Al/Fe、Al/Ni、Al/Ti液/固界面扩散溶解层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二元金属液/固界面异类原子的扩散溶解现象在材料工程上有极其广泛的应用。将二元金属液/固体系置于一定温度并且保温一定时间,则在液/固界面将发生异类原子的扩散与溶解,大多数二元金属体系会形成金属间化合物新相区—扩散溶解层。扩散溶解层的组织和性能对最终产品的质量起着至关重要的影响。因此,研究界面区金属间化合物新相的形成机理,并对扩散溶解层的组织加以预测和控制具有非常重要的理论和现实意义。但到目前为止,对二元金属液/固界面异类原子的扩散溶解问题还没有形成规律性的认识,在理论上尚不成熟,更不能广泛的用来指导工业生产。
     本文选择应用极为广泛的Al-Fe、Al-Ni、Al-Ti二元系为实验对象,根据热处理实验结果,分析了Al/Fe、Al/Ni、Al/Ti液/固界面扩散溶解层的形成机理、生长机制及组织结构演变,建立了扩散溶解层的生长动力学方程。此外,采用余瑞璜的固体与分子经验电子理论计算了Al-Fe、Al-Ni、Al-Ti二元系金属间化合物的价电子结构、键能、结合能和生成热,提出了界面新生相析出顺序的EET模型最小生成热判据,从价电子理论角度分析了Al/Fe、Al/Ni、Al/Ti液/固界面新生相的形成及生长,利用EET模型最小生成热判据对Al/Fe、Al/Ni、Al/Ti界面新生相的析出顺序进行了预测,预测结果和实验结果吻合。
     在分析Al/Fe、Al/Ni、Al/Ti液/固扩散偶实验结果的基础上,得出在A/B二元金属液/固界面,金属间化合物初生相析出的动力学条件是B原子向液相A中溶解直至界面处的液相达到饱和,热力学条件是EET模型生成热为负并且在同一体系的所有金属间化合物中其EET模型生成热最小。如果初生相与液相在相图上不存在两相共存区,初生相将形成连续单相层,反之,将形成初生相与液相的混合组织区。在动力学条件满足的情况下,在新的界面还将按照EET模型最小生成热判据顺序析出新的化合物相。
     晶体的本征性能与其价电子结构密切相关,提出了表征晶体强度、硬度、塑性和稳定性的价电子结构因子,并给出了四个价电子结构因子的数学表达式。晶体的强度取决于晶体中的共价电子密度,共价电子密度越大,强度越高;硬度取决于原子平均键合能,原子平均键合能越大,硬度越高;塑性与晶格电子密度、共价键结构对称性和强度对称性有关,晶格电子密度越大,共价键结构对称性和强度对称越高,塑性越好;稳定性则由原子平均成键能力决定,原子平均成键能力越强,稳定性越好。根据提出的表征晶体性能的价电子结构因子的数学表达式,计算了Al-Fe、Al-Ni、Al-Ti二元系金属间化合物的价电子结构强度因子、硬度因子、塑性因子以及稳定性因子,并以此为依据分析了同体系金属间化合物的相对性能,分析结果与实验结果吻合。
     知道了A/B二元金属液/固界面新生相的形成条件、析出顺序及相关性能,就可以根据材料使用工况的要求,通过控制液相A和固相B的相对量、热处理温度和保温时间得到所需要的组织结构。因此,对生产工艺的制定和产品性能的预测具有重要的理论指导意义。
Diffusion and solution phenomena of heterogeneous atoms in binary metallic liquid/solid interface have a very wide range of applications in materials engineering. The diffusion and reaction of heterogeneous atoms in liquid/solid interface under certain temperature for certain time will form a new intermetallic phase region—diffusion -solution zone. The structures and properties of the diffusion-solution zone play an important influence on the final product quality, therefore, the study of the formation mechanism of the new intermetallic phases in interface, and prediction and control of the structure of the diffusion-solution zone have very important theoretical and practical significance. Yet so far, there aren’t unified awareness and mature theory about the diffusion and solution of heterogeneous atoms in binary metallic liquid/solid interface which can be widely used to guide production.
     Al-Fe, Al-Ni and Al-Ti binary systems which have wide applications in materials engineering were selected as the experimental subjects. The formation and growth mechanism and the structure evolution of the diffusion-solution zones in Al/Fe, Al/Ni, and Al/Ti liquid/solid interfaces were analyzed and their growth kinetics equations were set up according to the heat treatment experimental results. Moreover, the valence electron structure, bond energies, cohesive energies and formation heats of intermetallic compounds in Al-Fe, Al-Ni, and Al-Ti binary systems were calculated based on the empirical electron theory of solids and molecules, the minimum formation heat criterion based on EET was given to predict the formation order of new phases in interface. The formation and growth of new phases in Al/Fe, Al/Ni, and Al/Ti liquid/solid interface were studied from the perspective of the valence electron theory, the new phases formation sequence in Al/Fe, Al/Ni, and Al/Ti liquid/solid interfaces was predicted using the minimal formation heat criterion based on EET model, and the predicted results agree well with the experimental results.
     In a binary metallic liquid/solid interface A/B, the formation kinetics condition of intermetallic primary phase is that B atoms dissolve in the liquid phase A until the liquid in interface saturated, and its thermodynamic condition is that its EET formation heat is negative and minimum in all compounds in this system. If the primary phase and liquid A do not have coexistence region in the phase diagram, the primary phase will grow to form a continuous single-phase layer, otherwise, to form the hybrid area of the primary phase and A. If the dynamic conditions are met, new compounds will also be formed in the new interface in accordance with the formation heat criterion based on EET model.
     The intrinsic properties of crystals are closely related to their valence electron structure. The valence electron structure factors characterizing the strength, hardness, plasticity and stability of crystal were defined and their Mathematical expressions were given. Strength of crystal is proportional to its covalent electron density; hardness is proportional to its average atomic bonding energy; plastic depends on its lattice election density and covalent bond structure and intensity symmetry, the greater the lattice election density and covalent bond structure and intensity symmetry, the better plasticity; Stability is proportional to its atomic average bond capacity. The intensity factors, hardness factors, plastic factors and stability factors of intermetallic compounds in Al-Fe, Al-Ni and Al-Ti binary systems were calculated, and their relative performances were analysed. The analysed results agree well with the experimental results.
     If the formation conditions, precipitating sequence and related properties of new phases in the A/B binary metal liquid/solid interface are known, the properties of the interface can be controlled by the amount of A and B, heat treatment temperature and holding time. Therefore, it has very important theoretical guidance significance to develop the production process and predict the product performance.
引文
[1]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社, 1998: 411-412.
    [2]李世春.相界扩散溶解层—Zn-Al共晶合金的超塑性[M].东营:中国石油大学出版社, 2006: 2.
    [3]宋玉强.二元金属体系固相相界面扩散溶解层研究[D].中国石油大学(华东), 2007.
    [4]宋玉强,李世春. Cu粉和Sn粉相界面扩散溶解层的研究[J].稀有金属材料与工程, 2007, 36(3): 217-222.
    [5]杨睿,李世春,宋玉强. Al/Cu扩散偶相界面的实验研究[J].中国石油大学学报:自然科学版, 2007, 31(2): 110-113.
    [6]宋玉强,李世春. Ni/Zn扩散溶解层的初步研究[J].中国石油大学学报:自然科学版, 2007, 31(1): 104-107.
    [7]杜光辉,宋玉强,李世春.Ti-Cu固相扩散界面研究[J].热加工工艺, 2007, 36(3): 5-7.
    [8]张振亚,何艳玲,李世春.Cu/Ni固相扩散界面的研究[J].金属热处理, 2006, 31(5): 56-59.
    [9]江勇,李世春,何艳玲.Cu/Zn扩散偶的实验研究[J].理化检验:物理分册, 2006, 42(5): 232-234.
    [10]耿相英,何艳玲,李世春.固相扩散Cu/Al界面研究[J].中国石油大学学报:自然科学版, 2006, 30(2): 78-84.
    [11]李敏,李世春,宋玉强.Ti—Ni—Cu三元扩散偶的界面研究[J].热加工工艺, 2008, 37(4): 17-19.
    [12]亓婧,宋玉强,李世春. Al/Fe/Ni界面固态扩散实验分析[J].中国石油大学学报:自然科学版, 2008, 32(4): 91-94.
    [13]甄西彩,宋玉强,李世春. Al/Cu/Mg扩散偶相界面的扩散机理[J].理化检验:物理分册, 2008, 44(4): 168-171.
    [14]陈思杰,井晓天,李辛庚. TP304钢管的瞬时液相扩散焊工艺研究[J].热加工工艺, 2004, (11): 58-60.
    [15]王学刚,严黔,李辛庚. 20钢管高温钎焊与瞬时液相扩散焊接组织与性能[J].焊接工艺, 2005, 26(5): 56-60.
    [16]王学刚,严黔,李辛庚. 5A02铝合金的瞬时液相扩散连接技术研究[J].轻合金加工技术, 2005, 33(7): 41-43.
    [17]陈思杰,王英.异种钢管的瞬时液相扩散焊接[J].热加工工艺, 2005, 34(4): 43-47.
    [18]刘卫红,孙大谦. Al2O3P/6061 Al复合材料瞬间液相扩散连接[J].焊接学报, 2007, 28(3): 57-61.
    [19]曲文卿,王奇娟,张彦华.铝基复合材料与铝合金的TLP扩散连接[J].焊接学报, 2002, 23(6): 67-71.
    [20]张剑锋,姜世杭. Cu中间层SiCp/Al MMCs TLP扩散连接过程分析[J].焊接技术, 2005, 34(1): 12-15.
    [21]张淑芬,李虹艳. Ni3Al基高温合金瞬态液相扩散连接过程中元素扩散行为研究[J].电站系统工程, 2006, 22(3): 15-16.
    [22]祝汉良,李志强. Ti3Al超塑性扩散焊连接的理论计算[J].材料科学与工艺, 1999, (7): 224-230.
    [23] Sinclair C W. Modeling transient liquid bonding in multicomponent systems [J]. Journal of Phase Equilibrium, 1999, 20(4): 361-369.
    [24] Gale W F,Guan Y. Microstructure development in copper-interlayer transient liquid phase bonds between martensite NiA1 and NiTi [J]. Journal of Materials Science, 1997, (32): 357-364.
    [25] Ohsasa K, Shinmura T, Narita T. Numerical modeling of the transient liquid phase bonding process of Ni using Ni-B-Cr ternary filler metal [J]. Journal of Phase Equilibria, 1999, 20(3): 199-206.
    [26]果世驹.粉末烧结理论[M].北京:冶金工业出版社, 2002.
    [27]孙德勤,谢建新,吴春京.复合板的成型技术与发展趋势[J].金属成形工艺, 2003, 21(2): 19-22.
    [28]张守魁,王丹虹,高洪吾,高钦.铝液与SiO2反应原位形成Al/Al2O3 (P)复合材料的研究[J].铸造, 1996, 7: 4-8.
    [29]柴跃生,梁建民.制备温度与时间对复合材料界面反应的影响[J].太原重型机械学院学报, 1999, 20(3): 207-212.
    [30]崔建忠.液-固相轧制复合法生产铝不锈钢复合带[J].材料导报, 2001(2): 56-61.
    [31]陈鼎,黄培云.固液反应球磨制备Al2Cu2Fe与Al2Si2Fe三元合金[J].中南大学学报, 2004, 35(4): 538-544.
    [32]蔡建国,陈刚,徐红梅.固液反应球磨制备Al2Cu2Co三元金属间化合物[J].湖南大学学报, 2005, 32(3): 28-33.
    [33] Kathy Wang. The use of titanium for medical applications in the USA [J]. Materials Science and Engineering, 1996, 21(3):134-137.
    [34] Wen C E, Yamada Y, Shimojima K, et al. Processing and mechanical properties of autogenously titanium implant materials [J]. Materials in Medicine, 2002, (13): 397-401.
    [35] Buccioni E, Braca E, Kenny J M, et al. Processing structure adhesion relationship in CVD diamond films on titanium substrates [J]. Diamond and Related Materials, 1999, (8): 17-24.
    [36]王灿明,孙宏飞.高温扩散法制备铁铝金属间化合物涂层[J].材料保护, 2003, 36(3): 35-37.
    [37]张九海,何鹏.扩散连接接头行为数值模拟的发展现状[J].焊接学报, 2000, 21(4): 84-91.
    [38]樊湘芳,邱长军,刘瑞林.镍铝喷涂层反应烧结的组织结构演变及结合机理[J].材料科学与工艺, 2002, 10(2): 183-185.
    [39]熊翔,黄伯云.高温反应合成TiAl金属间化合物研究[J].粉末冶金技术, 1994, 12(2): 83-86.
    [40]陈鼎,黄培云.固液反应球磨制备TiAl、NiAl和FeAl金属间化合物[J].湖南大学学报:自然科学版, 2003, 30(2): 20-25.
    [41]李世春. TFDC相图[J].自然科学进展, 2003, 13(11): 1154-1159.
    [42]袁媛. Sn/Ni液/固扩散偶的界面反应[J].粉末冶金材料科学与工程, 2006, 11(5): 268-271.
    [43]李大建. Cu-Sn-Ti体系扩散偶界面反应的研究[D].中南大学, 2006.
    [44]董仕节,史耀武,泪永平. Cu-Ti-B粉末的机械合金化[J].特种铸造及有色合金, 2002, 3: 20-24.
    [45]段莉蕾.无铅钎料接头界面化合物层生长及元素扩散行为[D].大连理工大学, 2004.
    [46] Takenaka K, Kano S, Kajihara M, et al. Growth behavior of compound layers in Sn/Cu/Sn diffusion couples during annealing at 433–473 K [J]. Materials Science and Engineering: A, 396(1-2): 115-123.
    [47] Mita M, Kajihara M, Kurokawa N, et al. Growth behavior of Ni3Sn4 layer during reactivediffusion between Ni and Sn at solid-state temperatures[J]. Materials Science and Engineering: A, 2005, 403(1-2): 269-275.
    [48] Takenaka T, Kajihara M, Kurokawa N, et al. Reactive diffusion between Pd and Sn at solid-state temperatures[J]. Materials Science and Engineering: A, 2005, 406(1-2): 134-141.
    [49] Tanaka Y, Kajihara M, Watanabe Y. Growth behavior of compound layers during reactive diffusion between solid Cu and liquid Al [J]. Materials Science and Engineering: A, 2007, 445–446: 355–363.
    [50] Yamada T, Miura K, Kajihara M, Kurokawa N, Sakamoto K. Kinetics of reactive diffusion between Au and Sn during annealing at solid-state temperatures [J]. Materials Science and Engineering: A, 2005, 390: 118.
    [51] Suzuki K, Kano S, Kajihara M, Kurokawa N and Sakamoto K. Reactive diffusion between Ag and Sn at solid state temperatures [J]. Mater.Trans, 2006, 46: 969.
    [52] Laik A, Bhanumurthy K, Kale G B. Intermetallics in the Zr–Al diffusion zone [J]. Intermetallics, 2004, 12(1): 69-74.
    [53] Tsao C L, Chen S W. Interfacial reactions in the liquid diffusion couples of Mg/Ni, Al/Ni and Al/ (Ni)-Al2O3 systems [J]. Journal of Materials Science, 1995, 30(20): 5215-5222.
    [54]何鹏.钛/不锈钢相变扩散连接工艺及界面行为的数值分析[D].哈尔滨工业大学, 1997.
    [55]何康生,曹雄夫.异种金属连接[M].北京:机械工业出版社, 1986: 106-209.
    [56] Byeong Joo Lee, Nong Moon Hwang, Hyuck Mo Lee. Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation [J]. Acta Material, 1997, 45(5): 1867-1874.
    [57] Liu H S, Wang J, Jin Z P. Thermodynamic optimization of the Ni-Sn binary system [J]. Calphad, 2004, 28: 363-370.
    [58] Meng Fangui, Liu Huashan, Liu Libin, Jin Zhanpeng. Thermodynamic optimization of Mg-Nd system [J]. Trans. Nonferrous Met. Soc. China, 2007, 17(1): 77-81.
    [59] Li Zhihua, Jin Zhanpeng, Liu Huashan. Thermodynamic assessment of Au2Zr system [J]. J. Cent. South Univ. Techno. , 2003, 10(2): 94-98.
    [60]王日初,金展鹏,柳春雷. Nb-Ti-Si三元系中化合物的形成序列[J].中南工业大学学报, 2002, 33(4): 387-391.
    [61] Wang Jiang, Liu Huashan, Liu Libin, Jin Zhanpeng .Thermodynamic description of Au-Ag-Si ternary system [J]. Nonferrous Met. Soc. China, 2007, 17(6): 1405-1411.
    [62] Won Kyoung Choi, Hyuck Mo Lee. Prediction of primary intermetallic compound formation during interfacial reaction between Sn-based solder and Ni substrate [J]. Scripta Materialia, 2002, 46: 777-781.
    [63]于大全,段莉蕾,王杰,王来. Sn-3.5Ag/Cu界面金属间化合物的生长行为研究[J].材料科学与工艺, 2005, 13(5): 532-536.
    [64]陈松,刘泽光,陈登权. Au/Sn界面互扩散特征[J].稀有金属, 2005, 29(4): 413-417.
    [65]李敏. Ti-Ni-Cu三元体系相界面的实验研究[D].中国石油大学(华东), 2008: 75.
    [66] Pretorius R, Marais T K, Theron C C. Thin film compound phase formation sequence: An effective heat of formation model [J]. Materials Science Reports, 1993, 10(1-2): 1-83.
    [67]何鹏,冯吉才,钱乙余.扩散连接接头金属间化合物新相的形成机理[J].焊接学报, 2001, 22(1): 53-55.
    [68]陈铮.材料连接原理[M].哈尔滨:哈尔滨工业大学出版社, 2001.
    [69]张佼. Ni-Al系金属/金属间化合物层状复合材料的扩散制备研究[J].河北工业大学学报, 1999, 28(5): 36-40.
    [70]章跃,周广宏. Ni/Al复合涂层的显微组织及其强化机理研究[J].材料热处理学报, 2001, 22(3): 72-74.
    [71]龚晓辉,刘慎中.等离子喷涂镍层界面的研究[J].长春光学精密机械学院学报, 1998, 21(2): 45-48.
    [73] Hume Rothery W, Raynar G V. The structure of metals and alloys [M]. The Institute of Metals 17 Belgrave square, London, 1962: 194-195.
    [74] Heitler W and London F. Interaction of neutral atoms and homopolar binding according to the quantum mechanics [J]. Z phys, 1927, 44(3): 455-472.
    [75] Pauling L. The nature of the chemical bond [M]. New York: Cornell University Press, Ithaca, 3rded. , 1960: 401.
    [76] Slater J C. Molecular levels and valence bonds [J]. Phys Rev, 1931, 38(5): 11091.
    [77] Engel N. Properties of metallic phases as function of number and kind of bondingelectrons [J]. Powder Met Bull, 1954, 7(1): 8-18.
    [78] Brwer L. Bonding and structure of transition metals [J]. Science, 1968, 161 (1): 115-122.
    [79] Brewer L. Thermodynamic stability and bond character in retation to electronic structure and crystal structure in electronic structure and alloy chemistry of transition elements [M]. New York: Inderscience Publishers, John Wiley, 1963: 16-45.
    [80] Brewer L. A most striking confirmation of the engel metallic correlation [J]. Acta Metall, 1967, 15(3): 553-556.
    [81]余瑞璜.固体与分子经验电子理论[J].科学通报, 1978, 23: 217-224.
    [82]余瑞璜.铝-镁二元金相α、δ相以及γ-Al2Mg19相的价电子结构分析[J].吉林大学自然科学学报, 1979, (4): 54 -75.
    [83] Yu R H. The empirical electron theory of solid and molecules-the hypothesis of equivalent valence electron [J]. KexueTongbao, 1981, 26 (7): 506-513.
    [84] Yu R H. Periodic table in the microscopic space of solids and molecules-fine structure of atomic valence: I subgroup B I, BⅡ, AⅢelements in the periodic table [J]. Science reports of Jinan University, 1981, (supp.1):7- 25.
    [85] Yu R H. Periodic table in the microscopic space of solids and molecules-fine structure of atomic valence:Ⅱsubgroup AV elements As, Sb and Bi in the periodic table [J]. Science reports of Jinan University, 1981, (supp.l): 26 -29.
    [86] Yu R H. Quantum mechanical foundation of discontinuous states hybridization Hypothesis in the empirical electron theory of solids and molecules [J]. Science reports of Jinan U niversity, 1981, (supp.l): 30 -40.
    [87] Yu R H. Analyses of the valence electron structure of Mg and some Mg and Ag hcp solid solutions in phase transformation under critical high pressure-direct evidence of the existence of discontinuous hybridization of states in solids [J]. Science reports of Jinan University, 1981, (supp.l): 41-55.
    [88]余瑞璜. a-Fe、γ-Fe和Fe4N的价电子结构和磁矩结构分析—a-Fe→γ-Fe相变、高温渗氮表面硬化、渗碳体石墨化及其它材料的电子理论[J].金属学报, 1982, 18(3): 337- 349.
    [89]余瑞璜,张瑞林.奥氏体低温分解形成下贝氏体中的ε-Fe3C的价电子结构分析[J].金属学报, 1982, 18 (4): 444-450.
    [90]余瑞璜. CrO3、δ-CrO2、Cr2O3、a-A12O3的熔点、沸点和在水中及其它溶液中的溶解度的电子理论[J].结构化学, 1984, (3): 193-196.
    [91]余瑞璜,刘兆芸.稀土镁球墨铸铁的共格球化[J].金属学报, 1985, 21(1): 203-207.
    [92]陈秀芳,余瑞璜,左秀忠.锕系元素单键半径R(1)公式—固体与分子经验电子理论扩展到周期表第七周期所应用的参数[J].科学通报, 1986, 31(9): 663-667.
    [93] Yu R H. Electron theory of superconductivity and transition point Tc's of T12Ba2Can-1CunO2n+4(n=1,2,3,4) and comparison with Tc's of TlBa2Can-1CunO2n+3 (n=1,2,3,4,5) [J]. Published in progress in high temperature supperconductivity, 1987, 2 : 494- 497.
    [94]余瑞璜,张瑞林,屈庸博. Fe-C-Cr-Si合金的价电子结构与奥氏体相变动力学[J].吉林工业大学学报, 1987, (4): 31-39.
    [95]余瑞璜,刘志林. A1型多元固溶体价电子结构的计算[J].金属科学与工艺. 1988, 7(2): 1-7.
    [96]余瑞璜.金属间化合物BiU价电子结构分析—固体与分子经验电子理论应用(1)[J].吉林大学自然科学学报, 1992, (特刊): 113-117.
    [97]金冶,张瑞林,余瑞璜.铁-碳、铁-氮系中几种固溶体的研究II—γ-Fe-N固溶体的价电子结构与a-x曲线[J].吉林大学自然科学学报, 1984, (1): 56 -60.
    [98]张瑞林,金冶,余瑞璜.铁-碳、铁-氮系中几种固溶体的研究III—ε-Fe-N固溶体的价电子结构与晶格常数—成份曲线[J].吉林大学自然科学学报, 1984, (1):63 -72.
    [99]邢胜娣,余瑞璜.金属化合物Ti3Al的价电子结构及其力学性能[J].吉林大学自然科学学报, 1985, (1): 62 -69.
    [100]袁祖奎,余瑞璜. Fe–Crδ相价电子结构的分析[J].金属学报, 1985, 21(2): Al40-146.
    [101]张瑞林,吴尚才,余瑞璜.由Nd2Fe14B的晶体直接给出其价电子结构的分析[J].中国科学(A辑), 1988, 18(2): 197-203.
    [102] Liu Zhilin, Niu Hongjun, Jin Canfeng, et al. A theory of C-Si segregation in Fe-C-Si alloys [J]. Chinese Science bulletin, 1989, 34(2): 100-105.
    [103] Liu Zhilin, Dai Tianshi, Niu Hongjun, et al. The application of Yu's theory in the study of phase transformation of industrial materials [J]. Chinese journal of Mechanical engineering, 1989, 2(2):147-155.
    [104]吴非,余瑞璜,张瑞林. Fe-Mn合金相图的电子理论计算[J].中国科学(A辑), 1990, 20(8): 889-896.
    [105] Dai Tianshi, Liu Zhilin, Qu Yongbo, et al. The valence electron structure of austenite in low alloy ultrahigh-strength steels and its influences on kinetics of phase transformation [J]. Science in China (Series A), 1990, 33(9):1132-1140.
    [106] Liu Zhilin. Valance electron structure and composition design of a low alloy ultra-high-strength steel [J]. Chinese Journal of Mechanical Engineering, 1990, 3(2): 142- 148.
    [107]郑伟涛,余瑞璜,张瑞林. Cu-Au二元合金有序—无序相平衡的研究[J].科学通报, 1991, 36(2): 179-181.
    [108]尹衍升,孙扬善,熊宏齐.三元Fe3Al金属间化合物的价电子结构分析[J].金属学报, 1993, 29(11): A479-486.
    [109] Liu Min, Dai Tianshi, QuYongbo. The valence electron structures of martensite in low alloy ultra-high-strength steels and their influence on strength and toughness [J]. Chinese Science Bulletin, 1991, 36(5): 366-371.
    [110]张建民,张瑞林,余瑞璜.氢致a-Fe脆性机理的电子理论研究[J].科学通报, 1995, 44(3): 234-236.
    [111]郑伟涛,柴卫平,胡安广. TiN的价电子结构及其力学性能的研究[J].科学通报, 1992, 37(7): 657-660.
    [112] Wang J Q, Qian C F , Zhang B J, et al. Valence electron structure analysis of the cubic silicide intermetallics in rapidly dolidified Al-Fe-V-Si alloy [J]. Scripta Materialia, 1996, 34(10): 1509-1515.
    [113] Wang J Q, Qian C F , Chen X F, et al. Crystal and valence electron structure of the a-( AlMnSi) phase [J]. Matreials Sci. Letters, 1996, (15): 579-581.
    [114] Liu Zhilin, Li Zhilin, Sun Zhenguo, et al. Valence electron structure of cast iron and graphitization behavior criterion of elements [J]. Science in China (Series A), 1995, 38(12): 1484-1491.
    [115] Liu Zhilin, Sun Zhenguo, Li Zhilin. Valence electron theory of graphite spheroidizing in primary crystallization [J]. Science in China (Series A), 1995, 38(12): 1492-1500.
    [116] Yin Y S, Wang X W, Shi Z L. Analysis of valence electron structures (VES) ofintermetallic Fe3Al compounds [J]. Mater. Chem. Phys., 1995, 39(3): 243-247.
    [117] Yin Y S, Fan R H, Xie Y S. The effect of chromium on the valence electron structure of Fe3Al intermetallic compounds (ternary) [J]. Mater. Chem. Phys., 1996, 44 (2): 190-193.
    [118] Liu Zhilin, Li Zhilin, Sun Zhenguo. Electron density of austenite/mar-tensite biphase interface [J]. Chinese science bulletin, 1996, 41(5): 36 7-370.
    [119] Sun Zhenguo, Li Zhilin, Liu Zhilin. Calculation of electron density of biphase interface in alloy [J]. Chinese Science Bulletin, 1996, 41(9): 718-722.
    [120] Li Zhilin, Liu Zhilin, Sun Zhenguo. Valance electron structure of austenite-martensite interface and phase transformation toughening [J]. Chinese Journal of Mechanical Engineering, 1996, 9(2): 119.
    [121] Zhu Ruifu, Lu Yupeng, Zhang Fucheng. Valence electron structure of high manganese steel and its intrinsic property [J]. Chinese Science Bulletin, 1996, 41(15): 1313-1316.
    [122] Sun Zhenguo, Li Zhilin, Liu Zhilin. Calculation of the covalent electron density of (001) crystal plane of Fe3C [J]. Chinese Science Bulletin, 1997, 42(1): 80-82.
    [123] Liu Zhilin , Li Zhilin, and Sun Zhenguo. Catalysis mechanism and catalyst design of diamond growth [J]. Metallurgical and Materials Transactions, 1999, 30(11): 2757-2765.
    [124] Liu Zhilin, Sun Zhenguo, Li Zhilin. Application of Yu's theory and Cheng's theory in alloy research [J]. Progress in Natural Science, 1998, 8(2):134-146.
    [125] Li Zhilin, Ma Changxiang, Liu Zhilin. Valence electron structure of high property high-speed-impact-resistance steel and its composition design [J]. Acta Metallurgical Sincia (English Letters), 1999, 12(4): 408-415.
    [126] Li Zhilin, Liu Zhilin, Liu Weidong. Calculation of the valence electron structures of alloying cementite and its biphase interface [J]. Science in China (Series E), 2001, 44(5): 544- 552.
    [127]朱瑞富,吕宇鹏,陈传忠. Fe-C-Mn合金奥氏体的价电子结构分析[J].金属学报, 1996, 32 (6): 561-564.
    [128] Xu Wandong, Zhang Ruilin, Yu Ruihuang. Calculation of the binding energy of the compound crystal of transition elements [J]. Sciencein China (Series A), 1989, 32(3):351- 361.
    [129]刘志林,李志林,刘伟东.界面电子结构与界面性能[M].北京:科学出版社, 2002: 1-240.
    [130] Min X G, Sun Y S, Xue F, et al.. Analysis of valence electron structures (VES) of intermetallic compounds containing calcium in Mg-Al-based alloys [J]. Mater. Chem. Phys., 2002, 78 (1): 88-93.
    [131] Zheng Y, You M, Xiong W H, et al.. Valence-electron structure and properties of main phase in Ti(C, N)-based cermets [J]. Mater. Chem. Phys., 2003, 82 (3): 877-881.
    [132] Fan R H, Qi L, Sun K N, et al. The bonding character and magnetic properties of Fe3Al: comparison between disordered and ordered alloy [J]. Phys. Lett. A, 2006, 360 (2): 371-375.
    [133] Cao Y J, Hou X H, Mo Q F, et al.. Atomic bonding of precipitate and phase transformation of Al-Cu-Mg alloy [J]. Alloys Compd., 2007, 441 (1-2): 241-245.
    [134]张大童,李元元,龙雁.铝基复合材料研究进展[J].轻合金加工技术, 2000, (1): 5-10.
    [135]汤文明,唐红军. Fe-Al金属间化合物基复合材料的研究进展[J].中国有色金属学报, 2003, 13(4): 811-826.
    [136] Brandes E A, Brook G B. Smithells metals reference book [M]. American: Butterworth-Heinemann Ltd, 1992.
    [137] Richard R W, Jones R D, Clements P D &Clarke H. Metallurgy of continuous hot dip aluminizing [J]. Int. Mat. Rev, 1994, 395: 191.
    [138] Bouche K, Barbier F, Coulet A. Intermetallic compound layer growth between solid iron and molten aluminum [J]. Materials Science and Engineering, 1998, A249: 167-175.
    [139] Bouayad A, Gerometta C H, Belkebir A, Ambari A. Kinetic interactions between solid iron and molten aluminum [J]. Materials Science and Engineering A, 2003, 363: 53-61.
    [140]谷臣清.材料工程基础[M].北京:机械工业出版社, 2003: 288.
    [141]郭建亭,任维丽,周健. Ni-Al合金化研究进展[J].金属学报, 2002, 38(6): 667-672.
    [142] Zhang Jiao, Sun Bao-de, Xia Zhen-hai. Layered structure of Ni-Al multi-layered metal-intermetallic composites fabricated by in-situ reactions [J]. Trans. Nonferrousmet. Soc. China, 2004, 14(6): 1117-1123.
    [143]王华彬,韩杰才,张幸红,杜善义. Ni-Al粉连续加热过程中的反应机理[J].金属学报, 1998, 34(9): 992-999.
    [144]徐卓辉,唐国翌.铝/镍层状复合金属的工艺制备技术研究[J].稀有金属材料与工程, 2007, 36(2): 296-301.
    [145] López G A, Sommadossi S, Zieba P, Gust W, Mittemeijer E J. Kinetic behaviour of diffusion-soldered Ni/Al/Ni interconnections[J]. Materials Chemistry and Physics, 2003, 78(2): 459-463.
    [146]高伟丽,严红革,盛绍顶,陈振华.气相沉积制备Ni-Al合金纳米粉末的相生成规律[J].中国有色金属学报, 2006, 16(2): 41-348.
    [147]樊湘芳,邱长军,刘瑞林. Ni/Al喷涂层反应烧结的组织演变及结合机制[J].材料科学与工艺, 2002, 10(2): 183-185.
    [148]杜艳玲,邱长军,周伟,樊湘芳,何彬. Ni-Al涂层反应烧结界面组织与特性[J].材料科学与工艺, 2007, 15(4): 586-589.
    [149]邱长军,樊湘芳,刘瑞林. Ni-Al喷涂层反应烧结时界面结构的择优演变[J].材料导报, 2001, 15(4): 65-66.
    [150]章跃,周广宏.退火工艺对Ni-Al复合涂层的组织和力学性能的影响[J].材料热处理, 2001, 26(8): 7-9.
    [151]王红星,盛晓波,储成林.包渗时间对Cu表面Ni-Al涂层组织和性能的影响[J].材料工程, 2008, 8: 52-57.
    [152]索进平,冯涤,骆合力.耐磨耐蚀Ni-Al金属间化合物基复合保护层的研制[J].材料保护, 2002, 35(2): 34-36.
    [153]袁媛. Sn-Ni固扩散偶的界面反应[J].粉末冶金材料科学与工程, 2006, 11(5): 268-272.
    [154] BouchéK, Barbier F, Coulet A. Intermetallic compound layer growth between solid iron and molten aluminium [J]. Materials Science and Engineering, 1998, A249: 167-175.
    [155] Yang T Y, Wu S K, Shiue R K. Interfacial reaction of infrared brazed NiAl/Al/NiAl and Ni3Al/Al/Ni3Al joints [J]. Intermetallics, 2001, 9(4): 341-347.
    [156]邹贵生,吴爱萍,任家烈,等. Al/Ti/Al复合层原位生成金属间化合物连接陶瓷[J].稀有金属材料与工程, 2003, 32(12): 981-985.
    [157]李亚江, Gerasimov S A,王娟. Ti/Al异种材料真空扩散焊及界面结构研究[J].材料科学与工艺, 2007, 15(2): 206-210.
    [158]王飞,王伟策,王耀华.多层Al-Ti复合板爆炸焊接实验研究[J].工程爆破, 2002, 8(4): 7-11.
    [159]倪加明,李俐群,陈彦宾.铝/钛异种合金激光熔钎焊接头特性[J].中国有色金属学报, 2007, 17(4): 617-621.
    [160] Raman A, Schubert K. uber den Aufbau einiger zu TiAl3 verwandter LegierungsreihenⅡ. Untersuchungen in einigen T-Al-Si und T4…6-In-Systemen [J]. Z Metallkd, 1965, 56: 44.
    [161] Katter U R, Burton B P. The Al-Bi-Cu system Aluminum-Bismuth-Copper [J]. Journal of Phase Equilibria, 1992, 13(6): 629-635.
    [162]张瑞林.固体与分子经验电子理论[M].吉林:吉林科学技术出版社, 1993: 239-240.
    [163] Cheng Kaijia. Application of the TFD model and Yu's theory to material design [J], Progress in Natural Science, 1993, 3(3): 211-230.
    [164]程开甲,程漱玉.界面和间界面边界条件的重要作用[J].稀有金属材料与工程, 1998, 27(4): 189-193.
    [165] L.鲍林.化学键的本质[M].卢嘉锡,黄耀增,曾广植译,上海:上海科学技术出版社, 1966: 245.
    [166]殷为民,郭键亭,胡壮麟.长程有序金属间化合物Fe3Al的研究现状与发展[J].稀有金属材料与工程, 1996, 6(4): 277-283.
    [167]左秀忠. Fe-Al合金相及相变的价电子结构分析[J].金属学报, 1982, 18(6): 735-745.
    [168] Berkowitz A E, Kneller E. Magnetism metallurgy, Vol.1-2 [M]. New York: Academic Press, 1969: 561.
    [169] Haekenbracht D, Kubler J. Electronic magnetic and cohesive properties of some nickel-aluminum compounds [J]. Phys. F: Met. Phys., 1980, 10(3): 427-440.
    [170] C. A库尔森原著, R麦克威尼修订,佘敬曾译.原子价(第二版)[M].北京:科学出版社, 1986: 254.
    [171]张迎九,谢佑卿,李为民等. Ni3Al的德拜温度及物理性质[J].中国有色金属学报,1996, 6(4): 117-121.
    [172]陈舜麟,王天明.金属间化合物Ni3Al和NiAl晶体中电子杂化态结构和结合能的计算及其脆性[J].兰州大学学报自然科学版, 1997, 33(1): 58-63.
    [173]谢佑卿.金属材料系统科学的基础理论与应用[M].长沙:中南大学, 2004: 37-38.
    [174]徐万东,张瑞林,余瑞璜.过渡金属化合物晶体结合能计算[J].中国科学A, 1988, l8(3): 323-330.
    [175]陈舜麟,顾强,王天民. Co3Ti与CoTi的晶体结构与结合能的计算及其脆性[J].物理学报, 1995, 44(6): 936-942.
    [176] Kittel C. Introduction to solid state physics [M]. New York: John Wiley & Sons Inc, 2005.
    [177] Villas P, Calvert L D. Pearson’s handbook of crystallographic data for intermetallic phases [M]. American Society for Metals, 1991.
    [178]刘志林,李志林,刘伟东.界面电子结构与界面性能[M].北京:科学出版社, 2002, 149-154.
    [179]邹贵生,吴爱萍,任家烈,杨俊,梁陈剑,李晓宁. Al/Ti/Al复合层原位生成金属间化合物连接陶瓷[J].稀有金属材料与工程, 2003, 32(12): 981-985.
    [180] Bouche K, Barbier F, Coulet A. Intermetallic compound layer growth between solid iron and molten aluminum [J]. Materials Science and Engineering, A249, 1998: 167-175.
    [181] López G A, Sommadossi S, Zieba P, Gust W, Mittemeijer E J. Kinetic behavior of diffusion-soldered Ni/Al/Ni interconnections [J]. Materials Chemistry and Physics, 2003: 78(2): 459-467.
    [182]王华彬,韩杰才,张幸红,杜善义. Ni-Al粉连续加热过程中的反应机理[J].金属学报, 1998, 34(9): 992-999.
    [183]吴引江,兰涛.漫渗燃烧合成TiAl金属间化合物的物化过程探讨[J].稀有金属材料与工程, 1996, 25(2): 17-20.
    [184] Goda D J, Richards N L, Caley W F, Chaturvedi M C.The effect of processing variables on the structure and chemistry of Ti-aluminide based LMCS [J]. Materials Science and Engineering A, 2002, 334(1-2): 280-290.
    [185]李志强,韩杰才,赫晓东,张幸红.燃烧合成TiAl金属间化合物的反应机制[J].稀有金属材料与工程, 2002, 31(1): 4-8.
    [186] Jian Guo Luo, Viola L Acoff. Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils [J]. Materials Science and Engineering A, 2004, 397(1-2): 167-172.
    [187] B. P.里亚博夫著,王义衡,赵瑞湘译.铝及铝合金与其它金属的焊接[M].北京:宇航出版社, 1990:81.
    [188]李文,关振中,杜立明等. Ti-Al系金属间化合物价电子结构对其脆性的影响[J].金属热处理, 1996, (11): 3-5.
    [189]李文,张瑞林.金属间化合物的价电子结构脆性判据[J].长春大学学报, 1999, 9(1): 11-15.
    [190]李文,陈岱发,关振中. Ti-Al系金属问化合物力学性能的电子理论[J].物理学报, 1998, 12(47): 2064- 2073.
    [191]史冬敏. Ni-Al、Ca-X(X=Si,Ge,Sn,Pb,Zn)金属间化合物的第一性原理研究[D].大连理工大学, 2009.
    [192]张永刚,韩雅芳,陈国良主编.金属间化合物结构材料[M].北京:国防工业出版社, 2001: 551.
    [193]王兴庆,隋永江,吕海波.铁铝原子在金属间化合物形成中的扩散[J].上海大学学报自然科学版, 1998, 14(6): 661-668.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700