(2):36-38.
    [82]马文有,田秋,曹茂盛,高正娟,陈玉金,朱静.纳米颗粒分散技术研究进展-分散方法与机理[J].中国粉体技术,2002,8(3):28-31.
    [83]张利民.纳米颗粒分散过程机理研究[J].安徽电子信息职业技术学院学报,2005,4(6):93-95.
    [84]天津大学物理化学教研室.物理化学上册[M].北京:高等教育出版社,1992.
    [85]HOM R G. Surface forces and their action in ceramic materials [J]. Journal of the American Ceramic Society,1990,73(5):1117-1135.
    [86]LEWIS J A. Colloidal processing of ceram ics [J]. Journal of the American Ceramic Society,2000, (83):2341-2359.
    [87]刘文萍,尹周澜,丁治英,陈启元.六偏磷酸钠对黄铁矿超细粉碎影响的研究[J].矿产保护与利用,2006,(6):13-16.
    [88]丁治英.机械球磨黄铁矿在非水环境中的界面行为研究[D].长沙:;中南大学,2007.
    [89]SHARMA P K, RAO K H. Adhesion of Paenibacillus olymyxa on chalcopyrite and pyrite:surface thermodynamics and extended DLVO theory [J]. Colloids and Surfaces B:Biointerfaces,2003,29(1):21-38.
    [90]刘文萍,尹周澜,丁治英,陈启元.液体介质对黄铁矿超细粉碎的影响[J].中国有色金属学报,2007,12(1):138-143.
    [91]尹周澜,丁治英,陈启元.机械化学方法制备黄铁矿催化剂颗粒间界面作用研究[J].有色金属(冶炼部分),2007,(6):2-6.
    [92]TOSSELL J A, GIBBS G V. Molecular orbital studies of geometries and spectra of minerals and inorganic compounds [J]. Physics and Chemistry of Minerals, 1977,2:21-57.
    [93]WANG B S, GU Z Q, WANG J Q, et al. Ab initio pseudopotential calculations of optical-phonon deformation potentials in zinc-blende semiconductors [J]. Physical Review B,1989,39(17):12789-12793.
    [94]WANG D, LONG X, SUN S. Quantum chemical mechanism on the surface oxidation and flotation of sulphide minerals [J]. Transactions of NFsoc,1991, 1(1):20-27.
    [95]JAIME L, ANTONIO B, CARLOS M, et al. Electron transfer of alkali metals in chalcopyrite [J]. Materials Research Bulletin,1993,30(1):43-48.
    [96]ZENG Y, HOLZWARTH N A W. Density-functional calculation of the electronic structure and equilibrium geometry of iron pyrite [J]. Physical Review B,1994, 50(12):8214-8220.
    [97]TAPPERO R, D'ARCO P, LICHANOT A. Electronic structure of a-MnS (alabandite):an ab initio study [J]. Chemical Physics Letters,1997,273:83-90.
    [98]FRECHARD F, SAUTET P. Hartree-Fock ab initio study of the geometric and electronic structure of RuS2 and its (100) and (111) surfaces [J]. Surface Science, 1995,336:149-165.
    [99]MIAN M, HARRISON N M, SAUNDERS V R, et al. An ab initio,Hartree-Fock investigation of galena(PbS) [J]. Chemical Physics Letters,1996,257:627-632.
    [100]NUMATA Y, TAKAHASHI K, LIANG R, et al. Adsorption of 2-mercaptobenzothiazole onto pyrite [J]. International Journal of Mineral Processing,1998,5375-86.
    [101]ROSSO K M, BECKER U, MICHAEL J, et al. Atomically resolved electronic structure of pyrite{100} surfaces:An experimental and theoretical investigation with implications for reactivity [J]. American Mineralogist,1999,84:1535-1548.
    [102]OPAHLE I, KOEPERNIK K, ESCHRIG H. Full-potential band-structure calculation of iron pyrite [J]. Physical Review B,1999,60:14035-14041.
    [103]ALEXIEV V, PRINS R, WEBER T. Ab initio study of MoS2 and Li adsorbed on the (10T0) face of MoS2 [J]. Phys Chem ChemPhys,2000,2:1815-1827.
    [104]OERTZEN G U V, JONES R T, GERSON A R. Electronic and optical properties of Fe, Zn and Pb sulfides [J]. Phys Chem Minerals,2005,32:255-268.
    [105]KUBICKI J D, KWON K D, PAUL K W, et al. Surface complex structures modelled with quantum chemical calculations:carbonate, phosphate,sulphate, arsenate and arsenite [J]. European Journal of Soil Science,2007,58:932-944.
    [106]MICHALKOVA A, KHOLOD Y, KOSENKOV D, et al. Viability of pyrite pulled metabolism in the'iron-sulfur world' theory:Quantum chemical assessment [J]. Geochimica et Cosmochimica Acta,2011,75:1933-1941.
    [107]董青海,孙伟,胡岳华,王淀佐.黄铁矿浮选过程的机械电化学行为研究[J].矿冶工程,2006,1(2):32-36.
    [108]李玉琼,陈建华,陈晔,郭进.黄铁矿(100)表面性质的密度泛函理论计算及其对浮选的影响[J].中国有色金属学报,2011,4(21):919-926.
    [109]杜玉栋,赵伟娜,郭欣,章永凡,陈文凯.甲醇在FeS2(,100)完整表面的吸附和分解[J].物理化学学报,2011,27(5):1075-1080.
    [110]钟建莲,陈建华,李玉琼,郭进.硫铁矿晶体化学及前线轨道研究[J].广西大学学报:自然科学版,2011,3(36):404-410.
    [111]李玉琼,陈建华,蓝丽红,郭进.氧分子在黄铁矿和方铅矿表面的吸附[J].中国有色金属学报,2012,4(22):1184-1194.
    [112]GILMAN J J. Mechanochemistry [J]. Science,1996,274:65.
    [113]TROMANS D, MEEEH J A. Enhanced dissolution of minerals: Microtopography and mechanical activation [J]. Minerals Engineering,1999, 12(6):609-625.
    [114]杨永康,何勇,铁旭初,饶泽青.超细粉体在液体中的分散[J].建材技术与应用,2006,5:17-19.
    [115]王书媚,税安泽,曾令可,刘平安,程小苏,王慧.表面活性剂对纳米氧化锌粉体分散性的影响[J].陶瓷学报,2007,28(3):218-220.
    [116]刘文萍,尹周澜,丁治英,陈启元.六偏磷酸钠对黄铁矿超细粉碎影响的研究[J].矿产保护与利用,2006,6:13-17.
    [117]任俊,卢寿慈.超细粉体在液相中的分散[J].中国粉体工业,2006,5:13-17.
    [118]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [119]俞鹏飞,崔斌,史启祯.油酸在纳米材料合成中的研究与应用[J].材料科学与工程学报,2007,25(5):792-797.
    [120]刘文萍,尹周澜,丁治英,陈启元.液体介质对黄铁矿超细粉碎的影响[J].中国有色金属学报,2007,17(1):139-142.
    [121]丁治英,尹周澜.机械球磨黄铁矿在非水环境中的界面行为研究[D].2007.
    [122]谭训彦,尹衍升,刘英才,龚红宇,李嘉.纳米ZrO粉体在液相中分散的研究进展[J].硅酸盐通报,2004,3:50-55.
    [123]王超,张振忠,江成军,曹娟.不同分散剂对纳米铁粉分散性能的影响[J].铸造技术,2007,28(5):614-617.
    [124]龙石红,邓斌.不同分散剂对二氧化钛颗粒分散稳定性影响[J].渝西学院学报(自然科学版),2003,2(4):12-14.
    [125]路承杰,张振忠,周剑秋,张少明.不同分散剂对纳米镍粉在乙醇溶液中分散性能的影响[J].材料导报,2007,21(Ⅷ):165-167.
    [126]殷波,张振忠,高建卫,周剑秋,张少明.油酸对金属纳米镍、铜及铜镍复合粉体的分散性能影响[J].铸造技术,2006,27(2):105-107.
    [127]董学仁,岳云龙,张仲,张奉军.王少青.粉体颗粒表面的定量描述[J].中国粉体技术,2000,3(6):1-3.
    [128]马跃如,罗琳.赤铁矿-油酸钠体系与界面相互作用[J].矿冶工程,1999,19(2):37-40.
    [129]卢寿慈,翁达.界面分选理论及应用[M].北京:冶金工业出版社,1992.
    [130]张树东,朱湘君,王艳,孔祥和.甲醇团簇的多光子电离质谱及其从头算[J].物理化学学报,2007,23(3):379-383.
    [131]POPA M, PRADELL T, CRESPO D, et al. Stable silver colloidal dispersions using short chain polyethylene glycol [J]. Colloids and Surfaces A,2007,303(3): 184-190.
    [132]JOKAR M, RAHMAN R A, IBRAHIM N A, et al. Characterization and Biocompatibility Properties of Silver Nanoparticles Produced Using Short Chain Polyethylene Glycol [J]. Journal of Nano Research,2010,10:29-37.
    [133]PARK J H, KIM H G, HAN D H, et al. Rheological behavior of hydrophilic silica dispersion in polyethylene glycol [J]. Journal of Applied Polymer Science, 2007,103(4):2481-2486.
    [134]DERKAOUI N, SAID S, GROHENS Y, et al. Polyethylene glycol adsorption on silica:From bulk phase behavior to surface phase diagram [J]. Langmuir, 2007,23(12):6631-6637.
    [135]刘付胜聪,肖汉宁,李玉平,胡智荣.纳米Ti02表面吸附聚乙二醇及其分散稳定[J].无机材料学报,2005,20(2):310-316.
    [136]伍秋美,阮建明,黄伯云,周忠诚,邹俭鹏.低固相含量SiO2分散体系流变性研究[J].化学学报,2006,64(15):1543-1547.
    [137]孙宜华,熊惟皓,李晨辉.ZnO-Al2O3混合粉体水基悬浮液性能的研究[J].无机材料学报,2009,24(2):413-416.
    [138]ZENG X, OSSEO-ASARE K. Partition of pyrite and hematite in aqueous biphase systems:effects of pH and surfactants [J]. Colloids and Surfaces A,2001, 177(2-3):247-254.
    [139]CHEN Q-Y, WU Z-P, YIN Z-L, et al. Bond population analysis on combination of favorable growth unit of Al(OH)3 crystal [J]. Science Press,2005,7:2-3.
    [140]王正烈,周亚平,李松林,刘俊吉.物理化学(第四版)[M].京:高等教育出版社,2001.
    [141]庄志强,王剑,刘勇.陶瓷成型新方法及其应用研究[J].陶瓷研究与职业教育,2004,1:43-47.
    [142]高友谊杨.Al203陶瓷凝胶注模成型工艺的研究[J].应用科技,2003,5:4-6.
    [143]MA J, XIE Z, MIAO H, et al. Gel casting of Ceramics Suspension in Acrylam ide/polyethylene Glycol Systerms [J]. Ceramics in ternationals,2002,28: 859-864.
    [144]王金锋,高雅春,谢志鹏,孙加林.pH值值对Zr02超细粉体料浆性能的影响[J].人工晶体学报,2007,36(1):70-75.
    [145]卫之贤,欧海峰,宫喜军等.表面活性剂PEG在掺锑纳米Sn02粉末氧化共沉淀制备中的作用[J].过程工程学报,2005,5(3):305-308.
    [146]李化建.超细粉体的湿法精密分级研究[D].重庆;重庆大学,2002.
    [147]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005.
    [148]卢寿慈,翁达.界面分选理论及应用[M].北京:冶金工业出版社,1992.
    [149]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工 业大学出版社,1993.
    [150]RAICHURI A M, WANG X H, PAREKHI B K. Estimation of surface free energy of pyrites by contact angle measurements [J]. Minerals Engineering,2001, 14(1):65-75.
    [151]SHARMA A S, CARGILL P J, PAPADOPOULOS K. Resonance absorption of alfven waves at comet-solar wind interaction regions [J]. Geophysical Research Letters,2000,15(8):740.
    [152]VINCENT M M. A Simple Experimental Way of Measuring the Hamaker Constant A11 of Divided Solids by Immersion Calorimetry in Apolar Liquids [J]. Journal of Colloid and Interface Science,2000,228(2):434-437.
    [153]VILINSKA A, RAO K H. Surface Thermodynamics and Extended DLVO Theory of Acidithiobacillus ferrooxidans Cells Adhesion on Pyrite and Chalcopyrite [J]. The Open Colloid Science Journal,2009,2:1-14.
    [154]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005.
    [155]POLAT M, SATO, K., NAGAOKA, T., WATARI. K.. Effect of pH and hydration on the normal and lateral interaction forces between alumina surfaces [J]. Journal of Colloid and Interface Science,2006,304:378-387.
    [156]胡大双,鲁亚明,李珊.分散剂在铁氧体浆料中的分散作用[J].磁性材料及器件,2009,40(3):64-66.
    [157]丁建芳,姜继森.油酸钠对油相法制备的Fe304纳米粒子的表面改性研究[J].无机材料学报,2007,22(5):859-863.
    [158]肖廷.超声波固液反应球磨研究[D].长沙;湖南大学,2010.
    [159]崔爱莉,王亭杰,何红等.超细二氧化钛在水溶液中的分散[J].过程工程学报,2001,1(1):99-101.
    [160]曾凡,胡永平,杨毅等.矿物加工颗粒学[M].徐州:中国矿业大学出版社,2001.
    [161]李丹,尹周澜,陈启元.利用钠盐助磨剂制备超细黄铁矿粉体的界面光学特性[J].中南大学学报(自然科学版)2012,5(43):1645-1650.
    [162]肖奇,邱冠周,胡岳华.黄铁矿机械化学的计算模拟(Ⅰ)晶格畸变与化学反应活性的关系[J].中国有色金属学报,2001,11(5)900-905.
    [163]张威虎,张富春,张志勇,薛苏琴,杨延宁.压力下纤锌矿ZnS电子结构的第一性原理研究[J].材料导报,2006,(09):128-130.
    [164]肖奇,邱冠周,覃文庆,王淀佐.FeS2-(pyrite)电子结构与光学性质的密度泛 函计算[J].光学学报,2002,22(12):1501-1506.
    [165]刘璐.机械活化黄铁矿/非水溶液界面行为的电化学研究.[D].长沙;中南大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700