基于柔性多体动力学的混凝土泵车臂架系统的建模与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济建设步伐的加快,国内商品混凝土行业和建筑机械业务的快速发展,施工规模以及施工范围的不断扩大,市场对混凝土机械的需求呈猛增势态,带动了混凝土输送机械的高速发展,混凝土泵车的市场空间也得到了进一步扩大。目前混凝土泵车已经成为现代建筑企业中不可缺少的建筑机械,对泵车臂架系统自动控制的研究,可以有效的提高施工质量和泵车的工作效率。泵车的臂架是冗余自由度、强非线性、刚柔耦合的多体系统,它涉及了多体动力学以及控制、运动学逆问题、流体力学等方面的问题。因此,对于泵车臂架系统的研究具有重要的理论价值和实际的工程意义。
     本文以混凝土泵车的臂架系统为研究对象,主要研究多体动力学尤其是柔性多体动力学理论在混凝土泵车浇筑自动化领域的应用,重点是进行理论性的分析。对混凝土泵车臂架系统的运动以及控制、仿真方面作了细致的研究工作,具体的研究内容包括以下几个方面:
     (1)把混凝土泵车臂架系统看作一个开环的运动链,由一系列连杆通过转动副串联、而成。开链一端固定在基座上,另一端自由,从而完成泵车的浇筑动作。基于多刚体动力学的理论,对臂架和液压缸的运动分别进行分析,结合分析力学的相关理论,建立臂架系统的多刚体动力学方程,求解方程中的相关参数并仿真,研究刚性臂杆转动角度的变化对臂架末端轨迹的影响。
     (2)随着浇筑范围的扩大,臂架朝着轻质长臂杆的方向发展,很有必要考虑柔性变形对臂架运动轨迹的影响。基于柔性多体系统动力学的相关理论,假设各臂杆均为等截面欧拉梁,采用形函数的方式描述臂杆上任意点的弹性变形,运用递推列式和拉格朗日方程以及虚功原理,建立臂架系统的柔性多体动力学方程,对方程采用向后扩展的微分求解器求解并仿真,研究柔性变形对泵车臂架末端轨迹的影响。并与刚性臂杆的结论进行对比,分析两种建模方法的优缺点。
     (3)对泵车浇筑自动化进行研究。采用轨迹规划和最优控制相结合的方法对臂架系统的末端轨迹进行运动学逆问题的研究,得到臂架末端达到预期浇筑点时的最优路线,作为PD控制方法的控制率期望值,结合前面建立的臂架系统动力学方程,分别建立泵车刚性臂架系统的控制动力学方程和柔性臂架系统的控制动力学方程。采用数值迭代的算法对方程求解并仿真,分析臂架系统PD控制的精度和末端轨迹的变化。此方法是基于系统的精确数学模型,把PD控制率直接加到液压阀上,控制臂杆液压缸的驱动力,对每个臂杆的液压系统进行独立的闭环控制,最后形成臂架以及液压系统整体的开环控制,研究控制的精度和控制的实时性,即建立泵车臂架系统的完备动力学方程。
     (4)分析了泵车输料管中混凝土砂浆的流动对泵车臂架的振动影响,由于混凝土砂浆不是单一流质,可以简化为固液两相流问题。通过对输料管道和浆体单元进行受力分析,建立输料管道的运动微分方程,结合固液两相流的质量、流量和压强的相关公式,建立了混凝土砂浆在输料管道中流动的固液两相流动方程。
     (5)采用ADAMS软件分别建立泵车臂架系统的刚性仿真模型和柔性仿真模型,刚性模型的建立简化了部分结构,各臂杆以及液压缸部分均采用铰接的方式连接。柔性模型是在刚性模型的基础上建立的,通过离散各臂杆为有限个单元,而各臂杆的连接处和液压缸部分还保留其刚性特性。给定各臂杆的转动角度与前面数值计算的期望角度相同,仿真分析研究臂架的运动情况、末端轨迹的变化以及柔性变形对各臂杆转角变化的影响,检验前面对臂架系统建模控制求解的正确性。
With the development of the economic construct in China, the commercial concrete industry and the construction machinery business step into a new stage, in which the construction scale and scope become boarder and boarder, and the demand of the concrete machine from the market become stronger and stronger, so that the rapid development of the concrete transportation machine expand the market space of the concrete pump truck. Nowadays the concrete pump truck has become the important machine in modern construction industry. Study on the automatic control of the concrete pump truck arm system can effectively enhance the construction quality and the working efficiency of the pump truck. The arm system of the pump truck is a multi-body system with redundant freedom, strong nonlinear, coupled with rigid and flexible characters.The system is related to multi-body dynamics, control theory, kinematic reverse problem and hydrodynamics,etc.So it is of great theoretic value and real engineering significance to study the arm system of the concrete pump truck.
     In this article, the arm system of the concrete pump truck is considered as the study object. The application of multi-body dynamics,especially the flexible multi-body dynamics theory in the automatic pouring field of the concrete pump truck is mainly studied, and focus on the theoretic analysis.Much research has been done on the dynamics,control and simulation of the concrete pump truck arm system, and in detail the following contents are included.
     (1)The pump truck arm system is considered as a open-looped movement chain, consists of a series of poles connected with rotation fit. One end of the chain is fixed on the basement, the other end is free, so that the pouring movement is completed. Based on the multi-body rigid dynamic theory, the movement of the arms and the hydraulic cylinders are analyzed respectively, and the multi-body rigid dynamic equation of the arms is built with correlative theory of the analysis mechanics.After solution of the equation and with simulation, the influence to the arm end track from the rotation angles change of the rigid arms is studied.
     (2) With the extension of the pouring range, the arms are tending to be longer and lighter, which is necessary to consider the influence to the arm moving track from the flexible distortion. Based on the correlative theory of the flexible multi-body dynamics, all the arms are supposed as the equal-section Euler beams and the elastic distortion of any point on the arm is described by the style function. With the deduce formula, the Lagrange Equation and the virtual work theory, the flexible multi-body dynamic equation is built.And with the MEBFDAE to solute the equation and according to the simulation results, the influence to the arm end track from the flexible distortion is studied.Compared with the conclusion of the rigid arms, the advantages and disadvantages of the two modeling methods are analyzed.
     (3)The automation of pouring is studied. With the track programming and the optimization method, the dynamic converse problem of the arm end track is researched, so as to get the optimized rotation angle when the arm end reaches the expected pouring point, and the angle is considered as the expected value of the PD control rate.Combined with foregoing dynamic equation of the arm system, the dynamic control equations of the rigid and flexible arm systems are both built. With the numerical iterative arithmetic solving the equations and with simulation, the precision of the PD control and the change of the end track are both analyzed. This method is based on the accurate mathematic model of the system, in which the PD control rate is applied to the hydraulic driving force of the arms to independently close-loop control the hydraulic cylinder of each arm. And then it is extended to the whole control to the arms and the hydraulic driving system, with the study of the control precision and the real time character, the complete dynamic equation of the pump truck arm system is built.
     (4) The libration influence to the arms from the flow of the concrete slurry in the pump truck pipes. Because the concrete slurry is not the unitary fluidity, it can be predigested as the solid-liquid two phases flow. With the force analysis of the transport pipes and the slurry unit, the dynamic differential equation of the transport pipes is built. And with the correlative formulas of the mass, flex and the pressure of the solid-liquid two phases flow, the solid-liquid two phases flow equation of the concrete slurry is built.
     (5) With the ADAMS software, the rigid and flexible models of the pump truck arm system are both built. When building the rigid model, the structure segment is predigested and each arm is connected with the hydraulic cylinder by hinges. The flexible model is based on the rigid one.By dispersing the finite element of each arm, remaining the rigid characters at the hydraulic cylinders and the connection of each arm, with the same rotation angles as values in the foregoing numerical calculation, the movement situation of the arms, the change of the arms end track and the influence to the rotation angles from the flexible distortion are simulated and analyzed. The correction of the foregoing calculation is proved.Also the forces on each arm are simulated.
引文
1.张国忠.现代混凝土泵车及施工应用技术[M].北京:中国建材工业出版社,2004
    2.陈宜通.混凝土机械[M].北京:中国建材工业出版社,2002
    3.吴学松.国内混凝土泵车发展概况[J].建筑机械化,2004(3):9-10
    4.陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996
    5.黄文虎.多柔体系统动力学[M].北京:科学出版社,1996
    6.洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999
    7.洪嘉振.多体系统动力学-理论,计算方法和应用[M].上海:上海交通大学出版社,1992
    8.覃正.多体系统动力学压缩建模[M].科学出版社,2000
    9.李光.液压柔性臂的动力学及控制研究[D].长沙:中南大学,2003
    10.刘克平.柔性体系统振动控制及约束柔性机械臂系统鲁棒控制研究[D].吉林大学,2002
    11.汪性武.柔性机械臂的振动控制[D].南京航空航天大学,2004
    12.林建忠.流固两相拟序涡流及稳定性[M].清华大学出版社,2003,8
    13.方丁酉.两相流动力学[M].国防科技大学出版社,1988,9
    14.G.W.戈威尔.复杂混合物在管道中的流动[M].石油工业出版社,1986,3
    15.沈崇堂.非牛顿流体力学及其应用[M].高等教育出版社,1989,3
    16.郭荣良.流体力学及应用[M].机械工业出版社,1996,5
    17.叶敏.分析力学[M].天津大学出版社,2001,4
    18.包日东.输流管道流固耦合系统的动力学特性及其工程应用[D].东北大学,2007
    19.郭烈锦.两相与多相流动力学[M],西安:西安交通大学出版社,2002
    20.林宗虎.变幻流动的科学:多相流体力学[M],北京:清华大学出版社,2000
    21.何永森,刘绍英.机械管内流体数值预测[M],北京:国防工业出版社,1999
    22.郭立新,赵明杨,张国忠等.混凝土泵车布料机构自动浇筑及过程仿真[J].东北大学学报(自然科学版),2000,21(6):617-619
    23.林玲实.现代混凝土泵车技术及CAD[D].沈阳:东北大学,2000
    24.姜雪梅.混凝土泵车总体设计及CAD系统开发[D].沈阳:东北大学,2000
    25.王玉明.混凝土泵车臂架运动与控制的研究[D].沈阳:东北大学,2003
    26.董忠红.水泥输送泵车结构强度研究[D].长安大学,2002
    27.郭立新.泵车布料机构机器人化若干问题的研究[D].沈阳:东北大学,1999
    28.周淑文.基于虚拟现实技术的混凝土泵车臂架机器人化的研究[D].沈阳:东北大学,2004
    29.冯升华.混凝土泵车布料机构仿真与有限元分析[D].沈阳:东北大学,1997
    30.王海英.水泥混凝土泵车振动性能与结构优化设计研究[D].长安大学,2003
    31.刘朝晖.柔性冗余度机器人中的混沌研究[D].西南交通大学,2006
    32.崔明涛.不确定性连续体结构拓扑优化和柔性机构设计研究[D].西安电子科技大学,2006
    33.陈凯,孙国正.混凝土泵车臂架结构的智能优化设计[J].武汉理工大学学报(交通科学与工程版),2003,27(2):244-246
    34.张艳伟,孙国正.混凝土泵车臂架系统优化及仿真[J].武汉理工大学学报(交通科学与工程版),2002,26(2):246-248
    35.冯升华,李建明,张国忠.混凝土泵车布料机构的计算机仿真研究[J].建筑机械,1999(12):42-45
    36.郭立新,陈长征,张国忠等.混凝土泵车布料机构水平工况的动态分析[J].振动与冲击,1999,18(3):77-80
    37.郭立新,张国忠,李景坤.混凝土泵车布料机构运动学分析及轨迹规划控制建模与仿真[J].建筑机械,2000(4):29-32
    38.王海英,胡新杰.水泥混凝土输送泵车臂架机构动力学仿真研究[J].筑路机械与施工机械化,2003(6):39-40
    39.张艳伟.基于改进型遗传算法的混凝土泵车臂架系统的优化研究[D].武汉:武汉理工大学,2002
    40.才娟.混凝土泵车臂架系统的柔性多体动力学分析与仿真[D].沈阳:东北大学,2005
    41.张婧.水泥混凝土泵车柔性臂架系统动力学分析与控制[D].沈阳:东北大学,2006
    42.郭立新,张国忠,郭咏梅.混凝土泵车布料机构系统有限元建模及其动态分析[J].建筑机械,1999(12):46-48
    43.王海英,胡新杰.水泥混凝土输送泵车臂架机构动力学仿真研究[J].筑路机械与施工机械化,2003(6):39-40
    44.李寿佛,苏凯,李林海.降阶向后微分公式[J].湘潭大学自然科学学报,1997,19(4):1-4
    45.周淑文,张国忠,王铁.混凝土泵车智能浇注仿真[J].建筑机械化,2004,3:52-54
    46.宋晓秋.微分代数系统的数值仿真算法[J].计算机工程与设计,2000,21(5):58-60
    47.唐方台,何玉东.37m混凝土泵车泵送承力结构的有限元分析探讨[J].建筑机械与管理,2003,8:13-15
    48.李家武,阎丽娟.40米混凝土泵车回转底座的有限元分析[J].设计计算,2005,8:29-32
    49.盛春芳.2002年我国混凝土机械生产发展情况和产品开发动态[J].建筑机械技术与管理.2003,6:37-39
    50.郭立新,张宇,张国忠.CAD技术在泵车设计中的研究与应用[J].现代机械,1999,3:4-6
    51.阎丽娟,冯敏.HB37型混凝土泵车布料杆的有限元计算与分析[J].设计与计算,2005,1:30-33
    52.郭立新,张国忠,郭咏梅.泵车布料机构运动学分析及轨迹规划控制建模与仿真[J].机械,2001, 28(1):12-14
    53.周迎春.泵车发展趋势浅谈[J].决策参谋,2001,6:14-15
    54.苏武,许智慧.泵车支腿及布料臂架型式分析[J].产品技术,2003,3:8-10
    55.梁莎.臂架式混凝土泵车回转惯性冲击及解决方案探讨[J].产品技术,2006,7:90-93
    56.张启军,张忠海.对混凝土泵现状与市场需求及关键技术的探讨[J].建设机械技术与管理,2003,4:37-39
    57.郭立新,李江.多节臂泵车布料机构浇筑自动规划及其仿真[J].现代机械,2000,2:38-43
    58.易阔景.附着平臂塔机式混凝土布料机构[J].工程机械,1997,9:6-7
    59.丁晓东,闫胜利.改型水泥混凝土泵车振动性能试验研究[J].山东交通学院学报,2004,12(3):10-12
    60.何玉东.国外混凝土泵车液压系统分析[J].产品技术,2000,5:19-22
    61.李战慧,李活.混凝土泵臂架运动的优化[J].产品技术,2005,12:76-79
    62.张国忠,周淑文,姜雪梅.混凝土泵车臂架布料机构及其运动学仿真方法的研究[J].沈阳大学学报,2004,16(6):27-30
    63.王绍华,于洪思.混凝土泵车臂架连杆机构参数的优化[J].沈阳建筑工程学院学报,1999,15(1):73-76
    64.周淑文,张思奇.混凝土泵车臂架瞬态动力学分析[J].设计计算,2006,10:72-79
    65.周淑文,张国忠.混凝土泵车臂架智能控制系统开发[J].设计制造,2004,1:60-62
    66.张思奇,周淑文.混凝土泵车臂架自动浇筑联合仿真[J].工艺与设备,2006,11:91-93
    67.吴瀚晖,宁介雄.混凝土泵车布料臂架系统的仿真及参数化设计[J].产品技术,2006,6:80-83
    68.吕彭民,汪红兵.混凝土泵车冲击载荷对结构动态特性的影响[J].中国公路学报,2003,16(4):115-117
    69.郑红.混凝土泵车的稳定性分析[J].本溪冶金高等专科学校学报,2001,3(3):17-23
    70.汪红兵,吕彭民.混凝土泵车动态优化研究[J].产品技术,2004,11:74-76
    71.郭立新,张国忠,李景坤.混凝土泵车浇筑过程机器人化探讨[J].机械设计与制造工程,2000,29(2):6-8
    72.朱云峰,赵群飞.混凝土泵车控制系统优化算法的设计[J].微机算机信息,2006,22(3):50-52
    73.刘永红,易小刚.混凝土泵车柔性多体动力学建模与分析[J].中国工程机械学报,2006,4(4):397-402
    74.傅磊,屈福政.混凝土泵车液压系统仿真研究[J].大连理工大学学报,2000,40(1):76-79
    75.周淑文,张国忠,王铁.混凝土泵车自动浇注的研究[J].计算机测量与控制,2004,12(1):48-49
    76.张艳伟,佟力.基于ANSYS的混凝土泵车臂架结构分析研究[J].武汉理工大学学报,2004,28(4):536-539
    77.李清伟,赵继云.基于模糊理论的混凝土泵车臂架系统稳健设计[J].机电工程,2007,24(1):22-24
    78.周淑文张国忠,王铁.基于虚拟现实技术的混凝土泵车智能浇注的研究[J].机械设计与制造,2004,3:87-88
    79.王绍华,于洪思.面向对象的混凝土泵车臂架设计混合型专家系统[J].机械设计与制造,1999,20-21
    80.郭立新,赵明扬.冗余度机器人作业区域轨迹的自动规划[J].机械科学与技术,2002,21(2):182-184
    81.周淑文,张国忠.虚拟现实技术在混凝土泵车设计中的应用[J].东北大学学报,2003,24(5):464-466
    82.沈涛,姜学梅.有限元分析在混凝土泵车臂架设计中的应用[J].山西机械,2002,1:6-7
    83.S Kilicaslan, T Balkan, S K Ider. Tipping Loads of Mobile Cranes with Flexible Booms[J].Journal of Sound and Vibration,1999,223(4):645-657.
    84.A Mikkola. Using the Simulation Model for Identification of the Fatigue Parameters of Hydraulically Driven Log Crane[J].Journal of Mechanical Design,2001(3):125-131.
    85.J.R. Cash, S.Considine. An MEBDF code for stiff initial value problems [J].ACM Trans. Math. Software,1992(18):142-160
    86.Ohmura,Takayoshi.MOUNTED CONCRETE PUMP WITH 27 m LONG BOOM[J].IHI Engineering Review,1985,3(18):147-149
    87.Kaneko,Hidefumi.Truck mounted concrete pump with 32 m boom[J].IHI Engineering Review,1988, 1(21):34-35
    88.Palmer,Dean. Infinitely variable flow oil pump gets closer to reality for trucks and cars[J].Eureka, 2005,1:10-11
    89.Hoon Cho, Dohoy Jung. Application of controllable electric coolant pump for fuel economy and cooling-performance improvement[J].Journal of Engineering for Gas Turbines and Power,2077, 1(129):239-244
    90.Webb,Chris. Moving concrete-pump, skip or conveyor? [J].Concrete,1989,5(23)'
    91.Wallace, Mark A. Adding value with a boom pump[J].Concrete Prod,1997,8(15):548-552
    92.Fleischfresser,Woifgang.Hydraulic systems for truck-mounted concrete mixers[J].Diesel Progress International Edition,2004,6(23):39-40
    93.Ramanathan,K. Cartridge system improves dump truck's performance[J].Hydraulics and Pneumatics, 1987,4(40):56-58
    94.Miyamoto, S.Control design based on an LMI loop shaping method and its application to a control problem of boom vibration[J].Transactions of the Society of Instrument and Control Engineers,1999, 35(12):1567-1574
    95.Kronenberg,Jurgen. First delivery of flexible, five-sectioned booms[J].Concrete,2005,39(5):46-47
    96.Hansen, Elmer C. Unsteady pressure-driven viscous flows beneath concrete pavement slabs[J]. Journal of Hydraulic Engineering,1991,117(6):713-724
    97.1'ssa, Mohsen A. Effect of construction loads and vibrations on new concrete bridge decks[J].Journal of Bridge Engineering,2000,5(3):249-258
    98.Cope, James L. GUIDE FOR MEASURING, MIXING, TRANSPORTING AND PLACING CONCRETE[J].Journal of The American Concrete Institute,1985,82(3):243-257
    99.Poppy, Wolfgang. MASCHINEN UND GERAETE FUER DEN BETONBAU.left bracket Machinery and Equipment for Concrete Construction Work right bracket[J].Baumasch Bautech,1974,21(11): 389-392
    100. Paulsson, C.Mobile concrete pumps with cranes introduced in Sweden[J].Cem Betong,1970,45(2): 147-156
    101.Kronenberg, Jurgen. Concrete pumps at Delhi's Metro construction sites[J].Concrete Engineering International,2005,9(4):48
    102. Omalley, Tom. Pump pays back contractor in more ways than one[J].Concrete Construction-World of Concrete,2002,47(11):16
    103.Sissom, Leighton. E.WELD FAILURE OF A CONCRETING PUMP BOOM UNDER DYNAMIC LOADING[J].Journal of Products Liability,1978,2(3):147-154
    104.Altmann, U.Proportional valves in the distributor mast control of concrete pumps[J].Oelhydraulik und Pneumatik,1985,29(7):531-534
    105.Koski, John A.Concrete boom trucks[J].Aberdeen's Concrete Construction,1993,38(9):3
    106.Miura, Nobuyuki.IPF 85B TYPE MOBILE CONCRETE PUMP WITH DOUBLE ARTICULATED BOOM[J].IHI Engineering Review,1983,16(1):71-75
    107. Fleischfresser, Wolfgang. Hydraulic systems for truck-mounted concrete mixers[J].Diesel Progress International Edition,2004,23(6):39-40
    108.Kronenberg, Jurgen. Why do truck-mounted concrete pumps need 85 bar[J].Concrete Engineering International,2003,7(3):45-47
    109.贾英宏,徐世杰,聂润兔.充液挠性航天器的建模与动力学分析[J],北京航空航天大学学报,2003,29(1):35-38
    110.金国光,刘又午,王树新等.带有空间伸展机构的复杂航天器柔性多体动力学分析[J],中国机械工程学报,2000,11(6):650-653
    111.仲昕,杨汝清,徐正飞,高建华.多柔体系统动力学建模理论及其应用[J],机械科学与技术,2002,21(3):387-389
    112.刘又午.多体动力学在机械工程领域的应用[J],中国机械工程学报,2000,11(1-2):144-148
    113.孙世基,陆志华.内燃机曲柄连杆机构运动动力学分析的柔性多体建模方法[J],内燃机,1995(5):8-13
    114.张绪平,余跃庆.综合考虑关节及杆柔性的空间机器人动力学分析[J],机械科学与技术,1998,17(5):775-778
    115.王毅,吴德隆.航天柔性多体动力学及其发展[J],导弹与航天运载技术,1995(1):7-18
    116.洪嘉振,蒋丽忠.柔性多体系统刚-柔耦合动力学[J],力学进展,2000,30(1):15-19
    117.李晏,石来德.起重机臂架-箱型梁模型的动力响应分析[J],现代机械,2000(4):26-28
    118.唐华平,刘继承.一种多柔体系统动力学建模方法[J],机械科学与技术,2002,21(4):531-533
    119.赵平,薛克宗.柔性多体动力学的建模与计算[J],华北水利水电学院学报,1994(1):52-61
    120.张鹏.主轴多部件系统结合部刚柔耦合动力学分析研究[J],机械科学与技术,2007,12:7-9
    121.陆志华,黄承绪,孙世基.刚柔耦合多体系统动力学模型的数值解法[J],上海交通大学学报,1997,31(6):65-68
    122.马思群,李献杰,孙彦彬.门座起重机变幅机构刚柔耦合仿真研究[J],建筑机械化,2007,12:39-41
    123.张国庆,王永,梁清,毕永建.一类动量交换耦合系统的鲁棒减振跟踪[J],振动与冲击,2007,26(10):16-18
    124.A Cardona, M Geradin.Modeling of a Hydraulic Actuator in.Flexible Machine Dynamics Simulation[J].Mech Mach Theory,1990,25(2):193-207
    125.Jari M, Asko Ellman, Robert P. Dynamic Simulations of Flexible Hydraulic-Driven Multibody Systems using Finite Strain Beam Theory[J].Submitted to Fifth Scandinavian International Conference on Fluid Power,1997,1-16
    126.A Mikkola. Using the Simulation Model for Identification of the Fatigue Parameters of Hydraulically Driven Log Crane[J].Journal of Mechanical Design,2001(3):125-131
    127. W Gawronski,C H C Ih, S J Wang. On Dynamics and Control of Multilink Flexible Manipulators[J]. Journal of Dynamic Systems, Measurement,and Control,1995(6):134-142
    128.Johannes Gerstmayr. A 3D finite element approach to flexible multi-body systems[J].Fifth World Congress on Computational Mechanics,2002(7):7-12
    129. T J Abdulla, J R Cash, M T Diamantakis. An MEBDF Package for the Numerical Solution of Large Sparse Systems of Stiff Initial Value Problems[J].Computers and Mathematics with Applications, 2001(42):121-129
    130.J R Cash. Modified extended backward differentiation formulae for the numerical solution of stiff initial value problems in ODEs and DAEs[J].Journal of Computational and Applied Mathematics, 2000(125):117-130
    131.J Rodriguez. Modeling of Complex Systems using Nonlinear Flexible Multi-body Dynamics[D]. Atlanta Georgia USA,2002
    132.Lars Kubler, Peter Eberhard, Johannes Geisler. Flexible Multi-body Systems with Large Deformations using Absolute Nodal Coordinates for ISOPARAMETRIC Solid Brick Elements[J].ASME,2003(9): 1-10
    133.A Shabana. Dynamics of Multibody Systems[M]. John Wiley & Sons,1989
    134.J Goicolea, J Orden. Dynamic Analysis of Rigid and Deformable Multibody Systems with Penalty Methods and Energy-Momentum Schemes[J].Comp Meth Appl Mech Engrg,2000,(188):789-804
    135.Guangfu Sun, Michael Kleeberger. Dynamic response of hydraulic mobile crane with consideration of the drive system[J].Mechanism and Machine Theory,2003(38):1489-1508
    136. S Kilicaslan, T Balkan, S K Ider. Tipping Loads of Mobile Cranes with Flexible Booms[J].Journal of Sound and Vibration,1999,223(4):645-657
    137.M Linjama, T Virvalo. Low-order dynamic model for flexible hydraulic cranes[J].Proc Instn Mech Engrs,1999,213(1):11-22
    138.Guangfu Sun, Berechnung von Gittermast-Fahrzeugkranen unter Beruecksichtigung der Antriebs-und Regelungssysteme[J].Lehrstuhl fuer foerdertechnik Materialfuss Logistik der Technischen Universitaet Muenchen,2001
    139. K.K.Denoyer. DYNAMIC MODELLING AND VIBRATION SUPPRESSION OF A SLEWING STRUCTURE UTILIZING PIEXOELECTRIC SENSORS AND ACTUATORS[J].Journal of sound and vibration,1996,189(1):13-31
    140. Frederic, Boyer. Kinematic model of a multi-beam structure undergoing large elastic displacements and rotations.Part one model of an isolated beam[J].Mechanism and machine,1999,34:205-222
    141.H. Vinayak. MULTI-BODY DYNAMICS AND MODAL ANALYSIS OF COMPLIANT GEAR BODIES[J].Journal of sound and vibration,1998,210(2):171-214
    142.W. Schiehlen.Multibody System Dynamics,Roots and Perspectives[J].Miltibody system dynamics,1997,1:149-188
    143.Janko,Slavic. Simulating Multibody Dynamics With Rough Contact Surfaces and Run-in Wear[J]. Nonlinear dynamics,2006,45:353-365
    144. P. Betsch.A DAE Approach to Flexible Multibody Dynamics[J].Multibody system dynamics,2002, 8:367-397
    145.P. Shi,J. A Deformation Fleld for Euler-Bernoulli Beams with Applications to Flexible Multibody Dynamics[J].Multibody system dynamics,2001,5:79-104
    146.Andreas heckmann. A Modal Multifield Approach for an Extended Flexible Body Description in Multibody Dynamics[J].Multibody system dynamics,2005,13:299-322
    147.J.Znamenacek. An Efficient Implementation of the Recursive Approach to Flexible Multibody Dynamics[J].Multibody system dynamics,1998,2:227-252
    148.D.S.Bae. An Implementation Method for Constrained Flexible Multibody Dynamics Using a Virtual Body and Joint[J].Multibody system dynamics,2000,4:297-315
    149. R.E.Valembois. Comparison of Various Techniques for Modelling Flexible Beams in Multibody Dynamics[J].Nonlinear dynamic,1997,12:367-397
    150.Jorge.A.C.Complex Flexible Multibody Systems with Application to Vehicle Dynamics[J]. Multibody system dynamics,2001,6:163-182
    151.Adnan, Ibrahimbegovic.Finite Element Method in Dynamics of Flexible Multibody System Modeling of Holonomic Constraints and Energy Conserving Integration Schemes[J].Multibody system dynamics,2000,4:195-223
    152.Anmed A.Shabana. Flexible Multibody Dynamics Review of Past and Recent Developments [J]. Multibody system dynamics,1997,1:189-222
    153.S.Hariharesan. MODELLING, SIMULATION AND EXPERIMENTAL VERIFICATION OF CONTACTIMPACT DYNAMICS IN FLEXIBLE MULTI-BODY SYSTEMS[J].Journal of Sound and Vibration,1999,221(4):709-732
    154.H.Fang. MODELLING, SYNTHESIS AND DYNAMIC ANALYSIS OF COMPLEX FLEXIBLE ROTOR SYSTEMS[J].Journal of Sound and Vibration,1998,221(4):571-592
    155.P.TH.L.M. MODIFIED DYNAMICS MODELLING FOR MANEUVERING FLEXIBLE SPACE MANIPULATORS[J].Journal of Sound and Vibration,1995,179(5):777-792
    156. R.GLanglois. Multibody Dynamics of Very Flexible Damped Systems[J].Multibody system dynamics,1999,3:109-136
    157. Madeleine Pascal.Some Open Problems in Dynamic Analysis of Flexible Multibody Systems [J]. Multibody system dynamics,2001,5:315-334
    158.Alberto cardona. Superelements Modelling in Flexible Multibody Dynamics[J].Multibody system dynamics,2000,4:245-266
    159.郝长中.柔性多体系统和并串联机器人动力学研究[D].沈阳:东北大学,1996
    160.张成新.柔性机器人协调操作的动力学分析与规划[D].北京:北京工业大学,2002
    161.李振华..空间可展伸杆机构的运动学与动力学分析[D].北京:中国科学院研究生院,2003
    162.龚建峰,洪嘉振.柔性多体机械臂动力学仿真[J].上海交通大学学报,1994,28(增刊):120-124
    163.于学军,沈长妹,王彬,于桦.双连杆柔性机械臂动力学方程仿真[J].吉林工业大学学报,1998(1):85-87
    164.孙光复,张立山.桁架臂式工程起重机回转运动的多体动力学仿真[J].沈阳建筑大学学报,2004,20(4):348-350
    165.金在权.单连杆柔性机械臂的动力学建模[J].延边大学学报(自然科学版),1994,20(2):32-35
    166.刘迎春,余跃庆,姜春福.柔性机器人研究现状[J].机械设计,2003,20(12):4-6
    167.王树新,员今天,石菊荣,刘又午.柔性机械臂建模理论与控制方法研究综述[J].机器人,2002,24(1):86-91
    168.戴学丰,孙立宁,刘品宽,蔡鹤皋.柔性臂机器人控制算法综述[J].电机与控制学报,2002,6(2):158-161
    169.宋轶民,余跃庆,张策,马金盛.柔性机器人动力学分析与振动控制研究综述[J].机械设计,2003,20(4):1-5
    170.林雷.基于模糊变结构的机械臂控制[J].控制理论与应用,2007,24(4):643-650
    171.边宇枢,陆震.柔性冗余度机器人残余振动的抑制研究[J].机器人,1998,20(4):247-252
    172.刘明治,刘春霞.柔性机械臂动力学建模和控制研究[J].力学进展,2001,31(1):1-6
    173.王大龙,陆佑方,郭九大.单连杆柔性机械臂动力学模型分析[J].吉林工业大学学报,1998(2):51-56
    174.贾英宏,徐世杰,聂润兔.充液挠性航天器的建模与动力学分析[J].北京航空航天大学学报,2003,29(1):35-38
    175.孙立宁,王洪福,曲东升.柔性臂动力学建模及比较研究[J].压电与声光,2003,25(6):525-529
    176.周鉴如,陈文良,盛国刚.柔性多臂机器人机构的建模[J].上海交通大学学报,1995,29(4):104-109
    177.张绪平,余跃庆.综合考虑关节及杆柔性的空间机器人动力学分析[J].机械科学与技术,.1998,17(5):775-778
    178.曾克俭.液压柔性机械臂等效模型的鲁棒控制.[J].机械科学与技术,2007,26(3):324-326
    179.洪嘉振,蒋丽忠.柔性多体系统刚-柔耦合动力学[J].力学进展,2000,30(1):15-19
    180.李_元春,唐保健,康健,陆佑方.双连杆柔性臂轨迹跟踪控制[J].电工技术学报,1997,12(6):6-9
    181.李元春,康健,史志霞,陆佑方.柔性机械臂的鲁棒轨迹跟踪控制[J].吉林工业大学学报,1997(3):38-42
    182.唐华平,刘继承.一种多柔体系统动力学建模方法[J].机械科学与技术:2002,21(4):531-533
    183.赵平,薛克宗.柔性多体动力学的建模与计算[J].华北水利水电学院学报,1994(1):52-61
    184.陈勇.除草机器人机械臀运动分析与控制[J].农业机械学报,2007,38(8):105-109
    185.戈新生.带空间机械臂航天器姿态运动规划的数值算法研究[J].应用力学学报,2007,24(2):227-232
    186.崔玲丽.柔性机械臂系统动力学建模的研究[J].系统仿真学报,2007,19(6):1205-1208
    187. Wen-Hong Zhu, Jean-Claude Piedboeuf.Adaptive Output Force Tracking Control of Hydraulic Cylinders With Applications to Robot Manipulators,Transactions of the ASME,Journal of Dynamic Systems, Measurement, and Control,2005,127(6):206-217
    188.Ramadan.A.A, Lnoue.K. New design of a compact parallel micri-nano two fingered manipulator hand. 20072nd IEEE international Conference on Nano/Micro Engineered and Molecular Systenms.2007,5
    189.Ottaviano,E. Ceccarelli.M. Design and evaluation of a discretely actuated multi-module parallel manipulator. Proceedings of the Institution of Mechanical Engineers,2006,C4(220):513-526
    190.Miyashita,N.Kishikawa,M.3D motion control of 2 links (5 D.O.F.) underactuated manipulator named AcroBOX.2006 American Control Conference 2006,6
    191.Galicki.M. Adaptive control of kinematically redundant manipulator along a prescribed geometric path. Robot Motion and Control. Recent Developments.2006,129-139
    192.Tahmasebi,F. Kinematics of a new high-precision three-degree-of-freedom parallel manipulator. Transactions of the ASME. Journal of Mechanical Design,2007,3(129):320-325
    193.Aqhili,F. A mechatronics testbed for manipulator joints. Proceedings.2006 Conference on International Robotics and Automation.2006,3:2188-2194
    194.Chin Pei Tang, Krovi,V,N. Manipulability-based configuration evaluation of cooperative payload transport by mobile manipulator collectives. Robotica,2007,25:29-42
    195.Suzuki,T,Ebihara,Y. Casting and winding manipulation with hyper-flexible manipulator.2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,2006,10:1674-1679
    196.Gamarra-Rosado,V,O. A planar flexible robotic manipulator. Kybernetes.2000,5(29):787-796
    197.Mochiyama,H.Suzuki,T. Dynamical modelling of a hyper-flexible manipulator. SICE 2002. Proceedings of the 41st SICE Annual Conference,2002,3:1505-1510
    198.Basher,H.A. Modeling and simulation of flexible robot manipulator with a prismatic joint. Proceedings. IEEE SoutheastCon 2007.2007,3
    199.Ueda,J, Oqasawara,T. Global RAC-measure for redundancy solution of human-like manipulator mounted on flexible body.2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),2004,9(4):3930-3935
    200. Shaheed,M.H. Poerwanto.H. Adaptive inverse-dynamic and neuro-inverse-dynamic active vibration control of a single-link flexible manipulator. Proceedings of the Institution of Mechanical Engineers, Part 1,2005,16(219):431-448
    201.Benosman,M. Le Vey,G. Model inversion for a particular class of nonlinear non-minimum phase systems:an application to the two-link flexible manipulator. Proceedings of the 40th IEEE Conference on Decision and Control,2001,2:1174-1180
    202.Kyung-Jo Park. Flexible robot manipulator path design to reduce the endpoint residual vibration under torque constraints. Journal of Sound and Vibration,2004,3(275):1051-1068
    203.Mohamed,Z. Tokhi,M,O. A symbolic manipulation approach for modelling and performance analysis of flexible manipulator systems. International Journal of Acoustics and Vibration,.2002,1(7):27-37
    204.冯巨恩,吴超,廖国礼.充填浆体管道输送故障机理分析及其防范实践[J],矿冶工程,2004,24(2):8-12
    205.高殿荣,韩屋谷,赵长海.管路固液两相流的基本方程[J],东北重型机械学院学报,1994,18(2):122-125
    206.王明波,王瑞和.喷嘴内液固两相射流流场的数值模拟[J],石油大学学报(自然科学版),2005,29(5):46-49
    207.邹光胜金基铎.简谐激励下输流管道的非线性运动方程[J].沈阳航空学院学报,2000,3:12-15
    208.吴吴,马跃先,马驭贞.简单直管直接水击的液固耦合作用分析[J].水电能源科学,2004,22(2):71-85
    209.高钦和,黄先祥,郭晓松.机液一体化系统中液压管路动态特性的建模与仿真研究[J].中国机械工程,2003,14(10):823-825
    210.秦宏波,白晓宁.管内固-液两相流动阻力特性影响因素的敏感性分析[J].力学季刊,2002,23(4):558-562
    211.王强,沈荣瀛,姚本炎,丁炜.管路消振器降低管路振动与脉动压力[J].中国造船,2003,44(1):39-45
    212.周以齐,闫法义,陈宏.管路系统中流体数学模型及其在虚拟现实中的应用[J].机械与电子,2005,(2):57-59
    213.高殿荣,韩屋谷.管路固液两相流的基本方程[J].东北重型机械学院学报,1994,18(2):122-125
    214.任建亭,林磊,姜节胜.管道轴向流固耦合振动的行波方法研究[J].航空学报,2006,27(2):280-284
    215.王乐勤,何秋良.管道系统振动分析与工程应用[J].流体机械,2002,30(10):28-42
    216.刘忠族,孙玉东,吴有生.管道流固耦合振动及声传播的研究现状及展望[J].船舶力学,2001,5(2):82-90
    217.任建亭,林磊,姜节胜.管道流固耦合振动的行波方法研究[J].应用力学学报,2005,22(4):530-535
    218.任兰柱,师建国,张强.固液两相流理论在水煤浆喷嘴上的应用研究[J].煤矿机械,2006:173-175
    219.白晓宁,胡寿根.固液两相流管道水力输送的研究进展[J].上海理工大学学报,21(4)
    220.焦宗夏,华清,于凯.传输管道流固耦合振动的模态分析[J].航空学报,1999,20(4):316-320
    221.曾国华,孔建益,李公法.充液管道系统振动能量流研究[J].湖北工业大学学报,2006,21(3):159-161
    222.刘怀广,孔建益,李公法.充液管道系统振动分析与控制的探讨[J].湖北工业大学学报,2005,20(3):78-86
    223.杨柯,张立翔,王冰笛.充液管道流固耦合轴向振动的对称模型[J].水动力学研究与进展,2005,20(1)
    224.冯巨恩,吴超,廖国礼.充填浆体管道输送故障机理分析及其防范实践[J].矿冶工程,2004,24(2):8-12
    225.张艳萍,徐治萍,刘土光.输液管道流固耦合的响应分析[J].中国舰船研究,2006,1(3):66-69
    226.王艳平,尚新春.输液管道结构横向振动问题的粘性效应[J].辽宁工程技术大学学报,2005,12增刊:90-92
    227.金基铎,宋志勇.输流管的参数共振及共振响应的数值模拟与分析[J].沈阳航空工业学院学报,2003,20(1):1-4
    228.张立翔,黄文虎.输流管道流固耦合振动研究进展[J].水动力学研究与进展,2000,15(3):366-378
    229.徐学珍,杨柯,张立翔.输流管道流固耦合振动频域分析的传递矩阵法[J].云南水力发电,16(3):27-30
    230.张立翔,黄文虎.输流管道非线性流固耦合振动的数学建模[J].水动力学研究与进展,2000,15(1):116-128
    231.金基铎,杨晓东.输流管道的参数共振及系统参数对共振区域的影响[J].沈阳航空工业学院学报,2002,19(4):1-6
    232.江建祥,曹云中,潘继志.输流管道参数振动失稳区域的计算[J].浙江工业大学学报,2001,29(1):75-84
    233.邹光胜,金基铎,闻邦椿.受约束悬臂输流管振动的最优控制[J].东北大学学报(自然科学版),2004,25(3):277-279
    234.邹光胜,金基铎,闻邦椿.受约束悬臂输流管道颤振的自适应控制[J].中国机械工程,2005,16(7):626-629
    235.梁峰,金基铎.求解输流管道动态响应问题的一种有效方法[J].沈阳航空工业学院学报,2006,23(1):14-17
    236.王明波,王瑞和.喷嘴内液固两相射流流场的数值模拟[J].石油大学学报(自然科学版),2005,29(5):46-49
    237.陈洪凯,唐红梅,陈野鹰.泥石流固液分相流速计算方法研究[J].应用数学和力学,2006,27(3):357-364
    238.金基铎,邹光胜.两端支撑输流管道的稳定性和临界流速分析[J].辽宁工程技术大学学报,2005,12,增刊:90-92
    239.金基铎,杨晓东,尹峰.两端铰支输流管道在脉动内流作用下的稳定性和参数共振[J].航空学报,2003,24(4):317-322
    240.邹光胜,金基铎,张宇飞.两端固支输流管的稳定性和混沌运动分析[J].沈阳航空工业学院学报,2000,17(3):1-4
    241.张锴锋,金基铎.两端固定输流管道在脉动内流作用下[J].参数共振的最优控制[J].沈阳航空工业学院学报,2005,22(4):24-26
    242.金基铎,宋志勇,杨晓东.两端固定输流管道的稳定性和参数共振[J].振动工程学报,2004,17(2):190-195
    243.李公法,孔建益,幸福堂.考虑固液耦合的充液管道系统振动能量流研究[J].湖北工业大学学报,2005,20(3):74-77
    244.邹光胜,金基铎,沙云东.简谐激励下输流管动态响应特性的实验研究[J].振动、测试与诊断,2001,21(1):26-29
    245.金基铎,邹光胜.悬臂输流管的运动分岔现象和混沌运动[J].力学学报,2001,34(6):863-873
    246.钟思青,陈庆龄.轴向流固定床内流场的数值模拟与实验验证[J].化工学报,2005,56(4):632-636
    247.邹光胜,金基铎.支撑运动对输流管振动特性影响的实验研究[J].2001,18(1):1-5
    248.张振华,吴梵,冯文山.载流管道在基础振动下的振动控制[J].海军工程大学学报,2001,13(6):83-85
    249.王世忠,于石声.载流管道固液耦合振动计算[J].哈尔滨工业大学学报,2001,33(6):816-818
    250.许萍,李著信,蒋忠.液体输送管道固液耦合振动的有限元分析[J].管道技术与设备,2004,6:3-5
    251.杜颖,刘习军,贾启芬.液固耦合动力学问题的研究[J].机床与液压,2004:9-11
    252.黄珍珍,邓家青.压力管道振动原因分析及对策[J].冶金丛刊,2001,3:24-26
    253.RJ.Femin Bendict, G.Kumaresan.Bed expansion and pressure drop studies in a liquid-solid inverse fluidised bed reactor[J].Bioprocess Engineering,1998,19:137-142
    254.REINT DE BOER, ANJANI KUMAR DIDWANIA.Two-Phase Flow and the Capillarity Phenomenon in Porous Solids-A Continuum Thermomechanical Approach[J].Transport in Porous Media,2004,56:137-170
    255.J.Borowsky.T. Wei.Simultaneous velocimetry/accelerometry measurements in a turbulent two-phase pipe flow[J].Experiments in Fluids,2006,2
    256.A.Shakib-Manesh, P. Raiskinmai,A.Koponen.Shear Stress in a Couette Flow of Liquid-Particle Suspensions[J].Journal of Statistical Physics,2002,107(1/2):67-84
    257.M. M. Cui,R. J. Adrian. Refractive index matching and marking methods for.highly concentrated solid liquid flows[J].Technical notes Experiments in Fluids 22,1997,:261-264
    258.R. ZENIT, M.L. HUNT and C.E. BRENNEN. On the Direct and Radiated Components of the Collisional Particle Pressure in Liquid-Solid Flows[J].Applied Scientific Research,1998,58:305-317
    259.S.A.Austin, C.I. Goodier and P.J. Robins. Low-volume wet-process sprayed concrete:pumping and spraying[J].Materials and Structures,2005,38:229-237
    260.Marek Ziebart, Paul Cross. LEO GPS attitude determination algorithm for a micro-satellite using boom-arm deployed antennas[J].GPS Solutions,2003,6:242-256
    261.M. Digruber, W. Schneider, K. Mo wald, S.Haas. Hydraulic analysis of free-surface flows with solidification[J]. Archive of Applied Mechanics,2000,17(9):17-29
    262.F. Zhangl,D.L. Frost, P.A.Thibault, S.B.Murray 1.Explosive dispersal of solid particles[J].Shock Waves,2001,10:431-443
    263.V. Luengo, J. Meseguer, I.E. Parra. Experimental study of the stability of long axisymmetric liquid bridgesbetween solid supports at different temperatures[J].Experiments in Fluids,2003,34:412-417
    264.X.L. Zhang, T. Hung Nguyen, R. Kahawita. Effects of anisotropy in permeability on the two-phase flow and heat transfer in a porous cavity[J].Heat and Mass Transfer,1997,32:167-174
    265.Guangfu Sun, Dynamic responses of hydraulic mobile crane with consideration [J].Mechanism and mechine theory,2003,38:1489-1508
    266. Guangfu Sun, Complete dynamic calculation of lattice mobile crane during hoisting motion [J]. Mechanism and mechine theory,2005,44:447-466
    267.历超.阀控液压缸伺服系统动态特性仿真[J].机电设备,2005,24(3):45-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700