高阿利特含量水泥熟料形成动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿利特是水泥熟料中最主要的强度提供者,其含量和活性的提高必将赋予熟料高的胶凝性。然而,由于阿利特是水泥熟料矿物中生成温度最高的矿物,提高水泥熟料中阿利特含量会给生产带来一定的困难。本文从高阿利特熟料的基本矿物形成过程入手,分析生料性质和工艺参数对高阿利特熟料矿物形成动力学的影响;研究高阿利特熟料中阿利特的形成动力学过程以及杂质离子在阿利特中的固溶情况及对阿利特多晶转变的影响;在实验室和工厂进行了高阿利特含量熟料的烧成,并对其物理性能进行了分析测试。
     研究结果表明,在熟料率值相同的情况下,合理控制生料细度,使物料的颗粒尺寸较小,溶解和扩散都易于进行,因而降低了C3S形成的表观活化能。某些废渣及杂质离子的引入可以降低体系液相出现温度,改善液相性质,从而改善了C3S生成环境,降低C3S形成的表观活化能;因此,在生产过程中可以通过调整生料的化学组成或者物理特性达到改善易烧性的目的。研究同时表明,可以根据原料情况,选择适宜的配料方案和生料细度控制范围,还应根据生料的特性合理选择熟料的煅烧温度,都是实际生产中改善生料易烧性的可行方法。
     研究表明,采用分步煅烧可以在很大程度上改善易烧性,降低熟料的烧成温度。当采用1350℃下煅烧所得的前驱体(主要矿物组成为贝利特、铁相和铝相)进行高阿利特熟料的配制时(TC系列),在1300℃下阿利特已经大量形成,所形成的阿利特晶核数量较多,其成核速率较大。随着温度的升高,阿利特晶体的平均尺寸增大,在1300~1400℃之间,晶体的长大较快,主要以生成M1型的非稳态长大为主;随着温度继续升高(高于1400℃),长大速率变慢,开始大量出现稳态长大,生成具有环带结构的M3型阿利特,特别是原属Blite矿巢存在的区域。通过对研究结果进行分析,基本可以肯定在煅烧过程中液相对于C3S的形成的贡献在一定程度上大于C2S的“晶核”作用,二者的联合作用最佳。
     熟料体系中杂质离子的浓度在一定程度上决定着阿利特中杂质离子的固溶量,而固溶又影响着阿利特的晶型变化。在其他因素相同的情况下,随着硅率n的增大,Al、Fe、Mg、P在阿利特中的固溶量相对变化不大,阿利特的晶型没有明显变化。Fe的固溶量随铝率p的增大而下降,Al的固溶量随铝率p的增大而增加。当熟料中有Mg存在时,熟料所经的热历史及Mg在阿利特中的固溶情况,对其晶型的影响较大。
     研究表明煅烧制度对阿利特中杂质元素固溶量有直接影响,从而影响阿利特的晶型。对于不同的煅烧制度下所得熟料,Al、Fe、Mg、P等在阿利特中的固溶量有所不同。随淬冷开始温度的降低,Al、Fe、Mg、P等在阿利特中的固溶量减少,其中Al的固溶量降低明显,Fe、P的固溶量稍降低。不同煅烧温度下所得熟料内阿利特中的杂质离子的固溶量也不同。随着温度的升高,阿利特中Fe的固溶量降低。在较低温度下(1350℃)烧成的熟料中的阿利特的衍射图谱接近的R型的衍射特征。随着煅烧温度的增加及固溶物含量的变化,阿利特的晶型发生变化。
     煅烧气氛对Al固溶量的影响较大,氧化气氛条件下所获得熟料中的阿利特中Al的固溶量稍高;还原气氛下烧成的阿利特中Fe的固溶量较高;在还原气氛下烧成的阿利特中Mg的固溶量稍降低;烧成气氛对P的固溶量影响不明显。虽然还原气氛下Al的固溶量下降,Fe的固溶量升高,但由于本实验条件下变化范围不大,不同煅烧气氛下熟料中的阿利特的晶型变化并不明显。
     实验室高阿利特水泥熟料的烧成研究表明,适当的氟磷掺杂有利于高阿利特含量熟料的烧成,并且可以进一步提高熟料的强度。采用钢渣和磷渣进行配料,煅烧所得熟料呈现良好的岩相结构且具有较高的强度。
     工业生产高阿利特含量水泥熟料过程中,不能仅以f-CaO为主要日常检测指标,还要加强熟料岩相结构的检测及控制。两次试生产基本达到了973课题要求的“两个70”(C3S含量70.0w%和28d抗压强度70.0MPa)。在配料合理、生料稳定、窑内热工制度适宜的情况下,可以顺利实现高阿利特水泥熟料的工业生产,获得性能优异的熟料。
The performance of clinker could be improved remarkably by increasing the content of Alite in clinker. However, the formation of Alite is most difficult in all the clinker minerals, some problem will be caused with the increase of Alite. In this thesis, some researches were carried out about the kinetics of the forming process of minerals and the kinetics of crystallizing process of Alite in high Alite content cement clinkers. The concentration of ions in Alite and the morphology of Alite under different physical and chemical conditions were also studied in this dissertation. Clinkers with high content of Alite were manufactured in our lab and in two plants, and the physical properties of them were tested.
     The results showed that the burnability of clinker can be improved by reasonable parameters (such as fineness), doping foreign ions and appropriate raw meal properties. With a reasonable fineness, the smaller particle size is in favor of solution and diffusion, thus the apparent activation energy of Alite formation can be decreased. The temperature of liquid phase formation was reduced and the properties of liquid phase were improved by adding some ions and industrial slag into the raw meals. High quality clinkers can be produced by adjusting the chemical composition of raw meal, adopting a reasonable parameters and appropriate burning temperature during the manufacturing process in plants.
     The burnability of clinkers was improved remarkably by adopting a two-steps burning method, and the sintering temperature was decreased by more than 100℃with pioneers (main components are Belite, C3A and C4AF) burned at 1350℃(TC group). As for TC group, since most Alite formed at 1300℃, it could be concluded that the nucleation of Alite was prevalent. With the increase of temperature, Alite crystals grew quickly in the range of 1300℃to 1400℃and preferred to M1 form. But the rate of growth became slower with the decrease of supersaturation while the temperature exceeded 1400℃. And Alite preferred to M3 form with silicate zonation, especially at the border of a pioneer particle. According to the results, it can be basically made sure that the effect of liquid phase is stronger than the effect of“crystal seed”of C2S, and the corporate effect of them is better.
     The solid solubility of ions in Alite depends on the concentrations of ions in clinkers at a large extent. The mass fraction of Al、Fe、Mg、P fluctuated in a narrow range and the polymorphic form showed no obvious change according to the XRD patterns with the increase of silica modulus (SM). The solid solubility of Al increased and Fe decreased with the increase of alumina modulus (IM). The XRD patterns of Alite showed remarkable different while MgO existed in clinkers.
     As for the clinkers burned at different temperatures or different cooling conditions, the solid solubility of ions in Alite was different. The mass fractions of ions decreased while the quenching temperature decreased. With the increase of temperature, the solid solubility of Fe decreased. The XRD patterns of Alite extracted from clinkers burned at lower temperatures(1350℃) is similar to the typical patterns of R form Alite. The solid solubility of Al was higher in Alite burned at an oxidation environment while the solid solubility of Fe was higher in Alite burned at a reducing environment.
     The results of experiments on manufacture of clinker with high Alite content showed that the burnablity and the strengths of clinker were improved with F/P doped in the raw meals. Clinkers with an expectant photographic structure and higher strengths could be produced while steel making slag (SMS) or phosphorus making slag (PMS) was introduced into raw meals.
     We should pay more attention to the microstructure of clinker not just concentrate on the content of free lime (f-CaO) during the manufacturing process in a plant. The results of the twice industrial experiments basically met the goals of“two 70%”(the C3S content is about 70.0w% and the 28d’strength is about 70.0MPa). In a word, clinkers with high performance can be produced in a plant with a reasonable chemical composition, parameters of raw meal and an appropriate heating condition.
引文
[1] 国家信息中心. 2005-2006 年水泥行业分析报告及“十一五”发展趋势研究. 2006.4.
    [2] 国家信息中心. 水泥行业信息报告. 2007.3
    [3] 吴中伟, 陶有生. 中国水泥和混凝土工业的现状和问题[J]. 硅酸盐学报. Vol.27, 1999(12): 734-738
    [4] 傅圣勇, 秦至刚等. 用粘土烧水泥不可持续发展[J]. 四川水泥. 2005(1): 5-9.
    [5] A.Wolter. 贝利特水泥和低能耗熟料[J]. 国际水泥中国版. 2006(2): 21-27.
    [6] B.Thier. 在 Westphalian 的一个水泥厂的回转窑除尘系统中用袋式收尘器代替电收尘器[J].国际水泥中国版. 2006(1): 24-33.
    [7] 管宗甫, 陈益民, 秦守婉. 杂质离子对硅酸盐水泥熟料烧成影响的研究进展[J]. 硅酸盐学报. Vol.31, 2003(8): 148.
    [8] 沈威, 黄文熙, 闵盘荣. 水泥工艺学[M]. 武汉工业大学出版社: 武汉.1991: 16-23.
    [9] F. M.. Lea. The Chemistry of Cement and Concrete (3rd edition). London 1970: 75.
    [10] Otto Labahn. edited by Kohlhass B. Engineers’ Handbook (4th Edition), 1983.
    [11] Hubert Motzet, Herbert Poellmann, Uwe Koenig. Phase quantification and microstructure of a clinker series with lime saturation factors in the range of 100[A]. 10th ICCC[C]. Gothenbug, Sweden.1997(1): 10-39.
    [12] 侯仰山, 张纯健, 刘继山. 采用三高配料方案提高熟料强度[J].吉林建材.2004(5): 49-51
    [13] 吴笑梅, 樊粤明, 钟景裕. 珠江水泥厂配料方案及其水泥特性的研究[J]. 水泥技术. 2006(2): 26-29.
    [14] R. Roskovi?, D. Bjegovi?. Role of mineral additions in reducing CO2 emission[J]. Cement and Concrete Research.2005,35(2): 974-978
    [15] ángeles G. De La Torre, Sebastián Bruque, et al. The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses[J]. Cement and Concrete Research. 2002(32): 1347-1356.
    [16] 张柏寿, 吴惠诚, 司志明等. 利用碱渣在立窑中煅烧阿利尼特水泥的实验研究[J]. 水泥.1999 (9): 1-7.
    [17] 黄其秀. 镧系元素微量组分对水泥熟料矿物形成的影响[J]. 材料科学与工程. 1998, 16(4): 51-54.
    [18] 吕辉, 钟景裕, 刁宇江等. 添加稀土贫矿提高水泥质量机理研究(二)熟料岩相结构及微区组成[J]. 水泥. 1997(8): 4-7.
    [19] M.Moranvile-Regourd, A.I.Bolkova.Chemistry, structure, properties and quality of clinker[A], 9th ICCC[C]. New Delhi, India, Vol. 1, 1992: 3-45.
    [20] G. K. Molr, F. P. Glasser. Mineralisers, modifiers and activators in the clinkering process [A], 9th ICCC[C], New Delhi, India, Vol. 1, 1992: 125-147.
    [21] J.O.Odigure. Mineral composition and microstructure of clinker from raw mix containing metallic particles, Cement and Concrete Research. 1996, 26(8): 1171-1178.
    [22] K. Kolovos, P. Loutsi, S. Tsivilis, et al. The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system, PartⅠ: Anions [J], Cement and concrete Research. 2001, 31(3): 425-429.
    [23] R.Buachi. 原料的性能和制备对生料反应性的影响[A]. 第七届国际水泥化学会议论文选集[C]. 北京: 中国建筑工业出版社 1985: 25-26.
    [24] 王志, 王波, 王军华. P2O5 对煤矸石水泥性能的影响[J]. 山东建材学院学报. 1995, 9(2): 19-25.
    [25] Piri-claude Aitcin. Cement of yesterday and today Concrete of tomorrow [J]. Cement and Concrete Research. 2000, 30(29): 1349-1359.
    [26] K.Kolovos, S.Tsivilis, G.Kakali. The effect of foreign ions on the reactivity of the CaO-SiO2- Al2O3-Fe2O3 System PartⅡCations[J]. Cement and Concrete Research. 2002, 32(3): 463-469.
    [27] Xiaocun Liu, Yanjun Li, Ning Zhang. Influence of MgO on the formation of Ca3SiO5 and 3CaO.3Al2O3.CaSO4 minerals in Alite-sulphoaluminate of the Alite polymorphism on the strength of the Portland cement[J]. Cement and Concrete Research. 2002,32(7): 1125-1129.
    [28] K.Masaki,I.Maki. Effect of prolonged heating at elevated temperatures on the phase composition and textures of Portland cement clinker [J]. Cement and Concrete Research. 2002, 32(6): 931-934.
    [29] I.Akln Altan. Effect of CaF2 and MgO on sintering of cement clinker [J]. Cement and Concrete Research. 1999, 29(11): 1847-1850.
    [30] Ajoy Kmullick, Subhash Cahluwalia, Rakesh Bhargawa. Use of fluorspar and barite forimproved burnability and clinkerisation of cement raw mixes [A], 10th ICCC. Gothenburg, Sweden, Vol.1,1997: 10-31.
    [31] N.K.Katyal, S.C.Ahluwalia, P.Parkash. Effect of barium on the formation of tricalcium silicate [J]. Cement and Concrete Research. 1999, 29(11): 1857-1862.
    [32] Chang Jun, Cheng Xin, Liu Futian, et al .Influence of fluorite the Ba-bearing sulphoaluminate cement [J]. Cement and Concrete Research . 2001, 31(7): 213-216.
    [33] 张文生, 欧阳世翕, 陈益民. CaO-AlO3-BaSO4 系统物相形成及动力学[J]. 硅酸盐学报. 2001, 29(4): 305-308.
    [34] 张聚林, 梅蔷, 左玉华. Cu 尾矿、萤石作复合矿化剂生产水泥熟料的探讨[J]. 山东建材学院学报. 2000, 14(2): 95-97.
    [35] Zhong Jingyu, Yang Jiazhi, Xu youhong. The effect of ZnO-doped on the properties of Alite[A], 2nd BISCC. Beijing, China, Vol.1,1989: 192.
    [36] D.Stephen, R.Mallmann, D.Knifel, et al. High intakes of Cr1, Ni1 and Zn in clinker, PartⅠ . Lnfluence on burning process and formation of phases [J]. Cement and Concrete Research. 1999, 29(12): 1949-1957
    [37] D. Stephen, R.Mallmann, et al. High intakes of Cr,Ni and Zn in clinker, Part Ⅱ Influence on the hydration properties [J]. Cement and Concrete Research . 1999, 29(12): 1956-1967.
    [38] D. Stephen, H.Maleki, D.Knofel, et al. High intakes of Cr, Ni and Zn on the properties of pure clinker phase. PartⅠ: C3S [J]. Cement and Concrete Research .1999, 29(4): 545-552.
    [39] D. Stephen, H. Maleki, D. Knofel, et al, High intakes of Cr, Ni and Zn on the properties of pure clinker phase, PartⅡ: C3A and C4AF [J]. Cement and Concrete Research. 1999, 29(5): 651-657.
    [40] Kakali G. Parssakis G. Inverstigation of the effect of Zn oxie on the formation of portland cement clinker[J]. Cement and Concrete Research.1995, 25(1): 79-85
    [41] M.Y.Benarchid, A.Diouri, A.Baukhari, et al. Thermal study of chromium phosphorus doped tricalcium aluminate[J]. Cement and Concrete Research. 2000,31(3): 449-454.
    [42] A.M. Barros, J.A.S. Tenório, D.C.R. Espinosa. Chloride influence on the incorporation of Cr2O3 and NiO in clinker: a laboratory evaluation[J]. Journal of Hazardous Materials. B932002: 221-232.
    [43] M. Murat, F. Sorrentino. Effect of large addition of Cd, Pb, Cr,Zn,to cement raw meal on the composition and the prosperties of clinker and the cement[J]. Cement and Concrete Research. 1996, 26(3): 377-385.
    [44] F.R.D. Andradea, V. Maringolob, Y. Kihara. Incorporation of V, Zn and Pb into the crystalline phases of Portland clinker[J]. Cement and Concrete Research.Vol.33 2003: 63-71.
    [45] Iver Juel. Ebbe jons. The influence of earth alkalis on the mineralogy in a mineralized Portland cement cliker[J]. Cement and Concrete Research. Vol.31, 2001: 893-897.
    [46] P.C.Hewlett, Lea’s Chemistry of Cement and Concrete, 4th edition, Arnold Hodder Headline Group, London, 1998: 25-94.
    [47] A.M. Barros, D.C.R. Espinosa, J.A.S. Teno′rio. Effect of Cr2O3 and NiO additions on the phase transformations at high temperature in Portland cement[J]. Cement and Concrete Research. 2004(34): 1795-1801.
    [48] J.O.Odigure. Kinetic modeling of cement raw mix contaning iron particles and clinker microstructure[J]. Cement and Concrete Research . 1996,26(9):1435-1442
    [49] 沈威等. 水泥工艺学[M]. 武汉: 武汉工业大学出版社. 1991: 76-77.
    [50] I.Akin Altan. Influence of heating rate on the burning of cement clinker[J], Cement and concrete research, 1999 29(4): 599-602.
    [51] K.Masaki, M. Suzuki, I.Maki. Burning and nodulization process of clinker in the rotary kiln as viewed from the fine textures of the constituent minerals[J]. Cement and Concrete Research. 2002, 32(3):1039-1044.
    [52] Akin Altun. Influence of heating rate on the burning of cement clinker[J]. Cement and Concrete Research Vol.29, 1999: 599-602.
    [53] 李振夏, 唐明述, 张指铭等合译. 水泥化学[M].北京: 建筑工程出版社.1959, 5: 175-178.
    [54] Hanlie Hong, Zhengyi Fu, Xinmin Min. Effect of cooling performance on the mineralogical character of Portland cement clinker[J]. Cement and Concrete Research. 2001,31(1):287 -290.
    [55]Taylor.H.FW. Cement chemistry[M]. 1990: 60.
    [56] 中国建筑材料科学研究总院水泥所. 水泥熟料烧成动力学(内部资料). 1996: 21.
    [57] Butt, Y.M., and Timashev, V.V., “The Mechanism of Clinker Formation Processes and Waysof Modificationof Clinker Structure,” 6th International Congress on the Chemistry of Cement, Moscow, 1974, Vol I, pp. 3-74.
    [58] Knodo R,Choi S. 5th ISCC, Vol. 1, 1968, p163
    [59] 中国建筑材料科学研究总院水泥所. 水泥熟料烧成动力学(内部资料). 1996: 27.
    [60] 沈威, 黄文熙, 闵盘荣编. 水泥工艺学[M]. 武汉: 武汉工业大学出版社. 1991: 18-20.
    [61] F.P. Glasser. 水泥烧成动力学. 第八届国际水泥化学会议论文集. 第一卷. 1987: 4.
    [62] Maki.I. Relationship of processing parameters to clinker properties, influence of minor components. 8th ICCC, Rio de Janeiro, Brazil, 1986: 13.
    [63] Regourd. M.M, Boikova.A.I. Chemistry, structure, properties and quality of clinker (A), 9th ICCC(C). New Delhi, India,1992: 3-45.
    [64] Tylor. H.F.W. Cement Chemistry [M]. London: Academic Press, 1990: 13-15.
    [65] 森茂二朗(王幼云译). 新しぃセメトコソリト[M]. 北京: 中国建筑工业出版社.1982:28.
    [66] F. Dunstetter, M.-N. de Noirfontaine, M. Courtial. Polymorphism of tricalcium silicate, the major compound of Portland cement clinker 1. Structural data: review and unified analysis[J] Cement and Concrete Research. Vol.36, 2006: 39-53.
    [67] I. Maki, M. Hattori. Cemento. 1989(6): 131-140.
    [68] I. Maki, Growth instability and crystalline textures of Alite in cement clinker[J].Cemento, 1988(5): 1989-100.
    [69] M. I. Chikawa, M. Kanya. Effect of minor components and heating rates on the fine textures of Alite in portland cement clinker[J].Cement and Concrete Research.1997, 27(7): 1123-1129.
    [70] Maki.I, Kato. K. Phase identification of Alite in Portland cement clinker [J]. Cement and Concrete Research. 1982,12(1): 93-100.
    [71] T.Stan, P.Sulovsky. The influence of the Alite polymorphism on the strength of prolonged cement [J]. Cement and Concrete Research. 2002,32(7): 1169-1175.
    [72] N.K.Katyal,S.C.Ahluwalia,Ram Parkash, Effect of TiO2 on the hydration of tricalcium silicate[J]. Cement and Concrete Research. 1999,29(11): 1851-1855.
    [73] N.K. Katyal, R. Parkash, S.C. Ahluwalia, G. Samuel. Influence of titania on the formation of tricalcium silicate[J].Cement and Concrete Research. 1999,29(10): 355-359.
    [74] N.K. Katyal, S.C. Ahluwlia, R.Parkash. Effect of Cr2O3 on the formation of C3S in 3CaO:1SiO2:xCr2O3 system [J]. Cement and Concrete Research. 2000,30(9): 1361-1365.
    [75] N.K.Katyal, R.Parkash, S.C.Ahluwalia, et al. Influence of titania on the formation of tricalcium silicate[J]. Cement and Concrete Research. 1999, 29(3): 355-359.
    [76] 森茂二朗(王幼云译). 新しぃセメトコソリト[M]. 北京: 中国建筑工业出版. 1982: 78.
    [77] M.Moranvile, Regourd,A, I.Bolkova.chemistry, structure, properties and quality of clinker[A], 9th ICCC[C]. New Delhi, India,Vol.1, 1992: 3-45.
    [78] 刘宝元, 薛君玕. 萤石、石膏复合矿化剂对硅酸盐水泥熟料矿物的影响[J]. 硅酸盐学报. 1984(12): 414-423.
    [79] Anna Emanuelsona, Angel R. et al. A comparative study of ordinary and mineralised Portland cement clinker from two different production units Part II: Composition and hydration of the clinkers[J]. Cement and Concrete Research. Vol.33, 2003: 1613-1621.
    [80] Anna Emanuelsona, Angel R. et al. A comparative study of ordinary and mineralised Portland cement clinker from two different production units Part II: Characteristics of the calcium silicates[J]. Cement and Concrete Research. Vol.33, 2003: 1623–1630
    [81] F.R.D. Andrade, V. Maringolo, Y. Kihara,Incorporation of V, Zn and Pb into the crystalline phases of Portland clinker[J]. Cement and Concrete Research. Vol.33, 2003: 63–71.
    [82] T. Staněk, P. Sulovsky. The influence of the Alite polymorphism on the strength of the Portland cement[J]. Cement and Concrete Research. Vol.32, 2003: 1169-1175
    [83] L. Stevula, J. Petrovic. Hydration of polymorphic modification C3S[J]. Cement and Concrete Research. Vol.11, 1981: 183-190.
    [84] R.T.H. Aldous. The hydraulic behavior of rhombohedral Alite[J]. Cement and Concrete Research. Vol.11, 1983: 89-96.
    [85] I. Odler, S. Abdul-Maula. Polymorphism and Hydration of C3S doped with ZnO, J. Am. Ceram. Soc. Vol.66, 1983: 1-4.
    [86] Donald H. Campell. Microscopical examination and interpretation of Potlant cement and clinker. Portland Cement Association. Skokie (USA), 1999: 1-6.
    [87] J.A.伊姆拉赫(Imlach), F.霍夫缅纳尔 (Hofm?nne). 水泥熟料化学, 第六届国际水泥化学会议论文集[C]. 1980: 522-525.
    [88] H.F.W. Taylor. Cement Chemistry[M]. St. Acdemic Press, London, 1990: 75.
    [89] K. Masaki, M. Suzuki, I. Maki. Burning and nodulization process of clinker in the rotary kiln as viewed from the fine textures of the constituent minerals[J]. Cement and Concrete Research Vol.32, 2002: 1039-1044.
    [90] 张洪滔, 张文生, 林震等. 不同煅烧制度下复合矿化熟料显微结构的研究[J]. 硅酸盐学报, Supplement, Vol.28, 2000(12): 22-27.
    [91] Chromy.s, Brno.Thoughts on the Alite content and the calculation of true phase contents in cement clinker[J]. Cement International. Vol.4, 2006(1): 84-89.
    [92] Theisen.K. Estimation of cement clinker grindability[A]. International Cement Microscopy Association, Dallas, Texas, 1993: 1-14.
    [93] Viggh.E.O. Estimation of grindability of portland cement clinker. International Cement Microscopy Association, Richmond, Virginia, 1994: 1-10.
    [94] Michel Jourlin, et al. Recognition of clinker phases by automatic image analysis[J]. Cement and Concrete Composites.Vol. 23, 2001: 207-214.
    [1] 秦守婉, 管宗甫, 郭随华, 陈益民.矿物匹配关系对高 C3S 硅酸盐水泥熟料烧成的影响. 水泥基材料论文集[M].中国硅酸盐学术年会, 北京, 2003(9): 498-501.
    [2] 沈威, 黄文熙, 闵盘荣. 水泥工艺学[M]. 武汉: 武汉工业出版社, 1991: 24-28.
    [3] Pennell, J. F. Variations in properties of clinker as a function of particle size. the 8th International Conference on Cement Microscopy, Orlando, Florida, 1986: 13-24.
    [4] 沈威, 黄文熙, 闵盘荣. 水泥工艺学[M]. 武汉: 武汉工业出版社, 1991: 22.
    [5] 陆平, 水泥材料科学导论[M]. 上海: 同济大学出版社, 1991: 8.
    [6] F.P.Glasser, Reactions occurring during cement making, Structure and performance of cement[M]. England, Vol. 1. 1983: 75-76.
    [7] F.P.Glasser. 水泥烧成动力学, 第八届国际水泥化学会议论文集, 水泥化学主报告, 第一卷, 1986: 4-10
    [8] F.P.Glasser. Reactions occurring during cement making, Structure and performance of cement [M]. England, Vol. 1, 1983: 70.
    [9] 冯端, 师昌绪, 刘治国. 材料科学导论[M]. 北京:化学工业出版社, 2002: 529-531.
    [10]管宗甫. 高阿利特水泥熟料的烧成和掺杂阿利特的研究[D]. 北京: 中国建筑材料科学研究总院博士论文, 2005: 65.
    [11]Hewlett P.C. Lea’s Chemistry of cement and concrete[M]. London, 1998: 202-204.
    [1] 陆平, 水泥材料科学导论[M]. 上海: 同济大学出版社, 1991: 57.
    [2] F.P.Glasser. 水泥烧成动力学, 第八届国际水泥化学会议论文集, 水泥化学主报告, 第一卷, 1986: 4-10.
    [3] CЫЧев. M. M 等.煅烧技术的发展与新的熟料制法[M].水泥熟料的新烧成法. 建材研究院技术情报室.1978(10): 3.
    [4] 郭勇, 苏慕珍, 邓君安, 王燕谋. C2F-C6A2F 固溶体系列与铁铝酸盐水泥中铁相形成机理及水化行为[M]. 水泥应用化学学术交流会资料.1987: 1.
    [5] Donald H, Campbell. Microscopical examination and interpretation of potland cement and clinker. USA. 1999: 93-95.
    [6] Maki,I, etal. Formation of belite clusters from quartz grains in Portland cement clinker. Cement and concrete Research, Vol.25, No.4, 1995: 835-840.
    [7] 建筑材料科学研究院编. 水泥岩相检验[M]. 北京: 中国建筑工业出版社, 1975: 124.
    [8] Taylor. H.FW. Cement chemistry[M]. 1990: 60.
    [9] 冯端, 师昌绪, 刘治国编. 材料科学导论[M]. 北京: 化学工业出版社, 2002: 464.
    [10] Donald H.Campbell. Microscopical examination and interpretation of potland cement and clinker. USA. 1999: 30.
    [11] Ono. Y. The crystal structure and the morphology of Alite. 6th ICCC, Supplementary paper, Section I. Moscow, 1974: 3-12.
    [12] Kingery. W.D, Brown H. K, Uhlmann D. R. Introduction to ceramics [M]. 1976: 328.
    [13] Maki,I, Relationship of processing parameters to clinker properties. Principal Report. 8th ICCC, Rio De Janeiro, 1986: 12-15.
    [14] Kingery. W.D, Brown H. K, Uhlmann D. R. Introduction to ceramics [M]. 1976: 336.
    [15] Maki, I, Processing conditions of Portland cement clinker as viewed from the fine textures of the constituent minerals. Ceramic Transactions, Vol.40, 1994: 3-17.
    [1] 管宗甫, 陈益民, 秦守婉. 掺杂阳离子在水泥熟料矿物阿利特中的固溶[J].硅酸盐学报, Vol.35, No.4, 2007(4): 67-72.
    [2] 管宗甫, 秦守婉, 郭随华, 等. 不同阴离子对高阿利特水泥熟料性能的影响[J]. 硅酸盐学报, Vol.32, No.3, 2004(3): 317-320.
    [3] 管宗甫, 陈益民, 郭随华. 杂质缺陷诱导阿利特晶胞常数改变与多晶转变[J]. 硅酸盐学报, Vol.34, No.1, 2006(1): 70–75.
    [4] Boikova[0].A.I. 原料化学组成是决定熟料各相的组成、结构和性质的主要因素. 8thICCC水泥化学主报告.1987: 15.
    [5] 张功睿等. 利用磷渣、页岩灰作硅酸盐水泥原料的研究. 中国建筑材料科学研究总院内部资料. 1986: 35.
    [6] Regourd.M, Guinier.A. The crystal chemistry of the constituents of Potland cement clinker[C]. 6th ICCC, Moscow,1974: 1-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700