银、氮修饰二氧化钛基纳米材料的制备、结构和可见光催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术的关键问题之一是制备稳定高效的光催化材料。TiO2基光催化材料因其原料丰富,成本低廉,对环境友好,化学稳定性高,光催化性能优良等优点,得到世界各国科技工作者的广泛关注。有关TiO2基光催化材料的研究已经有数十年的历史,但其在实际应用方面i仍然有诸多不足之处,譬如:低太阳光利用率和低光量子效率所导致的光催化活性不够高;以及使用过程中光催化活性的稳定性较差等。因此,通过合适的制备方法和掺杂改性途径以开发具有更高催化活性和使用稳定性的TiO2基光催化材料仍然是富有挑战性的课题。本论文针对性地从两方面入手:一是制备具有高比表而积的二维TiO2基纳米片结构,并分别通过N掺杂和Ag负载对其进行改性,获得具有高比表面积和高可见光活性的光催化材料;二是针对N掺杂TiO2光催化剂的光催化性能的稳定性,利用Ag表面修饰来改变N-TiO2的表面电子结构,提高光催化剂在制备以及使用过程中的稳定性。具体的研究内容如下:
     通过简单的“碱热-质子交换法”合成了具有介孔结构和高比表面积的TiO2基纳米片,这种纳米片具有锐钛矿/钛酸异质结结构,表现出优异的光催化性能。本工作采用原位Raman和XRD等方法,调查了该纳米片结构随温度升高的结构和性能变化情况。结果表明,随着温度的升高,纳米片中的钛酸成分会因脱水而逐渐向锐钛矿相转变。在温度低于300℃时,锐钛矿相基本上没有生长;300℃之后锐钛矿迅速生长。温度的升高,一方面会提高光催化剂的结晶度,提高催化剂内光生载流子的分离、迁移速率,从而改善其光催化性能;另一方面也会使纳米片因脱水而导致比表面积和孔结构迅速减少,而且促进了钛酸成分向锐钛矿相转变,进而破坏锐钛矿/钛酸异质结构构,对光催化性能造成了不利的影响。这两方面因素对气相和液相催化反应造成了不同的影响:随着温度上升,样品对RhB的光催化活性迅速下降;而对苯的光催化降解则以450℃为转折点,其光催化活性先上升后下降。
     以上述合成的具有高比表面积的锐钛矿/钛酸纳米片为原料,采用简单的固相法制备出比表而积相对较高的N掺杂TiO2。可见光气相催化降解苯的实验结果表明,所制备的N掺杂TiO2催化剂具有良好的可见光催化活性。研究了煅烧温度和投料比(尿素/TiO2摩尔比)对N掺杂TiO2结构和性能的影响,结果表明N掺杂最会随着煅烧温度的升高而降低,可能是因为随着温度的升高,热运动加剧,N元素留在TiO2晶格中的可能性会变得更低。另外温度太低会造成尿索分解不完全,所以N掺杂的最佳温度应为450℃。N掺杂量也会随着投料比的提高而增加,但是当投料比超过2:1时继续提高尿素加入量也再难以提高N的掺杂量,可能是因为此时N掺杂已经趋于饱和。在循环实验中,N掺杂TiO2的光催化活性持续下降,说明N掺杂TiO2的光催化活性稳定性并不理想,这是因为光催化反应中产生的光生空穴会将掺杂进入TiO2晶格的N氧化,掺杂N的损失使N掺杂TiO2的光催化活性逐渐丧失。所以应该设法提高掺杂N元素的稳定性。
     采用一步法首次直接合成了具有较高比表面积的Ag纳米颗粒负载层状钛酸纳米片,并提出了这种独特的Ag负载层状纳米片结构的形成机理。与未负载的样品相比,Ag负载纳米片在液相和气相反应中显示出优良的可见光催化活性可见光催化活性的产生是基于Ag的表面等离子体共振(SPR)效应:可见光下Ag的光生电子被激活后,可能克服其与钛算纳米片之间的肖特基势垒而进入钛酸的导带,因此八g负载能使钛酸的吸收边带红移,增强其在可见光波段的吸收。另外,样品的光催化活性随着Ag负载量的增加首先会逐渐增强,超过一定量之后反而会逐渐较低。这可能是由于过量的八g聚集在一起会形成载流子复合中心,同时还可能会影响光辐射的吸收。因此,寻找最佳的Ag负载量对于获得最优的光催化性能是很有必要的。
     通过水热处理,成功的将不同含量的Ag纳米颗粒引入到N掺杂的TiO2光催化材料表面上。有效地提高了光催化剂的可将光催化活性。同时发现掺杂的N元素在水热处理过程中的流失量会随着Ag负载量的增加而减少,说明Ag负载能增强TiO2晶格中掺杂N元素的稳定性;此外循环光催化实验的结果也表明Ag负载还可以提高光催化反应过程中,的掺杂N元素的稳定性,使N的掺杂浓度在重复使用过程中保持稳定,从而提高了光催化剂的循环使用性能。Ag负载的这种稳定化作用可以归结为电子从Ag的5s轨道向掺杂N元素的2p轨道的转移。另外光催化活性随着Ag负载量的增加首先呈增加趋势,Ag负载量超过一定值后光催化活性反而下降。因此也需找到合适的Ag负载量来获得最佳的光催化活性。
One of the key points of photocatalysis technology is to achieve high-performance photocatalysts. TiO2-derived photocatalysts have been attracting the worldwide attentions due to their low cost, low toxicity, and outstanding physical, chemical properties. TiO2-derived photocatalysts have been widely researched for several decades for applications in different fields including environmental depollution and energy conversion. However, there are still some disadvantages for TiO2-derived photocatalysts, hindering their practical applications, such as low utilization of sunlight, poor quantum efficiency and lack of photocatalytic stability. Therefore, it is essential to develop TiO2-derived photocatalysts with higher photocatalytic activity and stability. This research work is pertinently progressing from two aspects:one is to improve visible-light photocatalytic activity of TiO2-derived materials with Ag loading and/or N doping; the other is to enhance the photocatalytic stability of these photocatalysts with Ag, N co-modification.
     In this research work, series of Ag-loaded, N-doped and Ag-N co-modified TiO2-derived photocatalysts have been successfully synthesized. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (DRS), fluorescence spectroscopy (FL), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transformed infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and N2adsorption-desorption analysis are employed to characterize the as-prepared materials. Rhodamine B (RhB) and benzene are used as the degradation objects to evaluate the liquid-phase and gas-phase photocatalytic activities of the as-prepared samples. Some achievements have been made in this research work.
     Protonated anatase/titanate nanosheets with a high specific surface area of378m2/g were synthesized through an alkaline hydrothermal method with subsequent acid washing. In situ Raman, XRD and other techniques are employed to investigate the structural transformation influenced by thermal treatment. During the thermal treatment, dehydration of the nanosheets resulted in the complete transformation from titanate phase to anatase phase and the destroying of the laminated structure. The anatase phase has not been found to grow at temperatures below300℃. Increasing the temperature can lead to crystallinity improvement and the decrease of the surface area and the pore volume. These conversions influenced liquid-phase and gaseous-phase photocatalytic activity of the materials in different ways. With temperature increasing, the liquid-phase photocatalytic activity for RhB of the materials exhibited a downward trend, while the gaseous-phase photocatalytic activity for benzene firstly increased and then decreased when the temperature exceeded450℃.
     The aforementioned protonatcd anatase/titanate nanosheets are used as raw material to prcapare N-doped TiO2with high specific surface area. The as-prepared N-doped TiO2shows high visible-light photocatalytic activity for benzene. Influences of calcination temperature and mole feed ratio on the structure and properties of N-doped TiO2are also studied. It is found that the optimal calcination temperature is450℃. Lower temperature would lead to incomplete decomposition of urea, while higher temperature would hinder N dopant remaining in the TiO2lattice because of the excessive thermal vibration. N doping content will increase with the increasing mole feed ratio. However, the excess urea make no contribution to increase the N doping content when the mole feed ratio is above2:1. It is also found that the photocatalytic stability of N-doped TiO2is unsatisfactory because the photocatalytic activity of N-doped TiO2gradually decreases during the cycle experiment. That is because the N dopants in the TiO2lattice would be oxidized by the photogenerated holes. The photocatalytic activity of N-doped TiO2will decrease with the loss of N dopants. Therefore, it is necessary to improve the stability of the N dopants in the TiO2lattice.
     A facile one-pot hydrothermal method is proposed for synthesis of layered protonated titanate nanoshects (LPTNs) loaded with highly dispersed Ag nanoparticles, and the formation mechanism of this unique structure is also proposed. The as-synthesized samples are confirmed to be H2T2O5·H2O structure with mesoporous of3-4nm in diameter and high surface area of about200m2/g. The Ag nanoparticles loaded on the nanosheets are4-6nm in diameter and mainly exist in the form of zero-valence, which shifts the absorption edges toward longer wavelengths and enhances the visible-light absorption for the nanosheets due to the SPR of Ag. Ag loading remarkably enhances both the liquid-phase and gas-phase photoeatalytic activities of the titanate nanosheets under visible-light irradiation. An alternative possible mechanism for the enhancement of the visible-light photocalalylic activity is proposed. Moreover, the photocatalytic activity increases gradually with increasing Ag loading content first, and then decreases after maximizing at the optimal Ag/Ti molar ratio (2.87mol.%for photocatalytic degradation of RhB and1.57mol.%for photocatalytic mineralization of benzene, respectively). It can be attributed to that the excess Ag may aggregate to act as the recombination site and prevent light absorption of the LPNTs host by covering its surface. Therefore, the optimal Ag loading content should be explored for achieving the highest photocatalytic activity.
     Various contents of Ag nanoparticles were successfully introduced into the N-doped TiO2photocatalysts via a hydrothermal procedure. The photocatalysts were uniform particles and the adherent Ag mainly existed in the form of zero-valence. The existence of Ag restrained the escape of N dopants from the oxide during hydrothermal procedure. Such stabilization may be attributable to an electron transfer from the Ag5s orbitals towards the2p orbitals of the implanted N. The dependence of the photocatalytic activity on Ag content was also investigated by degradation of RhB under visible light irradiation. The photocatalytic activity increases gradually with increasing Ag content first, and then decreases after maximizing at the optimal Ag/Ti molar ratio of0.92mol.%. Therefore, the photocatalytic activity of Ag loaded N-doped TiO2photocatalysts can be adjusted by the Ag content and the optimal Ag loading content should be explored for achieving the highest photocatalytic activity.
引文
[1]Wu D, Liu J, Zhao X N, et al. Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts [J]. Chemistry of Materials.2006,18(2):547-553.
    [2]Lin L, Lin W, Xie J L, et al. Photocatalytic properties of phosphor-doped titania nanoparticles [J]. Applied Catalysis B:Hnvironmental.2007,75(1-2):52-58.
    [3]Dwivedi C, Dutta V. Size controlled synthesis and photocatalytic activity of anatase TiO2 hollow microspheres[J]. Applied Surface Science.2012,258(24):9584-9588.
    [4]Xiang Q, Yu J, Cheng B, et al. Microwave-llydrothermal Preparation and Visible-Light Photoactivity of Plasmonic Photocatalyst Ag-TiO2 Nanocomposite Hollow Spheres[J]. Chemistry-An Asian Journal.2010,5(6):1466-1474.
    [5]Yu J G, Shi L. One-pot hydrothermal synthesis and enhanced photocatalytic activity of trifluoroacetic acid modified TiO2 hollow microspheres [J]. Journal of Molecular Catalysis A: Chemical.2010,326(1-2):8-14.
    [6]Li H Y, Lu W B, Tian J Q, et al. Synthesis and Study of Plasmon-Induced Carrier Behavior at Ag/TiO2 Nanowires[J]. Chemistry-A Europcan Journal.2012,18(27):8508-8514.
    [7]Li X F, Cao M H,Zhang H, et al. Surface-enhanced Raman scattering-active substrates of electrospun polyvinyl alcohol/gold-silver nanofibcrs [J]. Journal of Colloid and Interface Science.2012,382:28-35.
    [8]Lan Y, Gao X P, Zhu H Y, et al. Titanate nanotubes and nanorods prepared from rutile powder [J]. Advanced Functional Materials.2005,15(8):1310-1318.
    [9j Yu J G, Xiang Q J, Zhou M H. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures[J]. Applied Catalysis B:Hnvironmental.2009,90(3-4):595-602.
    [10]Kc t Y, Peng C W, Lee C Y, et al.{110}-exposed rutile titanium dioxide nanorods in photocatalytic performance[J]. CrystEngCommunity.2009,11(8):1691-1695.
    [11]Yao B D, Chan Y F, Zhang X Y, et al. Formation mechanism of TiO2 nanotubes [J]. Applied Physics Letters.2003,82(2):281-283.
    [12]Du G H, Chen Q, Che R C, et al. Preparation and structure analysis of titanium oxide nanotubes [J]. Applied Physics Letters.2001,79:3702.
    [13]Tan A W, Pingguan-Murphy B, Ahmad R, et al. Review of titania nanotubes:Fabrication and cellular response [J]. Ceramics International.2012,38(6):4421-4435.
    [14]Adachi M, Murata Y, Marada M, et al. Formation of titania nanotubes with high photo-catalytic activity [J]. Chemistry Letters.2000(8):942-943.
    [15]Wei M D, Konishi Y, Arakawa H. Synthesis and characterization of nanosheet-shaped titanium dioxide [J]. Journal of Materials Science.2007,42(2):529-533.
    [16]Song Z Q, Xu H Y, Li K W, et al. Hydrothermal synthesis and photocatalytic properties of titanium acid H2Ti2O5 center dot-H2O nanosheets [J]. Journal of Molecular Catalysis A: Chemical.2005,239(1-2):87-91.
    [17]Pavasupree S, Ngamsinlapasathian S, Suzuki Y, et al. Preparation and characterization of high surface area nanosheet titania with mesoporous structure [J]. Materials Letters.2007, 61(14-15):2973-2977.
    [18]Korosi L, Papp S, Csapo E, et al. A short solid-state synthesis leading to titanate compounds with porous structure and nanosheet morphology [J]. Microporous and Mesoporous Materials. 2012,147(1):53-58.
    [19]Kim I Y, Lee J M, Kim T W, et al. A Strong Electronic Coupling between Graphene Nanosheets and Layered Titanate Nanoplates:A Soft-Chemical Route to Highly Porous Nanocomposites with Improved Photocatalytic Activity [J]. Small.2012,8(7):1038-1048.
    [20]Tang Y B, Lee C S, Xu J, et al. Incorporation of Graphenes in Nanostructured TiO2 Films via Molecular Grafting for Dye-Sensitized Solar Cell Application [J]. ACS Nano.2010,4(6): 3482-3488.
    [21]Liang H C, Li X Z. Visible-induced photocatalytic reactivity of polymer-sensitized titania nanotube films [J]. Applied Catalysis B:Environmental.2009,86(1-2):8-17.
    [22]Jitputti J, Rattanavoravipa T, Chuangchote S, et al. Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets [J]. Catalysis Communications.2009,10(4): 378-382.
    [23]Zhao B, Chen F, Huang Q W, et al. Brookitc TiO2 nanoflowers [J]. Chemical Communications.2009(34):5115-5117.
    [24]Jun Y, Choi J, Cheon J. Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes [J]. Angewandte Chemie International Edition.2006, 45(21):3414-3439.
    [25]Zhang S S, Peng F, Wang H J, et al. Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance [J]. Catalysis Communications.2011,12(8):689-693.
    [26]Wang X W, Gao X P, Li G R, et al. Ferromagnetism of co-doped TiO2(B) nanotubes [J]. Applied Physics Letters.2007,91:14310214.
    [27]Sun X M, Li Y D. Synthesis and characterization of ion-exchangeable titanate nanotubes [J]. Chemistry-A European Journal.2003,9(10):2229-2238.
    |28| Osada M, Itose M, Ebina Y, et al. Gigantic magneto-optical effects induced by (Fe/Co)-cosubstitution in titania nanosheets[J]. Applied Physics Letters.2008, 92(25311025).
    [29]Matsumoto Y, Koinuma M, Iwanaga Y, et al. N Doping of Oxide Nanosheets [J]. Journal of the American Chemical Society.2009,131(19):6644.
    [30]Chen F T, Fang P F, Gao Y P, et al. Effective removal of high-chroma crystal violet over TiO2-based nanosheet by adsorption-photocatalytic degradation[J]. Chemical Engineering Journal.2012,204:107-113.
    [31]Ranade M R, Navrotsky A, Zhang H Z, et al. Energetics of nanocrystallinc TiO2 [J]. Proceedings of the National Academy of Sciences of the United States of America.2002,992: 6476-6481.
    [32]Zhang H Z, Banfield J F. Understanding polymorphic phase transformation behavior during growth of nanocrystallinc aggregates:Insights from TiO2[J]. Journal of Physical Chemistry B.2000,104(15):3481-3487.
    [33]Marchand R, Brohan L, Toumoux M. TiO2 (B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17[J]. Materials Research Bulletin.1980,15:1129-1133.
    [34]Dubrovinsky L S, Dubrovinskaia N A, Swamy V, et al. Materials science-The hardest known oxide [J]. Nature.2001,410(6829):653-654.
    [35]Wu H B, Lou X W, Hng H H. Synthesis of Uniform Layered Protonated Titanatc Hierarchical Spheres and Their Transformation to Anatasc TiO2 for Lithium-Ion Batteries[J]. Chemistry-A European Journal.2012,18(7):2094-2099.
    [36]Sutradhar N, Sinhamahapatra A, Pahari S K, et al. Room temperature synthesis of protonated layered titanate sheets using peroxo titanium carbonate complex solution [J]. Chemical Communications.2011,47(27):7731-7733.
    [37]Frank S N, Bard A J. Heterogeneous photo-catalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. Journal of Physical Chemistry.1977,81(15): 1484-1488.
    [38]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J].Journal of the American Chemical Society.1977, 99(1):303-304.
    [39]Dicbold U. The surface science of titanium dioxide[J]. Surface Science Reports.2003, 48(5-8):53-229.
    [40]Fujishima A, Zhang X T, Tryk D A. TiO2 photocatalysis and related surface phenomena [J]. Surface Science Reports.2008,63(12):515-582.
    [41]Bui T D, Kimura A, Higashida S, et al. Two routes for mineralizing benzene by TiO2-photocatalyzed reaction [J]. Applied Catalysis B:Environmental.2011,107(1-2): 119-127.
    [42]Einaga H, Futamura S, Ibusuki T. Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air:comparison of decomposition behavior on photoirradiated TiO2 catalyst [J]. Applied Catalysis B:Environmental.2002, 38(3):215-225.
    [43]Zhong J B, Lu Y, Jiang W D, et al. Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene [J]. Journal of Hazardous Materials.2009,168(2-3): 1632-1635.
    [44]张前程,张风江,张国亮.苯在TiO2上的气相光催化氧化反应历程[J].催化学报.2004,25(1):39-43.
    [45]Fyjishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature.1972,238(5358):37-38.
    [46]Dholam R, Patel N, Adami M, et al. Hydrogen production by photocatalytic water-splitting using Cr-or Fe-doped TiO2 composite thin films photocatalyst [J]. International Journal of Hydrogen Energy.2009,34(13):5337-5346.
    [47]Patsoura A, Kondarides D I, Verykios X E. Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes [J]. Applied Catalysis B:Environmental.2006,64(3-4):171-179.
    [48]Sakthivel S, Shankar M V, Palanichamy M, et al. Enhancement of photocatalytic activity by metal deposition:characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst [J]. Water Research.2004,38(13):3001-3008.
    [49]Tada H, Kokubu A, Iwasaki M, et al. Deactivation of the TiO2 photocatalyst by coupling with WO3 and the electrochemically assisted high photocatalytic activity of WO3 [J]. Langmuir. 2004,20(11):4665-4670.
    [50]Tang J, Cowan A J, Durrant J R, et al. Mechanism of O2 Production from Water Splitting: Nature of Charge Carriers in Nitrogen Doped Nanocrystalline TiO2 Films and Factors Limiting O2 Production [J]. Journal of Physical Chemistry C.2011,115(7):3143-3150.
    [51]Zalas M, Laniecki M. Photocatalytic hydrogen generation over lanthanides-doped titania [J]. Solar Energy Materials and Solar cells.2005,89(2-3):287-296.
    [52]Nada A A, Barakat M H, Hamed H A, et al. Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts [J]. International Journal of Hydrogen Energy.2005,30(7):687-691.
    [53]Ni M, Leung M, Leung D, et al. A review and recent developments in pholocatalytic water-splitting using TiO2 for hydrogen production[J]. Renewable & Sustainable Energy Reviews.2007,11(3):401-425.
    [54]Sayama K, Arakawa H. Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysis [J]. Journal of Photochemistry and Photobiology A:Chemistry.1994,77(2-3):243-247.
    [55]Bourdon J. Spectral Sensitization of Chemical Effects in Solids [J]. Journal of Physical Chemistry.1965,69(3):705-713.
    [56]Desilvestro J, Graetzel M, Kavan L, et al. Highly efficient sensitization of titanium dioxide [J]. Journal of the American Chemical Society.1985,107(10):2988-2990.
    [57]Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X=Cl, Br, I, CN-, and SCN) on nanocryslalline titanium dioxide electrodes[J].Journal of the American Chemical Society.1993,115(14):6382-6390.
    [58]Chen B, Hu H, Tai Q, et al. An inverted fabrication method towards a flexible dye sensitized solar cell based on a free-standing TiO2 nanowires membrane[J]. Electrochimica Acta.2012, 59(0):581-586.
    [59]Wu J H, Hao S C, Lin J M, et al. Crystal morphology of anatase titania nanocrystals used in dye-sensitized solar cells[J]. Crystal Growth & Design.2008,8(1):247-252.
    |60] Fan K, Peng T, Chen J, et al. Effects of tetrabutoxytitanium on pholoelectrochemical properties of plastic-based TiO2 film electrodes for flexible dye-sensitized solar cells[J]. Journal of Power Sources.2011,196(5):2939-2944.
    [61]Fujishima A, Zhang X. Titanium dioxide photocatalysis:present situation and future approaches[J]. Comptes Rendus Chimie.2006,9(5-6):750-760.
    [62]Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis:A historical overview and future prospects [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers.2005,44(12):8269-8285.
    [63]Bozzi A, Yuranova T, Guasaquillo I, et al. Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry.2005,174(2):156-164.
    [64]Bozzi A, Yuranova T, Kiwi J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature[J]. Journal of Photochemistry and Photobiology A:Chemistry.2005,172(1):27-34.
    [65]Cassar L. Photocatalysis of cementitious materials:Clean buildings and clean air [J]. MRS Bulletin.2004,29(5):328-331.
    [66]Hoffmann M R, Martin S T, Choi W, et al. Environmental Applications of Semiconductor Photocatalysis [J]. Chemical Reviews.1995,95(1):69-96.
    [67]Lorret O, Francova D, Waldner G, et al. W-doped titania nanoparticles for UV and visible-light photocatalytic reactions [J]. Applied Catalysis B:Environmental.2009,91(1-2): 39-46.
    [68]Onda K, Li B, Zhao J, et al. Wet electrons at the H2O/TiO2(110) surface [J]. Science.2005, 308(5725):1154-1158.
    [69]Xu J C, Lu M, Guo X Y, et al. Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water [J]. Journal of Molecular Catalysis A:Chemical.2005,226(1):123-127.
    [70]Zhu S, Liang S, Gu Q, et al. Effect of Au supported TiO2 with dominant exposed{001} facets on the visible-light photocatalytic activity [J]. Applied Catalysis B:Environmental. 2012,119-120(0):146-155.
    [71]Zhao B, Chen F, Jiao Y, et al. AgO-loaded brookite/anatase composite with enhanced photocatalytic performance towards the degradation of methyl orange [J]. Journal of Molecular Catalysis A:Chemical.2011,348(1-2):114-119.
    [72]崔玉民,张文保,洪文珊.二氧化钛光催化薄膜[M].北京:化学工业出版社,2011.
    [73]张金龙,陈锋,何斌.光催化[M].上海:华东理工大学出版社,2004.
    [74]Houskova V, Stengl V, Bakardjieva S, et al. Efficient gas phase photodecomposition of acetone by Ru-dopcd Titania [J]. Applied Catalysis B:Environmental.2009,89(3-4): 613-619.
    [75]周利民,罗太安,黄群武,等.不同形貌纳米TiO2对甲基橙的光催化活性[J].材料工程.2009(2):29-33.
    [76]Thompson T L, Yates J T. TiO2-based photocatalysis:Surface defects, oxygen and charge transfer [J]. Topics in Catalysis.2005,35(3-4):197-210.
    [77]Vittadini A, Schirmer M, Walz M M, et al. Defects in Oxygen-Depleted Titanate Nanostructures [J]. Langmuir.2012,28(20):7851-7858.
    [78]Bahnemann D, Bockelmann D, Goslich R. Mechanistic studies of water detoxification in illuminated TiO2 suspensions [J]. Solar Energy Materials.1991,24(1-4):564-583.
    [79]Minero C, Mariella G, Maurino V, et al. Photocatalytic transformation of organic compounds in the presence of inorganic anions.1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system [J]. Langmuir.2000,16(6): 2632-2641.
    [80]Minero C, Mariella G, Maurino V, et al. Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Anions.2. Hydroxyl-Mediated and Direct Electron-Transfer Reactions of Phenol on a Titanium Dioxide-Fluoride System[J]. Langmuir.2000,16(23):8964-8972.
    [81]Zhao J, Hidaka H, Takamura A, et al. Photodegradation of surfactants.11. zeta-Potential measurements in the photocatalytic oxidation of surfactants in aqueous titania dispersions [J]. Langmuir.1993,9(7):1646-1650.
    [82]陈诵英,孙彦平.光催化反应期工程[M].北京:化学工业出版社,2011.
    [83]Yamazaki S, Matsunaga S, Mori K. Photocatalytic degradation of trichloroethylene in water using TiO2 pellets [J]. Water Research.2001,35(4):1022-1028.
    [84]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science.2001,293(5528):269-271.
    [85]Graciani J, Alvarez L J, Rodriguez J A, el al. N doping of rutile TiO2 (110) surface. A theoretical DFT study [J]. Journal of Physical Chemistry C.2008,112(7):2624-2631.
    |86] Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J]. Applied Catalysis A:General.2004, 265(1):115-121.
    [87]Yang X, Cao C, Hohn K, et al. Highly visible-light active C-and V-doped TiO2 for degradation of acetaldehyde[J]. Journal of Catalysis.2007,252(2):296-302.
    [88]Burda C, Lou Y B, Chen X B, el al. Enhanced nitrogen doping in TiO2 nanoparticles [J]. Nano Letters.2003,3(8):1049-1051.
    [89]Nambu A, Graciani J, Rodriguez J A, et al. N doping of TiO2(110):Photoemission and density-functional studies[J]. Journal of Chemical Physics.2006,125(125):947069.
    [90]Batzill M, Morales E H, Diebold U. Influence of nitrogen doping on the defect formation and surface properties of TiO2 rulile and anatase[J]. Physical Review Letters.2006,96(96): 261032.
    [91]Cihicov A, Schmidt B, Kunze J, et al. Photoresponse in the visible range from Cr doped TiO2 nanotubes [J]. Chemical Physics Letters.2007,433(4-6):323-326.
    [92]Kim H Y, Lee H M, Pala R, et al. CO oxidation by rutile TiO2(110) doped with V, W, Cr, Mo, and Mn [J]. Journal of Physical Chemistry C.2008,112(32):12398-12408.
    [93]Sakatani Y, Nunoshige J, Ando H,et al. Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N co-doped TiO2[J]. Chemistry Letters.2003,32(12): 1156-1157.
    [94]Xu A, Gao Y, Liu H. The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles [J]. Journal of Catalysis.2002,207(2):151-157.
    [95]Yang P, Lu C, Hua N P, et al. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis [J]. Materials Letters.2002,57(4):794-801.
    [96]Du P, Bueno-Lopez A, Verbaas M, et al. The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation [J]. Journal of Catalysis.2008,260(1):75-80.
    [97]Parida K M, Sahu N. Visible light induced photocatalytic activity of rare earth titania nanocomposites [J]. Journal of Molecular Catalysis A:Chemical.2008,287(1-2):151-158.
    [98]stengl V, Bakardjieva S, Murafa N. Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles [J]. Materials Chemistry and Physics.2009,114(1):217-226.
    [99]Chen D M, Jiang Z Y, Geng J Q, et al. Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity [J]. Industrial & Engineering Chemistry Research.2007, 46(9):2741-2746.
    [100]Di Valentin C, Finazzi E, Pacchioni G, et al. N-doped TiO2:Theory and experiment [J]. Chemical Physics.2007,339(1-3):44-56.
    [101]Dong F, Zhao W R, Wu Z B. Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect [J]. Nanotechnology.2008,19:36560736.
    [102]Ho W, Yu J C, Lee S. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity [J]. Chemical Communications.2006(10):1115-1117.
    [103]Yu J X, Liu S W, Xiu Z L, et al. Synthesis of sulfur-doped TiO2 by solvothermal method and its visible-light photocatalytic activity [J]. Journal of Alloys and Compounds.2009, 471(1-2):L23-L25.
    [104]Li D, Haneda H, Hishita S, et al. Visible-light-driven N-F-codoped TiO2 photocatalysts.2. Optical characterization, photocatalysis, and potential application to air purification [J]. Chemistry of Materials.2005,17(10):2596-2602.
    [105]Gao X, Shang J X, Zhang Y. First-principles study of nonmetal-doped titanium oxides [M]. High-Performance Ceramics IV, Pts 1-3, Stafa-Zurich:Trans. Tech. Publications Ltd.,2007: 336-338,2507-2509.
    [106]Duonghong D, Borgarello E, Graetzel M. Dynamics of light-induced water cleavage in colloidal systems [J]. Journal of the American Chemical Society.1981,103(16):4685-4690.
    [107]邓南圣,刘筱红,吴峰,等.酞菁类复合催化剂对染料橙黄H水溶液的光催化脱色研究[J].环境科学学报.2001(S1):115-118.
    [108]郑凤英,李顺兴,钱沙华,等.水杨酸和5-磺基—水杨算表面修饰纳米TiO2吸附去除对硝基苯酚[J].环境科学学报.2007(1):64-68.
    [109]Baker D R, Kamat P V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures [J]. Advanced Functional Materials.2009, 19(5):805-811.
    [110]Banerjee S, Mohapatra S K, Das P P, et al. Synthesis of Coupled Semiconductor by hilling 1D TiO2 Nanotubes with CdS [J]. Chemistry of Materials.2008,20(21):6784-6791.
    [111]Chang C H, Lee Y L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells[J]. Applied Physics Letters.2007, 91(0535035).
    [112]Sun W T, Yu Y, Pan H Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes [J]. Journal of the American Chemical Society.2008,130(4):1124.
    [113]Znu J H, Yang D, Geng J Q, et al. Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity A-2392-2010 [J]. Journal of Nanoparticle Research.2008,10(5):729-736.
    [114]陈晓慧,柳丽芬,杨凤林,等CdS/TiO2光催化去除水体中氨氮的研究[J].感光科学与光化学.2007(2):89-101.
    [115]Suwanchawalit C, Wongnawa S, Sriprang P, et al. Hnhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light [J]. Ceramics International.2012,38(6):5201-5207.
    [116]Wang E H, Liu S W, Lu Q F, et al. Photocatalytic property of surface-modified TiO2 nanobelts under visible light irradiation [J]. Journal of Sol-Gel Science and Technology. 2011,58(3):705-710.
    [117]Zhao Y X, Yang B F, Xu J, et al. facile synthesis of Ag nanoparticles supported on TiO2 inverse opal with enhanced visible-light photocatalytic activity [J]. Thin Silid Films.2012, 520(9):3515-3522.
    [118]Bracko I, Jancar B, Logar M, et al. Silver nanoparticles on titanate nanobelts via the self-assembly of weak polyelectrolytes:synthesis and photocatalytic properties [J]. Nanotechnology.2011,22:0857058.
    [119]Feng C X, Zhang J W, Lang R, et al. Unusual photo-induced adsorption desorption behavior of propylene on Ag/TiO2 nanotube under visible light irradiation [J]. Applied Surface Science.2011,257(6):1864-1870.
    [120]Li Y J, Ma M Y, Chen W, et al. Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations [J]. Materials Chemistry and Physics.2011,129(1-2):501-505.
    [121]Primo A, Corma A, Garcia H. Titania supported gold nanoparticles as photocatalyst [J]. Physical Chemistry Chemical Physics.2011,13(3):886-910.
    [122]Xie K P, Sun L, Wang C L, et al. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition [J]. Electrochimica Acta. 2010,55(24):7211-7218.
    [123]Lin C, Wu C, Onn Z. Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems [J]. Journal of Hazardous Materials.2008,154(1-3):1033-1039.
    [124]Qian J, Liu P, Xiao Y, et al. TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells [J]. Advanced Materials.2009,21(36):3663-3667.
    [125]Shankar H, Rajasudha G, Karthikeyan A, et al. Synthesis, characterization and photocatalytic activity of nanotitania loaded W-MCM-41 [J]. Nanotechnology.2008,19: 31571131.
    [126]stengl V, Bakardjieva S, Murafa N, et al. Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis [J]. Microporous and Mesoporous Materials.2008,110(2-3):370-378.
    [127]Liu Z, Chen F T, Fang P F, et al. Study of adsorption-assisted photocatalytic oxidation of benzene with TiO2/SiO2 nanocomposites [J]. Applied Catalysis A:General.2013,451: 120-126.
    [128]于向阳,梁文,程继健.提高二氧化钛光催化性能的途径[J].硅酸盐通报,2000,19(1):53-57.
    [129]耿晓云,任宝山,杨贵荣,等.载体对二氧化钛光催化降解苯的影响[J].钛工业进展.2006(04):35-37.
    [130]Halasi G, Ugrai I, Solymosi F. Photocatalytic decomposition of ethanol on TiO2 modified by N and promoted by metals [J]. Journal of Catalysis.2011,281:309-317.
    [131]Wu M, Yang B F, Lv Y, et al. Efficient one-pot synthesis of Ag nanoparticles loaded on N-dopcd multiphase TiO2 hollow nanorod arrays with enhanced photocatalytic activity [J]. Applied Surface Science.2010,256(23):7125-7130.
    [132]Cong Y, Zhang J, Chen F, et al. Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (Ⅲ) [J]. Journal of Physical Chemistry C.2007, 111(28):10618-10623.
    [133]Hao H Y, Zhang J L. The study of Iron (Ⅲ) and nitrogen co-doped mesoporous TiO2 photocatalysts:synthesis, characterization and activity [J]. Microporous and Mesoporous Materials.2009,121(1-3):52-57.
    [134]Morikawa T, Ohwaki T, Suzuki K, et al. Visible-light-inducedphotocatalyticoxidation of carboxylicacids and aldehydes over N-doped TiO2 loaded with Fe, Cu or Pt [J]. Applied Catalysis B:Environmental.2008(83):56-62.
    [135]Tian J T, Wang J F, Dai J H, et al. N-doped TiO2/ZnO composite powder and its photocatalytic performance for degradation of methyl orange[J]. Surface & Coatings Technology.2009,204(5):723-730.
    [136]Xia H L, Zhuang H S, Xiao D C, et al. Photocatalytic activity of La3+/S/TiO2 photocatalys under visible light [J]. Journal of Alloys and Compounds.2008,465(1-2):328-332.
    [137]Xie Y, Kum J, Zhao X J, et al. Enhanced photocatalytic activity of mesoporous S-N-codoped TiO2 loaded with Ag nanoparticles [J]. Semiconductor Science and Technology. 2011,26:850378.
    [138]Yin S, Liu B, Zhang P, et al. Photocatalytic Oxidation of NOx under Visible LED Light Irradiation over Nitrogen-Doped Titania Particles with Iron or Platinum Loading[J]. Journal of Physical Chemistry C.2008,112(32):12425-12431.
    [139]Yu H F, Zhang Z W, Hu F C. Phase stabilities and photocatalytic activities of P/Zn-TiO2 nanoparticles able to operate under UV-vis light irradiation [J]. Journal of Alloys and Compounds.2008,465(1-2):484-490.
    [140]Zhang X W, Lei L C, Zhang J L, et al. Preparation of PW12O403+/Cr-TiO2 nanotubes photocalalysts with the high visible light activity [J]. Separation and Purification Technology. 2009,67(1):50-57.
    [141]Zhao W, Ma W H, Chen C C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation [J]. Journal of the American Chemical Society.2004, 126(15):4782-4783.
    [142]Ashkarran A A, Aghigh S M, Kavianipour M, et al. Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents [J]. Current Applied Physics.2011, 11(4):1048-1055.
    [143]Sauthier G, Del Pino A P, Figueras A, et al. Synthesis and Characterization of Ag Nanoparticles and Ag-Loaded TiO2 Photocatalysts[J]. Journal of the American Chemical Society.2011,94(11):3780-3786.
    [144]Iric H, Watanabe Y, Hashimoto K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders [J]. Journal of Physical Chemistry B.2003,107(23): 5483-5486.
    [145]Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping [J]. Applied Catalysis B: Environmental.2003,42(4):403-409.
    [146]方晓明,张正国,陈清林.具可见光活性的氮掺杂二氧化钛光催化剂[J].化学进展.2007(09):1282-1290.
    [147]Di Valentin C, Pacchioni G, Selloni A, et al. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations [J]. Journal of Physical Chemistry B.2005,109(23):11414-11419.
    [148]Kachina A, Puzenat E, Ould-Chikh S, et al. A New Approach to the Preparation of Nitrogen-Doped Titania Visible Light Photocatalyst [J]. Chemistry of Materials.2012,24(4): 636-642.
    [149]Nakamura R, Tanaka T, Nakato Y. Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes [J]. Journal of Physical Chemistry B.2004, 108(30):10617-10620.
    [150]Zhang Z Z, Long J L, Xie X Q, et al. Controlling the synergistic effect of oxygen vacancies and N dopants to enhance photocatalytic activity of N-doped TiO2 by H2 reduction [J]. Applied Catalysis A:General.2012,425:117-124.
    [151]Cheng X W, Yu X J, Xing Z P. Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity [J]. Applied Surface Science. 2012,258(7):3244-3248.
    [152]Ananpattarachai J, Kajitvichyanukul P, Seraphin S. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants [J]. Journal of Hazardous Materials.2009,168(1):253-261.
    [153]Ceotto M, Lo Presti L, Cappelletti G, et al. About the Nitrogen Location in Nanocrystalline N-Doped TiO2:Combined DFT and EXAFS Approach [J]. Journal of Physical Chemistry C. 2012,116(2):1764-1771.
    [154]Lin Y H, Chiu T C, Hsueh H T, et al. N-doped TiO2 photo-catalyst for the degradation of 1,2-dichloroethane under fluorescent light [J]. Applied Surface Science.2011,258(4): 1581-1586.
    [155]Nolan N T, Synnott D W, Seery M K, et al. Effect of N-doping on the photocatalytic activity of sol-gel TiO2 [J]. Journal of Hazardous Materials.2012,211(S1):88-94.
    [156]Gurkan Y Y, Turkten N, Hatipoglu A, et al. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation:Prediction of the reaction paths via conceptual DFT [J]. Chemical Engineering Journal.2012,184:113-124.
    [157]Nosaka Y, Matsushita M, Nishino J, et al. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds [J]. Science and Technology of Advanced Materials.2005,6(2):143-148.
    [158]Nishijima K, Fujisawa Y, Murakami N, et al. Development of an S-doped titania nanotubc (TNT) site-selectively loaded with iron(Ⅲ) oxide and its photocatalytic activities[J]. Applied Catalysis B:Environmental.2008,84(3-4):584-590.
    [159]万斌,陈鸣波,周细应,等.Ag/TiO2-xNx纳米管的光电催化性能[J].无机材料学报.2010(03).
    [160]Lin X X, Rong F, Ji X, et al. Preparation and enhanced visible light photocatalytic activity ofN-doped titanate nanotubes by loaded with Ag for the degradation of X-3B[J]. Solid State Sciences.2011,13(7):1424-1428.
    [161]Sun C X, Li Q, Gao S A, et al. Enhanced Photocatalytic Disinfection of Escherichia coli Bacteria by Silver Modification of Nitrogen-Doped Titanium Oxide Nanoparticle Photocatalyst Under Visible-Light Illumination [J]. Journal of the American Ceramic Society. 2010,93(11):3880-3885.
    [162]Chen X F, Wang X C, Hou Y D, et al. The effect of postnitridation annealing on the surface property and pholocatalytic performance of N-doped TiO2 under visible light irradiation[J]. Journal of Catalysis.2008,255(1):59-67.
    [163]Dong F, Wang H, Wu Z, et al. Marked enhancement of photocatalytic activity and photochemical stability of N-doped TiO2 nanocrystals by Fe3+/Fe2+ surface modification[J]. Journal of Colloid and Interface Science.2010,343(1):200-208.
    [164]Hu S Z, Li F Y, Fan Z P. The influence of preparation method, nitrogen source, and post-treatment on the photocatalytic activity and stability of N-doped TiO2 nanopowder [J]. Journal of Hazardous Materials.2011,196:248-254.
    [165]Hu S, Li F, Fan Z, et al. Enhanced photocatalytic activity and stability of nano-scaled TiO2 co-doped with N and Fe [J]. Applied Surface Science.2011,258(258):182-188.
    [166]Graciani J, Nambu A, Evans J, et al. Au←→ N synergy and N-doping of metal oxide-based photocatalysts [J]. Journal of the American Chemical Society.2008,130(36):12056-12063.
    [167]Kasuga T, Iliramatsu M, Hoson A, et al. Formation of titanium oxide nanotube[J]. Langmuir.1998,14(12):3160-3163.
    [168]Kasuga T, Iliramatsu M, I loson A, et al. Titania nanotubes prepared by chemical processing [J]. Advanced Materials.1999,11(15):1307-1311.
    [169]Kim S, Kim M, Hwang S H, et al. Enhancement of photocatalytic activity of titania-titanatc nanotubes by surface modification [J]. Applied Catalysis B:Environmental.2012,123: 391-397.
    [170]Zhang H B, Cao L X, Liu W, et al. A new ion exchange behavior of protonated titanate nanotubes after deprotonation and the study on their morphology and optical properties [J]. Applied Surface Science.2012,259:610-615.
    [171]Kang K Y, Lee Y G, Kim S, et al. Electrochemical properties of carbon-coated TiO2 nanotubes as a lithium battery anode material [J]. Materials Chemistry and Physics.2012, 137(1):169-176.
    [172]Niu H Y, Wang J M, Shi Y L, et al. Adsorption behavior of arsenic onto protonated titanate nanotubes prepared via hydrothermal method [J]. Microporous and Mesoporous Materials. 2009,122(1-3):28-35.
    [173]Ou H H, Lo S L. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application [J]. Separation and Purification Technology.2007, 58(1):179-191.
    [174]Ma R Z, Sasaki T, Bando Y. Alkali metal cation intercalation properties of titanate nanotubes [J]. Chemical Communications.2005(7):948-950.
    [175]Tsai C C, Teng H S. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments [J]. Chemistry of Materials.2006,18(2):367-373.
    1176] Nakahira A, Kato W, Tamai M, et al. Synthesis of nanotube from a layered H2Ti4O9 center dot H2O in a hydrothermal treatment using various titania sources [J]. Journal of Materials Science.2004,39(13):4239-4245.
    [177]Gao T, Fjellvag H, Norby P. Crystal Structures of Titanate Nanotubes:A Raman Scattering Study [J]. Inorganic Chemistry.2009,48(4):1423-1432.
    [178]Wang Y Q, Hu G Q, Duan X F, et al. Microstructure and formation mechanism of titanium dioxide nanotubes [J]. Chemical Physics Letters.2002,365(5-6):427-431.
    [179]Kukovecz A, Hodos N, Horvath E, et al. Oriented crystal growth model explains the formation of titania nanotubes [J]. Journal of Physical Chemistry B.2005,109(38): 17781-17783.
    [180]Bavykin D V, Friedrich J M, Walsh F C. Protonated titanates and TiO2 nanostructured materials:Synthesis, properties, and applications [J]. Advanced Materials.2006,18(21): 2807-2824.
    [181]Bavykin D V, Parmon V N, Lapkin A A, et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes [J]. Journal of Materials Chemistry.2004,14(22): 3370-3377.
    [182]Ma R Z, Fukuda K, Sasaki T, et al. Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations [J]. Journal of Physical Chemistry B.2005,109(13):6210-6214.
    [183]Yoshida R, Suzuki Y, Yoshikawa S. Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes[J]. Materials Chemistry and Physics.2005,91(2-3):409-416.
    1184] Bavykin D V, Cressey B A, Light M E, et al. An aqueous, alkaline route to titanate nanotubes under atmospheric pressure conditions [J]. Nanotechnology.2008,19:27560427.
    [185]Pap Z, Karacsonyi E, Cegled Z, et al. Dynamic changes on the surface during the calcination of rapid heat treated TiO2 photocatalysts [J]. Applied Catalysis B:Hnvironmental.2012,111: 595-604.
    [186]Khalid N R, Ahmed E,Ikram M, et al. Effects of Calcination on Structural, Photocalalytic Properties of TiO2 Nanopowders Via TiCl4 Hydrolysis [J]. Journal of Materials Engineering and Performance.2012,22(2):371-375.
    [187]Porter J P, Li Y G, Chan C K. The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2 [J]. Journal of Materials Science.1999,34(7): 1523-1531.
    [188]Chan C K, Porter J F, Li Y G, et al. Effects of calcination on the microstructures and photocatalytic properties of nanosized titanium dioxide powders prepared by vapor hydrolysis[J]. Journal of the American Ceramic Society.1999,82(3):566-572.
    [189]Jimmy C Y, Lin J, Lo D, et al. Influence of thermal treatment on the adsorption of oxygen and photocalalytic activity of TiO2 [J]. Langmuir.2000,16(18):7304-7308.
    [190]Cortes-Jacome M A, Ferrat-Torres G, Ortiz L, et al. In situ thermo-Raman study of titanium oxide nanotubes[J]. Catalysis Today.2007,126(1-2):248-255.
    [191]Kim G S, Ansari S G, Seo H K, et al. Effect of annealing temperature on structural and bonded states of titanate nanotube films[J]. Journal of Applied Physics.2007,101:24314.
    [192]Lee C K, Wang C C, Lyu M I), et al. Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates[J]. Journal of Colloid and Interface Science.2007,316(2):562-569.
    [193]Yu J, Yu H, Cheng B, et al. Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes[J]. Journal of Molecular Catalysis A:Chemical. 2006,249(1-2):135-142.
    [194]Zhang M, Jin Z S, Zhang J W, et al. Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2 [J]. Journal of Molecular Catalysis A:Chemical.2004,217(1-2):203-210.
    [195]Kim S J, Yun Y U, Oh II J, et al. Characterization of Hydrothermally Prepared Titanate Nanotube Powders by Ambient and In Situ Raman Spectroscopy[J]. Journal of Physical Chemistry Letters.2010,1(1):130-135.
    [196]Swamy V, Kuznetsov A, Dubrovinsky L S, et al. Finite-size and pressure effects on the Raman spectrum nanocrystalline anatse TiO2 [J]. Physical Review B.2005,71:184302.
    [197]Mazza T, Barborini E, Piseri P, et al. Raman spectroscopy characterization of TiO2 rutile nanocrystals [J]. Physical Review B.2007,75:45416.
    [198]Shen H, Mi L, Xu P, et al. Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation [J]. Applied Surface Science. 2007,253(17):7024-7028.
    [199]Samiolo L, Valigi M, Gazzoli D, et al. Photo-electro catalytic oxidation of aromatic alcohols on visible light-absorbing nitrogen-doped TiO2 [J]. Electrochimica Acta.2010,55(26SI): 7788-7795.
    [200]Krejcikova S, Matejova L, Kocf K, et al. Preparation and characterization of Ag-doped crystalline titania for photocatalysis applications [J]. Applied Catalysis B:Environmental. 2012,111-112:119-125.
    [201]Chan S C, Barteau M A. Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition [J]. Langmuir.2005,21(12):5588-5595.
    [202]Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science.2002,297(5590):2243-2245.
    [203]Yu J X, Liu S W, Xiu Z L, et al. Combustion synthesis and photocatalytic activities of Bi3+-doped TiO2 nanocrystals [J]. Journal of Alloys and Compounds.2008,461(1-2): L17-L19.
    [204]Tsai C C, Teng H S. Chromium-doped titanium dioxide thin-film photoanodes in visible-light-induced water cleavage [J]. Applied Surface Science.2008,254(15):4912-4918.
    [205]Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide [J]. Angewandte Chemie International Edition.2003,42(40):4908-4911.
    [206]Dong L, Ma Y, Wang Y W, et al. Preparation and characterization of nitrogen-doped titania nanotubes [J]. Materials Letters.2009,63(18-19):1598-1600.
    [207]Wu D Y, Long M C, Cai W M, et al. Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible-light activity B-5303-2008 [J]. Journal of Alloys and Compounds.2010,502(2):289-294.
    [208]Matsubara K, Danno M, Inoue M, et al. Characterization of nitrogen-doped TiO2 powder prepared by newly developed plasma-treatment system [J]. Chemical Engineering Journal. 2012,181:754-760.
    [209]Villa K, Black A, Domenech X, et al. Nitrogen doped TiO2 for hydrogen production under visible light irradiation [J]. Solar Energy.2012,86(1):558-566.
    [210]Jiang F, Zheng S R, An L C, et al. Effect of calcination temperature on the adsorption and photocatalytic activity of hydrothermally synthesized TiO2 nanotubes [J]. Applied Surface Science.2012,258(18):7188-7194.
    [211]Lin C H, Chao J H, Liu C H, et al. Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H2[J]. Langmuir.2008, 24(17):9907-9915.
    [212]Vijayan P P, Thomas M, George K C. Effect of calcinations on electrical properties of TiO2 nanotubes [J]. Journal of Applied Physics.2012, 112:10430810.
    [213]Wang M C, Lin H J, WangC H,et al. Effects of annealing temperature on the photocatalytic activity of N-doped TiO2 thin films[J]. Ceramics International.2012,38(38):195-200.
    [214]Zhao Z H, Fan J M, Wang J Y, et al. Effect of heating temperature on photocatalytic reduction of CO2 by N-TiO2 nanotubc catalyst[J]. Catalysis Communications.2012,21: 32-37.
    [215]Yu J G, Yu H G, Cheng B, et al. Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes[J]. Journal of Molecular Catalysis A: Chemical.2006,249(1-2):135-142.
    [216]Ibhadon A O, Grcenway G M, Yue Y, et al. The photocatalytic activity of TiO2 foam and surface modified binary oxide titania nanoparticlcs[J]. Journal of Photochemistry and Photobiology A:Chemistry.2008,197(2-3):321-328.
    [217]Khan M A, Jung H T, Yang O B. Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes[J]. Journal of Physical Chemistry B.2006,110(13):6626-6630.
    [218]Yang Y, Wang X, Li L. Crystallization and phase transition of titanium oxide nanotube arrays[J]. Journal of the American Ceramic Society.2008,91(2):632-635.
    [219]Wu Z, Dong F, Zhao W, et al. Visible light induced electron transfer process over nitrogen doped TiO2 Visible light induced electron transfer process over nitrogen doped TiO2[J]. Journal of Hazardous Materials.2008,157(157):57-63.
    [220]Chen X, Burda C. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticlcs [J]. Journal of Physical Chemistry 13.2004,108(40):15446-15449.
    [221]Wu H C, Lin S W, Wu J S. Effects of nitrogen concentration on N-doped anatase TiO2: Density functional theory and Hubbard U analysis[J]. Journal of Alloys and Compounds. 2012,522:46-50.
    [222]Gratzel M. Photoelectrochemical cells[J]. Nature.2001,414(6861):338-344.
    [223]Liu G, Wang L Z, Yang H G, et al. Titania-based photocatalysts-crystal growth, doping and heterostructuring [J]. Journal of Materials Chemistry.2010,20(5):831-843.
    [224]Teramura K, Tanaka T, Funabiki T. Photoassisted selective catalytic reduction of NO with ammonia in the presence of oxygen over TiO2 [J]. Langmuir.2003,19(4):1209-1214.
    [225]Li N, Zhang L D, Chen Y Z, et al. Highly Efficient, Irreversible and Selective Ion Exchange Property of Layered Titanate Nanostructures [J]. Advanced Functional Materials.2012,22(4): 835-841.
    [226]Wang C H, Zhang X T, Zhang Y L, et al. Hydrolhermal Growth of Layered Titanate Nanosheet Arrays on Titanium Foil and Their Topotactic Transformation to Heterostructured TiO2 Photocatalysts [J]. Journal of Physical Chemistry C.2011,115(45):22276-22285.
    [227]Shen L, Bao N, Zheng Y, et al. Hydrothermal Splitting of Titanate Fibers to Single-Crystalline TiO2 Nanostructures with Controllable Crystalline Phase, Morphology, Microstructure, and Photocatalytic Activity [J]. Journal of Physical Chemistry C.2008, 112(24):8809-8818.
    [228]Tsai C, Teng H. Nanotube Formation from a Sodium Titanate Powder via Low-Temperature Acid Treatment [J]. Langmuir.2008,24(7):3434-3438.
    [229]Chen Q, Zhou W, Du G H, et al. Trititanate Nanotubes Made via a Single Alkali Treatment [J]. Advanced Materials.2002,14(17):1208-1211.
    [230]Wen P H, Itoh H, Tang W P, et al. Transformation of layered titanate nanosheets into nanostructured porous titanium dioxide in polycation solution [J]. Microporous and Mesoporous Materials.2008,116(1-3):147-156.
    [231]Takezawa Y, Imai H. Bottom-up synthesis of titanate nanosheets with hierarchical structures and a high specific surface area [J]. Small.2006,2(3):390-393.
    [232]Zhao B, Chen F, Gu X, et al. Organic-Stabilizer-Free Synthesis of Layered Protonic Titanate Nanosheets [J]. Chemistry-An Asian Journal.2010,5(7):1546-1549.
    [233]Shen X Z, Liu Z C, Xie S M, et al. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination [J]. Journal of Hazardous Materials.2009,162(2-3):1193-1198.
    [234]Li H, Zhao G, Chen Z, et al. TiO2-Ag Nanocomposites by Low-Temperature Sol-Gel Processing [J]. Journal of the American Ceramic Society.2010,93(2):445-449.
    [235]Kim K D, Han D N, Lee J B, et al. Formation and characterization of Ag-deposited TiO2 nanoparticles by chemical reduction method [J]. Scripta Materialia.2006,54(2):143-146.
    [236]Shang L, Li B J, Dong W J, et al. Heteronanostructure of Ag particle on titanate nanowire membrane with enhanced photocatalytic properties and bactericidal activities [J]. Journal of Hazardous Materials.2010,178(1-3):1109-1114.
    [237]Szabo-Bardos E, Petervari E, El-Zein V, et al. Photocatalytic decomposition of aspartic acid over bare and silver deposited TiO2 [J]. Journal of Photochemistry and Photobiology A: Chemistry.2006,184(1-2):221-227.
    [238]Ishibashi K, Fujishima A, Watanabe T, et al. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique[J]. Electrochemistry Communications.2000, 2(3):207-210.
    [239]Kim J, Choi W. TiO2 modified with both phosphate and platinum and its photocatalytic activities [J]. Applied Catalysis U:Environmental.2011,106(1-2):39-45.
    [240]Lin X X, Rong F, Fu D G, et al. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants [J]. Powder Technology.2012,219: 173-178.
    [241]Awate S V, Sahu R K, Kadgaonkar M D, et al. Photocatalytic mineralization of benzene over gold containing titania nanotubes:Role of adsorbed water and nanosize gold crystallites [J]. Catalysis Today.2009,141(1-2):144-151.
    [242]Wu L, Yu J C, Fu X Z. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation[J]. Journal of Molecular Catalysis A:Chemical.2006,244(1-2):25-32.
    [243]Du J M, Zhang J L, Liu Z M, et al. Controlled synthesis of Ag/TiO2 core-shell nanowires with smooth and bristled surfaces via a one-step solution route[J]. Langmuir.2006,22(3): 1307-1312.
    [244]Zhang F, Pi Y, Cui J, et al. Unexpected selective photocatalytic reduction of nitrite to nitrogen on silver-doped titanium dioxide[J]. Journal of Physical Chemistry C.2007,111(9): 3756-3761.
    [245]Mulvihill M, Tao A, Benjauthrit K, et al. Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water[J]. Angewandte Chemie International Edition.2008, 47(34):6456-6460.
    [246]Jin S F, Li Y Z, Xie H, ct al. Highly selective photocatalytic and sensing properties of 2D-ordered dome films of nano titania and nano Ag doped titania[J]. Journal of Materials Chemistry.2012,22(4):1469-1476.
    [247]Liu Y, Wei J H, Xiong R, et al. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles[J]. Applied Surface Science.2011, 257(18):8121-8126.
    [248]D'Hennezel O, Pichat P, Ollis D F. Benzene and toluene gas-phase photocatalytic degradation over H2O and HCL prctreated TiO2:by-products and mechanisms[J]. Journal of Photochemistry and Photobiology A:Chemistry.1998,118(3):197-204.
    [249]Gai Y, Li J, Li S, et al. Design of Narrow-Gap TiO2:A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity [J]. Physical Review Letters.2009,102(3):36402.
    [250]Cong Y, Zhang J, Chen F, et al. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity [J]. Journal of Physical Chemistry C.2007, 111(19):6976-6982.
    [251]Dunnill C W, Ansari Z, Kafizas A, et al. Visible light photocatalysts—N-doped TiO2 by sol--gel, enhanced with surface bound silver nanoparticle islands [J]. Journal of Materials Chemistry.2011,21(32):11854-11861.
    [252]Li X, Zhuang Z, Li W, et al. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2 [J]. Applied Catalysis A:General.2012,429-430(0): 31-38.
    [253]Devi L G, Nagaraj B, Rajashekhar K E. Synergistic effect of Ag deposition and nitrogen doping in TiO2 for the degradation of phenol under solar irradiation in presence of electron acceptor [J]. Chemical Engineering Journal.2012,181:259-266.
    [254]He J X, Yang P J, Sato H, et al. Effects of Ag-photodeposition on photocurrent of an ITO electrode modified by a hybrid film of TiO2 nanosheels [J]. Journal of Electroanalytical Chemistry.2004,566(1):227-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700