有机磷农药单残留及多残留免疫分析方法的建立与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用活泼酯法将半抗原O-甲基-O-(4-硝基苯基)-N-(丁酸)硫代磷酸酯(Hapten1)与载体蛋白BSA和OVA结合。Hapten1-OVA用作筛选抗体的包被抗原,而Hapten1-BSA作为免疫原,对BALB/c小鼠进行腹腔注射免疫。通过PEG将小鼠脾脏细胞与骨髓瘤细胞SP2/0融合制备杂交瘤细胞。通过对杂交瘤细胞的筛选和亚克隆,获得了一株能够稳定分泌抗有机磷类农药单克隆抗体的杂交瘤细胞株(C8/D3)。其分泌的抗体为IgG1型,轻链为k链,亲和常数达到2.3×107L/mol,是可以用于建立检测有机磷类农药多残留免疫分析的研究材料。
     利用制备的宽特异性抗体C8/D3建立了能够用于检测有机磷类农药的多残留酶联免疫分析。为了使建立的间接竞争酶联免疫分析(ELISA)具有更好的敏感性,根据ICso值,从12种抗体/包被抗原的组合中筛选出敏感性最好的抗体/包被抗原组合。本论文所建ELISA对8种有机磷农药的IC50值为3.5到162.2ng/mL。通过对23种有机磷农药交叉反应性的研究来确定所建ELSIA的选择性,研究结果表明所建ELISA可分析的对象为甲基对硫磷、对硫磷、杀螟硫磷、杀螟腈、EPN、Paraoxon-methyl、Paraoxon、 Fenitrooxon8种有机磷农药。在对卷心菜、苹果、青菜样品的添加回收试验中,甲基对硫磷、对硫磷、杀螟硫磷单个农药的添加回收率在78.9%和118.1%之间。此外,将ELISA的检测结果与GC的检测结果进行了比较验证,两种分析方法的检测结果接近。这些研究结果表明,本论文所建立的ELISA是一种可以用于检测不同样品中有机磷类农药残留的分析方法。
     利用胶体金标记甲基毒死蜱单克隆抗体3G7/F5,成功建立了可以快速(小于10分钟)、定性及定量检测水样中甲基毒死蜱的免疫层析分析(ICA)方法。对工作溶液的pH值和盐离子强度进行了系统的筛选,获得工作溶液的最佳pH值为9.0,最佳盐离子强度为0.4M。通过目测确定该免疫层析分析的定性检测检测限为0.6μg/mL。在定量检测中,利用试纸条读条仪读取检测结果的光密度值,并建立标准抑制曲线和校正曲线,得到回归方程为y=-2.5229x+7.5951,相关系数的平方(R2)为0.9889。通过计算得到IC50和检测限(IC1o)分别为1024.4ng/mL和137.9ng/mL。与甲基毒死蜱结构相似农药的交叉反应率均小于1%,可以认为与其他分析物没有交叉反应。在自来水样的添加回收试验中,甲基毒死蜱的添加回收率在102.5%到107.6%之间。因此,本研究所制备的ICA检测试纸条可以作为甲基毒死蜱的快速的、定性或定量的检测工具。
     在金标单克隆抗体C8/D3和最优半抗原(H9-OVA)的基础上,制备了有机磷类农药多残留免疫层析试纸条,并建立了一种可以快速(5分钟)、简便地检测不同样品中有机磷类农药多残留免疫层析分析(ICA)方法。利用试纸条读条仪读取检测结果的光密度值,计算出在最优条件下,所建立的ICA对8种有机磷农药的IC50值从11.8到470.4ng/mL.通过对23种有机磷农药交叉反应性的研究来确定所建ICA的选择性,研究结果表明所建ICA的分析对象为甲基对硫磷、对硫磷、杀螟硫磷、杀螟腈、EPN、 Paraoxon-methyl、Paraoxon、Fenitrooxon8种有机磷农药。在对卷心菜、苹果、青菜样品的添加回收试验中,甲基对硫磷、对硫磷、杀螟硫磷单个农药的添加回收率都在70.6%和131.9%之间。与ELISA比较可以发现ICA的检测结果和ELISA(?)接近,但是ICA在检测时间、检测程序、基质影响、就地检测等方面要优于ELSIA。因此,我们可以认为,本研究所建立的ICA对于定性、半定量、定量检测农产品中有机磷农药来说是一种非常实用的检测方法。
     利用生物淘选的方法,从环形8肽噬菌体肽库中筛选出4种能够用作抗原的噬菌体肽,并建立了检测有机磷类农药的噬菌体模拟表位多残留酶联免疫分析。为了使建立的噬菌体模拟表位酶联免疫分析(P-ELISA)具有更好的敏感性,根据Amax/ICso值,从4种噬菌体抗原/抗体的组合中筛选出敏感性最好的噬菌体抗原/抗体组合。本论文建立的P-ISA对8种有机磷农药的IC50值从1.4到92.1ng/mL,其敏感性比人工包被抗原ELISA提高了1倍。通过对23种有机磷农药交叉反应性的研究来确定所建P-ELISA的选择性,研究结果表明所建P-ELISA的分析对象为甲基对硫磷、对硫磷、杀螟硫磷、杀螟腈、EPN、Paraoxon-methyl、Paraoxon、Fenitrooxon8种有机磷农药。在对卷心菜、苹果、青菜样品的添加回收试验中,甲基对硫磷、对硫磷、杀螟硫磷单个农药的添加回收率在66.1%和101.6%之间,变异系数(CV)都小于16%。此外,将P-ELISA的检测结果与人工包被抗原ELISA的检测结果进行了比较,两种分析方法的检测结果接近。这些研究结果表明,利用噬菌体肽作为抗原能够更加快速的建立异源免疫分析,并且具有无毒、制备简单和敏感性高的优点。
O-Methyl-O-(4-nirtopheyl)-N-(2-carboxyethyl)-phosphoramidothionte (H1) was conjugated with bovine serum albumin (BSA) and ovalbumin (OVA) by the active ester method. HI-OVA was used as coating antigen to scan hybridoma. Hl-BSA was used as immunogen to immunize BALB/c mice by intraperitoneal injection. Spleen cells of immunized mouse were fused with SP2/0murine myeloma cells by PEG. After several times of screening and subcloning, one hybridoma cell line (C8/D3) that stably produced monoclonal antibody (MAb) against organophosphorus (OP) pesticide was selected. The secreted MAb was IgG1, kappa type, and affinity constant (Kaff) reached2.3×107L/mol, which was a good material for development immoassays to detect OP pesticids.
     An indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was developed to detect the OP pesticides using the broad-selective antibody C8/D3. To develop a multi-analyte ELISA with increased sensitivity, the best antibody/coating antigen combination was selected from12antibody/hapten-OVA conjugations based on IC50values. IC50values of the novel ELISA system ranged from3.5to162.2ng mLT1for the eight OP pesticides. The selectivity of the ELISA was evaluated by measuring its cross-reactivity (CR) with23OP pesticides, and the results showed the ELISA had specific selectivity for the8OP pesticides (Parathion-methyl, Parathion, Fenitrothion, Cyanophos, EPN, Paraoxon-methyl, Paraoxon, Fenitrooxon). Spike recoveries were between78.9%and118.1%for the detection of single pesticide residues of parathion-methyl, parathion, and fenitrothion in Chinese cabbage, apple, and greengrocery. Moreover, ELISA results were validated by comparison with gas chromatography (GC) analyses. The results indicate that the ELISA established is a potentially useful tool for detecting OP pesticides in various samples.
     A rapid (less than10min), qualitative and quantitative immunochromatography assay (ICA) using colloidal gold-antibody3G7/F5was successfully developed and applied in determination of chlorpyrifos-methyl in water samples. The optimized pH value and ionic strength of working solution was selected as pH9.0and0.4M, respectively. The qualitative detection limit of chlorpyrifos-methyl was determined as0.6μg ml-1by using the naked eye observation. In the quantitative detection, the detection results of chlorpyrifos-methyl were scanned by a membrane strip reader, and a standard inhibition curve and calibration curve were established, and the regression equation y=-2.5229x+7.5951, R2=0.9889was obtained. IC50value and detection limit (IC10) were calculated to be1024.4ng/ml and137.9ng/mL, respectively. The cross-reactivities were less than1%with tested analog compounds and regarded as negligible. The recoveries obtained by standard chlorpyrifos-methyl addition to tap water samples were102.535%to107.584%. Therefore, the developed ICA test strip is very useful as a potential tool for rapid, quantitative or qualitative detection of chlorpyrifos-methyl in samples.
     Based on the gold-conjugated MAb C8/D3and an optimal antigen (H9-OVA), a simple and rapid (5min) immunochromatography assay (ICA) for detection of OP pesticides in different agricultural products was developed using a binding inhibition format on a membrane strip. On the optimized condition, IC50values of this ICA for the8OP pesticides were calculated to be from11.8to470.4ng mL-1under an optical density scanner. The selectivity of the ICA was evaluated by measuring its cross-reactivity (CR) with23OP pesticides, and the results showed the ICA had specific selectivity for the8OP pesticides (Parathion-methyl, Parathion, Fenitrothion, Cyanophos, EPN, Paraoxon-methyl, Paraoxon, Fenitrooxon). Spike recoveries were between70.6and131.9%for the detection of single pesticide residues of parathion-methyl, parathion, and fenitrothion in Chinese cabbage, apple, and greengrocery. Compared to enzyme linked immunosorbent assay (ELISA), the results of ICA were comparable with those of ELISA, and ICA has advantages over ELISA in test procedure, test time, matrix interference, on-site detection and so on. Therefore, the established ICA is very useful as a screening method for quantitative, semi-quantitative or qualitative detection of OP pesticides in agricultural products.
     A phage-borne peptidomimetics enzyme-linked immunosorbent assay (P-ELISA) was developed to detect the organophosphorus (OP) pesticides by using4phage-borne peptides that isolated from a loop8peptide phage library. To develop a multi-analyte ELISA with increased sensitivity, the best antibody/phage antigen combination was selected from4antibody/phage antigen based on Amax/IC50values. IC50values of the novel ELISA system ranged from1.4to92.1ng mL-for the eight OP pesticides. The selectivity of the ELISA was evaluated by measuring its cross-reactivity (CR) with23OP pesticides, and the results showed the ELISA had specific selectivity for the8OP pesticides (Parathion-methyl, Parathion, Fenitrothion, Cyanophos, EPN, Paraoxon-methyl, Paraoxon, Fenitrooxon). Spike recoveries were between66.1%and101.6%for the detection of single pesticide residues of parathion-methyl, parathion, and fenitrothion in Chinese cabbage, apple, and greengrocery, all the coefficient of variations (CV) were less than16%. Moreover, P-ELISA results were validated by comparison with artificial coating antigen ELISA. The results indicate that phage-borne peptide can be used to accelerate development heterologous immunoassay, and have advantage on no toxicity, easy producing, and increased sensitivity.
引文
1. Bogialli S, Curini R, Corcia A D, et al. Development of multiresidue method for analyzing herbicide and fungicide residues in bovine milk based on solid—phase ectraction and liquid chromatograghy-tandem mass spectrometry[J]. J. Chromatogr. A, 2006,1102:1-10.
    2. Conway, Claire B S C. Food Safety[J]. Nursing Standard,2001,27:47-49.
    3. Mcadam D P. A new technology for HPLC[J]. J. Agric. Food Chem.,1992,25:148-151.
    4. Riner T L. Mariapilar marcoetal development of fan enzyme linked immunosorbent assayforcarbry[J]. J. Agric. Food Chem.,1993,41:423-430.
    5.巢猛,陈明,刘建明.水中呋喃丹的固相萃取高效液相色谱测定法[J].环境与健康杂志,2008,25(2):153-154.
    6.陈军,余文静.生态纺织品的农药残留与控制[J].环境保护,2002(9):28-30.
    7. 高晓辉.蔬菜上农药残留快速检测势在必行[J].农药科学与管理,2000,21:16-20.
    8. 黄琼辉.国内外农药残留检测技术研究进展和发展方向[J].福建农业学报,2008,23(2):218-222.
    9.李红,陈广‘平,常建,等.气相色谱法测定茶叶中多种拟除虫菊酯农药残留[J].农业科技与装备,2010,1(187):19-21.
    10.李薇.我国农产品出口遭遇日本的技术性贸易壁垒状况及应对策略[J].工业技术经济,2005,24(7):124-126.
    11.廖涛,杨玉平,程薇,等.苹果中多菌灵、噻菌灵和甲基托布津的高效液相色谱法分析[J].分析测试技术与仪器,2010,16(4):257-261.
    12.刘领,赵晓春.宿州市蔬菜残留情况及改善对策[J].安徽农业科学,2003,31(5):889-892.
    13.牟峻,贾益群.谷物中噻吩甲氯残留量的气相色谱-质谱测定[J].分析测试学报,1999,18(6):53-55.
    14.彭喜春,赖毅东.咸鱼制品中有机磷农药残留的毛细管GC-NPD法测定[J].食品科学,2006,27(9):226-228.
    15.王升吉,杨崇良,尚佑芬,等.免疫分析法在农药残留检测中的应用及前景[J].山东农业科学,2005,4:72-75.
    16.王运浩,江用文,成浩.食品农药残留与控制技术展望[J].现代科学仪器,2003,1:8-12.
    17.杨依军,王勇,杨秀荣,等.免疫分析方法在农药多残留分析中的应用[J].华北农学报,2001,16:119-124.
    18.姚建仁,郑永权,董丰收.浅谈农药残留污染、中毒与控制策略[J].植物保护,2001,3:31-35.
    19.殷祥刚,尹丽梅,胥传来.有机磷农药多残留免疫分析方法研究进展[J].食品科学,2008,29:684-688.
    20.朱开祥,李垚辛,董全.农药残留分析检测技术研究进展[J].中国食物与营养,2011,1:16-19.
    1. Abad A, Moreno M J, Montoya A. Hapten synthesis and production of monoclonal antibodies to the N-Methylcarbamate pesticide methiocarb[J]. J. Agric. Food Chem., 1998,46:2417-2426.
    2. Ahn K C, Watanabet T, Gee S J, et al. Hapten and antibody production for a sensitive immunoassay determining a human urinary metabolite of the pyrethroid insecticide permethrin[J]. J. Agric. Food Chem.,2004,52:4583-4594.
    3. Alfredsson G, Branzell C, Granelli K, et al. Simple and rapid screening and confirmation of tetracyclines in honey and egg by a dipstick test and LC-MS/MS[J]. Anal. Chim. Acta.,2005, 529:47-51.
    4. Barbara S, Delmulle, Sarah M D, et al. Development of an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B1 in pig Feed[J]. J. Agric. Food Chem.,2005,53: 3364-3368
    5. Beasely H L, McAdam D P, Larkin K A, et al. Laboratory and field enzyme-immunoassays for diazinon and their application to residue analysis in lanolin, water, and fruit juice[J]. Bull. Environ. Contam. Toxicol.,1997,59:375-382.
    6. Beier R C, Stanker L H, An antigen based on molecular modeling resulted in the development of a monoclonal antibody-based immunoassay for the coccidiostat nicarbazin[J]. Anal. Chim. Acta 2001,444:61-67.
    7. Belleville E, Dufva M, Aamand J, et al. Quantitative microarray pesticide analysis[J]. Immuno. Methods.,2004,286:219-229.
    8. Blake D A, Jones R M, Blake Ⅱ R C, et al. Antibody-based sensors for heavy metal ions[J]. Biosens. Bioelectron.,2001,16:799-809.
    9. Brimfield A A, Lenz D E, Graham C, et al. Mouse monoclonal antibodies against paraoxon:potential reagents for immunoassay with constant immunochemical characteristics[J]. J. Agric. Food Chem.,1985,33(6):1237-1242.
    10. Cardozo S, Gonzalez-Techera A, Last J A, et al. Analyte peptidomimetics selected from phage display peptide libraries:a systematic strategy for the development of environmental immunoassays[J]. Environ. Sci. Technol.2005,39:4234-4241.
    13. Dankwardt A. Immunochemical assays in pesticide analysis[J]. Pesticides,1995,1-27.
    12. Ercegovich,C D, Vallejo R P, Getting R R, et al. Development of a radioimmunoassay for parathion[J]. J. Agric. Food Chem.,1981,29:559-563.
    13. Garrett S D, Appleford D J A, Wyatt G M, et al. Production of recombinant anti-parathion antibody (scFv); Stability in methanolic food extracts and comparison to an anti-parathion monoclonal antibody[J]. J. Agri. Food Chem.,1997,45:4183-4189.
    14. Guo Y R, Liu S Y, Gui W J, et al. Gold immunochromatographic assay for simultaneous detection of carbofuranand triazophos in water samples[J]. Anal. Biochem.2009,389:32-39.
    15. Habeeb A F S A. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid[J]. Anal. Biochem.,1966,14:328-336.
    16. Inaba J, Nakamura S, Shimizu K, et al. Anti-metatype peptides, a molecular tool with high sensitivity and specificity to monitor small ligands[J]. Anal. Biochem.,2009,388: 63-70.
    17. Jang M S, Lee S J, Xue X P, et al. Production and characterization of monoclonal antibodies to a generic hapten for class-specific determination of organophosphorus pesticides[J]. Bull. Korean Chem. Soc.,2002,23:1116-1120.
    18. Jin R Y, Guo Y R, Wang C M, et al. Development of a bispecific monoclonal antibody to pesticide carbofuran and triazophos using hybrid hybridomas[J]. J. Food Sci.2009, 74(1):1-6.
    19. Karu A E, Goodrow N H, Schmidt D J, et al. Synthesis of haptens and derivation of monoclonal antibodies for immunoassays of the phenylurea herbicide diuro[J]. J. Agric. Food Chem.,1994,42:301-309.
    20. Kim H J, Gonzalez-techera A, Gonzalez-sapienza G Q et al. Phage-borne peptidomimetics accelerate the development of polyclonal antibody-based heterologous immunoassays for the detection of pesticide metabolites [J]. Environ. Sci. Technol.2008,42:2047-2053.
    21. Kim H J, Rossotti M A, Ahn K C, et al. Development of a noncompetitive phage anti-immunocomplex assay for brominated diphenyl ether 47[J]. Anal. Biochem.,2010, 401:38-46.
    22. Kim Y A, Lee E H, Kim K O, et al. Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos[J]. Anal. Chim. Acta,2011, 693:106-113.
    23. Kim Y J, Cho Y A, Lee H S, et al. Synthesis of haptens for immunoassay of organophosphorus pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity [J]. Anal. Chim. Acta.,2003a,475:85-96.
    24. Kohler G, Milstein C. Continuous culture of fused cells secreting antibody of predefined specificity [J]. Nature,1975,256:495-497.
    25. Lee H J, Shan G, Ahn K, et al. Development of an enzyme-linked immunosorbent assay for the pyrethroid cypermethrin[J]. J. Agric. Food Chem.,2004,52:1039-1043.
    26. Li D W, Wei S, Yang H, et al. A sensitive immunochromatographic assay using colloidal gold-antibodyprobe for rapid detection of pharmaceutical indomethacin in water samples[J]. Biosens. Bioelectron.,2009,24:2277-2280.
    27. Li T J, Zhang Q, Liu Y, et al. Production of recombinant scfv antibodies against methamidophos from a phage-display library of a hyperimmunized mouse[J]. J. Agric. Food Chem.,2006,54:9085-9091.
    28. Liu Y, Lou Y, Xu D, et al. Production and characterization of monoclonal antibody for class-specific determination of O, O-dimethyl organophosphorus pesticides and effect of heterologous coating antigens on immunoassay sensitivity [J]. Microchem. J.,2009, 93:36-42.
    29. Luppa P B, Sokoll L J, Chan D W. Immunosensors-principles and applications to clinical chemistry[J]. Clin. Chim. Acta,2001,314:1-26
    30. Mahony J O, Nolan K, Smyth M R, et al. Molecularly imprinted polymers-potential and challenges in analytical chemistry[J]. Anal. Chim. Acta,2005,534:31-39.
    31. McAdam D P, Hill A S, Beasley H L, et al. Mono-and pllyclonal antibodies to the organophosphate fenitrothion.1. approaches to hapten-protein conjugation[J]. J. Agric. Food Chem.,1992,40:1466-1470.
    32. Morozova V S, Levashova A I, Ermin S A. Determination of Pesticides by Enzyme Immunoassay [J]. J. Anal. Chem.,2005,60(3):202-217. Translated from Zh. Anal. Khim.,2005,60(3):230-246.
    33. Nagata S, Tsutsumi T, Yoshida F, et al. A new type sandwich immunoassay for microcystin:production of monoclonal antibodies specific to the immune complex formed by microcystin and an anti-microcystin monoclonal antibody[J]. Nat. Toxins, 1999,7:49-55.
    34. Piao Y Z, Kim Y J, Kim Y A, et al. Development of ELISAs for the class-specific determination of organophosphorus pesticides[J]. J. Agric. Food Chem.,2009,57: 10004-10013.
    35. Putalun W, Morinaga O, Tanaka H, Shoyama Y. Development of a one-step immunochromatographic strip test for the detection of sennosides A and B[J]. Phytochem. Anal.,2004,15(2):112-116
    36. Putalun W. Tanaka H., Shoyama Y. Rapid detection of glycyrrhizin by immunochromatographic assay[J]. Phytochem. Anal.,2005,16:370-374
    37. Raymond J A, Deschamps J, Christopher H. Polyclonal and monoclonal enzyme immunoassays for picloram detection in water, oil, plants and urine[J]. J. Agric. Food Chem.,1990,38(9):1881-1886.
    38. Schneider P, Hammock B D. Influence of the ELISA formatand the hapten-enzyme conjugate on the sensitivity of animmunoassay for S-triazine herbicides using monoclonalantibodies[J]. J Agric. Food Chem.,1992,40(3):525-530.
    39. Shovman O, Gilburd B, Zandman-Goddard, et al. Multiplexed AtheNa multi-lyte immunoassay for ANA screening in autoimmune diseases[J]. Autoimmunity,2005,38: 105-109.
    40. Shu T W, Wen J G, Yi R G, et al. Preparation of a multihapten antigen and broad specificity polyclonal antibodies for a multiple pesticide immunoassay [J]. Anal. Chim. Acta,2007,587:287-292.
    41. Sun X L, Zhao X L, Tang J, et al. Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1[J]. Int. J. Food Microbiol.,2005, 99:185-194
    42. Suzuki C, Ueda H, Mahoney W, et al. Open sandwich enzyme-linked immunosorbent assay for the quantitation of small haptens[J]. Anal. Biochem.,2000,286:238-246.
    43. Turner A P F. Biosensors sense and sensitivity[J]. Science,2000,290(5495): 1315-1317.
    44. Ueda H, Yokozeki T, Arai R, et al. An optimized homogeneous noncompetitive immunoassay based on the antigen-driven enzymatic complementation J]. J. Immunol. Methods,2003,279:209-218.
    45. Ullman E F, Milburn G, Jelesko J, et al. Anti-immune complex antibodies enhance affinity and specificity of primary antibodies [J]. Proc. Natl. Acad. Sci. USA,1993,90: 1184-1189.
    46. Vallejo R P, Bogus E R, Mumma R O. Effects of hapten structure and bridging groups on antisera specificity in parathion immunoassay development[J]. J. Agric. Food Chem.,1982,30:572-580.
    47. Vass M, Diblikova I, Cernoch I, et al. ELISA for semicarbazide and its application for screening in food contamination[J]. Anal. Chim. Acta,2008,608:86-94.
    48. Verheijen R, Osswald I K, Dietrich R, et al. Development of a one step strip test for the detection of (Dihydro)streptomycin residues in raw milk[J]. Food Agri. Immunol., 2000,12:31-40.
    49. Wang C M, Li X B, Liu Y H, et al. Development of a Mab-based heterologous immunoassay for the broad-selective determination of organophosphorus pesticides [J]. J. Agric. Food Chem.,2010,58:5658-5663.
    50. Wang L M, Lu D L, Wang J, et al. A novel immunochromatographic electrochemical biosensor for highly sensitive and selective detection of trichloropyridinol, a biomarker of exposure to chlorpyrifos[J]. Biosens. Bioelectron.,2011,26(6):2835-2840.
    51. Wang S T, Gui W J, Guo Y R, et al. Preparation of a multi-hapten antigen and broad specificity polyclonal antibodies for a multiple pesticide immunoassay [J]. Anal. Chim. Acta,2007,587:287-292.
    52. Weetal H W, Rogers K G. A simple assay for 2,4-dichlorophenoxyacetic acid using coated test-strips[J]. Anal. Lett.,2002,35(8):1341-1348.
    53. Wengatz I, Schmid R D, Kreiβig S, et al. Determination of the hapten density of immunoconjugates by matrixassisted UV laser desorption/ionization mass spectrometry[J]. Anal. Lett.,1992,25:1983-1997.
    54. Wust S, Hock B. A sensitive enzyme immunoassay for thedetection of atrazine based upon sheep antibodies[J]. Anal. Lett.1992,25:1025-1037.
    55. Xu Z L, Shen Y D, Zheng W X, et al. Broad-Specificity Immunoassay for O,O-Diethyl Organophosphorus Pesticides:Application of Molecular Modeling to Improve Assay Sensitivity and Study Antibody Recognition[J]. Anal. Chem.,2010,82:9314-9321.
    56. Xu Z L, Xie G M, Li Y X, et al. Production and characterization of a broad-specificity polyclonal antibody for 0,0-diethyl organophosphorus pesticides and a quantitative structure-activity relationship study of antibody recognition. Anal. Chim. Acta,2009, 647:90-96.
    57. Zhang D H, Li P W, Zhang Q, et al. Ultrasensitive nanogold probe-based immunochromatographic assay for simultaneous detection of total aflatoxins in peanuts[J]. Biosens. Bioelectron.,2011,26(6):2877-2882.
    58. Zhang G P, Wang X N, Yang J F, et al. Development of an immunochromatographic lateral flow test strip for detection of β-adrenergic agonist Clenbuterol residues[J]. J. Immunol. Methods,2006,312:27-33.
    59. Zhang Q, Sun Q, Hu B S, et al. Development of a sensitive ELISA for the analysis of the organophosphorous insecticide fenthion in fruit samples[J]. Food Chem.,2008a 106:1278-1284.
    60. Zhang Q, Wang L B, Ahn K C, et al. Hapten heterology for a specific and sensitive indirect enzyme-linked immunosorbent assay for organophosphorus insecticide fenthion[J]. Anal. Chim. Acta,2007,596:303-311.
    61. Zhang Q, Wu Y R, Wang L M, et al. Effect of hapten structures on specific and sensitive enzyme-linked immunosorbent assays for N-methylcarbamate insecticide metolcarb[J]. Anal. Chim. Acta,2008b,625:87-94.
    62. Zhu J, Chen W, Lu Y, et al. Development of an immunochromatographic assay for therapid detection of bromoxynil in water[J]. Environ. Pollut.,2008,156:136-142.
    63. Zhu Y, He W, Liang Y, et al. Development of a rapid, simple dipstick dye inmmunoassay for schistosomiasis diagnosis[J]. J. Immunol. Methods.,2002,266(1-2): 1-5.
    64.蔡宁.抗Vitronectin兔单克隆抗体的制备与初步鉴定[D].浙江大学:硕士学位论文,2004.
    65.陈新建.免疫学技术在植物科学中的应用[M].北京:中国农业出版社,1998.
    66.李刚.抗吡虫啉-甲基对硫磷双特异性单克隆抗体的研究[D].南京:南京农业大学,2011.
    67.刘凤权,许志刚,王金生.定量测定甲胺磷残留的间接竞争ELISA的建立和初步应用[J].农业生物技术学报,1998,6(2):140-146.
    68.彭运潮,刘金明,孙安国,等.快速诊断家畜日本血吸虫病免疫层析试纸条的研制与初步应用[J].中国血吸虫病防治杂志,2006,18(3):197-200
    69.孙英勋.双特异性抗体的制备与应用[J].免疫学杂志,1994,10(3):206-209.
    70.孙远明,赵肃清,张春艳,等.甲胺磷人工抗原的合成和鉴定[J].免疫学杂志,2002,18(3):163-166.
    71.吴颂如,万寅生.植物小分子的免疫测定技术[J].植物生理通讯,1989,5:68-72.
    72.严守雷,高志贤,程义勇,等.用于农药残留检测的分子印迹技术研究进展[J].卫生研究,2005,34:227-230.
    73.甄永苏.大鼠单克隆抗体的制备、鉴定、基因克隆、抗原分析以及药物偶联物的抗肿瘤作用研究[D].中国协和医科大学:博士学位论文,1996.
    74.周思祥,刘福成.农药人工抗原的合成研究进展[J].农药,2005,44(8):337-341.
    1. Jang M S, Lee S J, Xue X P, et al. Production and characterization of monoclonal antibodies to a generic hapten for class-specific determination of organophosphorus pesticides[J]. Bull. Korean Chem. Soc.,2002,23:1116-1120.
    2. Kolosova A Y, Park J H, Eremin S A, et al. Comparative study of three immunoassays based on monoclonal antibodies for detection of the pesticide parathion-methyl in real samples[J]. Anal. Chim. Acta,2004,511:323-331.
    3. Liang Y, X. Liu J, Liu Y, et al. Synthesis of three haptens for the class-specific immunoassay of O,O-dimethyl organophosphorus pesticides and effect of hapten heterology on immunoassay sensitivity [J]. Anal. Chim. Acta,2008,615:174-183.
    4. Liu Y, Lou Y, Xu D, et al. Production and characterization of monoclonal antibody for class-specific determination of O, O-dimethyl organophosphorus pesticides and effect of heterologous coating antigens on immunoassay sensitivity [J]. Microchem. J.,2009, 93:36-42.
    5. Piao Y Z, Kim Y J, Kim Y A, et al. Development of ELISAs for the class-specific determination of organophosphorus pesticides[J]. J. Agric. Food Chem.,2009,57: 10004-10013.
    6. Qian G L, Wang L M, Wu Y R, et al. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples[J]. Food Chem., 2009,117:364-370.
    7. Wang C M, Li X B, Liu Y H, et al. Development of a Mab-based heterologous immunoassay for the broad-selective determination of organophosphorus pesticides [J]. J. Agric. Food Chem.,2010,58:5658-5663.
    8. Xu Z L, Xie G M, Li Y X, et al. Production and characterization of a broad-specificity polyclonal antibody for O, O-diethyl organophosphorus pesticides and a quantitative structure-activity relationship study of antibody recognition[J]. Anal. Chim. Acta, 2009,647:90-96.
    9. Zhang Q, Wang L B, Ahn K C, et al. Hapten heterology for a specific and sensitive indirect enzyme-linked immunosorbent assay for organophosphorus insecticide fenthion[J]. Anal. Chim. Acta,2007,596:303-311.
    10.霍乃蕊,孟利梅.细胞融合技术的应用研究进展[J].动物医学进展,2005,26(3):32-35
    1. Brun E M, Garces-Garcia M, Puchades R, et al. Enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Influence of hapten structure[J]. J Immunol. Methods,2004,295 (1-2):21-35.
    2. Farran A, Ruiz S, Serra C, et al. Comparative study of high-performance liquid chromatography and micellar electrokinetic capillary chromatography applied to the analysis of different mixtures of pesticides[J]. J. Chromatogr. A,1996,737:109-116.
    3. Gui W J, Liu Y H, Wang C M, et al. Development of a direct competitive enzyme-linked immunosorbent assay for parathion residue in food samples[J]. Anal. Biochem.,2009,393:88-94.
    4. Jang M S, Lee S J, Xue X P, et al. Production and characterization of monoclonal antibodies to a generic hapten for class-specific determination of organophosphorus pesticides[J]. Bull. Korean Chem. Soc.,2002,23:1116-1120.
    5. Johnson J C, Van Emon J M, Pullman D R, et al. Development and evaluation of antisera for detection of the O,O-diethyl phosphorothionate and ohosphorothionothiolate organophosphorus pesticides by immunoassay[J]. J. Agric. Food Chem.,1998,46:3116-3123.
    6. Kim M J, Lee H S, Chung D H, et al. Synthesis of haptens of organophosphorus pesticides and development of enzyme-linked immunosorbent assays for parathion-methyl[J]. Anal. Chim. Acta,2003a,493:47-62.
    7. Kim Y J, Cho Y A, Lee H S, et al. Investigation of the effect of hapten heterology on immunoassay sensitivity and development of an enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion[J]. Anal. Chim. Acta,2003b 494:29-40.
    8. Kim Y J, Kim Y A, Lee Y T, et al. Enzyme-linked immunosorbent assays for the insecticide fenitrothion Influence of hapten conformation and sample matrix on assay performance[J]. Anal. Chim. Acta,2007,591:183-190.
    9. Krotzky A J, Zeeh B. Immunoassays for residue analysis of agrochemicals:proposed guidelines for precision, standardization and quality control[J]. Pure Appl. Chem.,1995, 67:2065-2088.
    10. Liu Y, Lou Y, Xu D, et al. Production and characterization of monoclonal antibody for class-specific determination of O, O-dimethyl organophosphorus pesticides and effect of heterologous coating antigens on immunoassay sensitivity[J]. Microchem. J.,2009, 93:36-42.
    11. Padron-Sanz C, Halko R, Sosa-Ferrera Z, et al. Combination of microwave assisted micellar extraction and liquid chromatography for the determination of organophosphorous pesticides in soil samples[J]. J. Chromatogr. A,2005,1078:13-21.
    12. Piao Y Z, Kim Y J, Kim Y A, et al. Development of ELISAs for the class-specific determination of organophosphorus pesticides[J]. J. Agric. Food Chem.,2009,57: 10004-10013.
    13. Qian G L, Wang L M, Wu Y R, et al. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples[J]. Food Chem., 2009,117:364-370.
    14. Roex E W M, Keijzers R, van Gestel C A M, Acetylcholinesterase inhibition and increased food consumption rate in the zebrafish, danio rerio, after chronic exposure to parathion[J]. Aquat. Toxicol.,2003,64:451-460.
    15. Sun J W, Dong T T, Zhang Y, et al. Development of enzyme linked immunoassay for the simultaneous detection of carbaryl and metolcarb in different agricultural products[J]. Anal. Chim. Acta,2010,666:76-82.
    16. Tahboub Y R, Zaater M F, Al-Talla Z A, Determination of the limits of identification and quantitation of selected organochlorine and organophosphorous pesticide residues in surface water by full-scan gas chromatography/mass spectrometry[J]. J. Chromatogr. A,2005,1098:150-155.
    17. Wang C M, Li X B, Liu Y H, et al. Development of a Mab-based heterologous immunoassay for the broad-selective determination of organophosphorus pesticides [J]. J. Agric. Food Chem.,2010,58:5658-5663.
    18. Wang C M, Li X B, Liu Y H, et al. Development of a Mab-based heterologous immunoassay for the broad-selective determination of organophosphorus pesticides[J]. J. Agric. Food Chem.,2010,58:5658-5663.
    19. Wang C M, Liu Y H, Guo Y R, et al. Development of a McAb-based immunoassay for parathion and influence of the competitor structure[J]. Food Chem.,2009,115: 365-370.
    20. Xu Z L, Xie G M, Li Y X, et al. Production and characterization of a broad-specificity polyclonal antibody for O,O-diethyl organophosphorus pesticides and a quantitative structure-activity relationship study of antibody recognition[J]. Anal. Chim. Acta,2009, 647:90-96.
    21. Xu Z L, Xie G M, Li Y X, et al. Production and characterization of a broad-specificity polyclonal antibody for O,O-diethyl organophosphorus pesticides and a quantitative structure-activity relationship study of antibody recognition[J]. Anal. Chim. Acta,2009, 647:90-96.
    22. Yao Z W, Jiang G B, Liu J M, et al. Application of solid-phase microextraction for the determination of organophosphorous pesticides in aqueous samples by gas chromatography with flame photometric detector [J]. Talanta,2001,55:807-814.
    23. Zhang Q, Wang L B, Ahn K C, et al. Hapten heterology for a specific and sensitive indirect enzyme-linked immunosorbent assay for organophosphorus insecticide fenthion[J]. Anal. Chim. Acta,2007,596:303-311.
    24.雷洪涛,肖治理,方坚生,等.丁草胺人工抗原及抗体的制备研究[J].食品科学,2007,28(10):67-70
    1. Daglish G J, Eelkema M, Harrison L M. J. Chlorpyrifos-methyl plus either methoprene or synergized phenothrin for control of Coleoptera in maize in Queensland, Australia[J]. Stored Prod. Res.,1995,31:235-241.
    2. Daglish G J, Impact of resistance on the efficacy of binary combinations of spinosad, chlorpyrifos-methyl and s-methoprene against five stored-grain beetles[J].2008, J. Stored Prod. Res.44:71-76.
    3. Ecobichon D J.1996. In:Klassen C D (Ed.), Casarett and Doull's Toxicology[M]. McGraw-Hill, New York, pp:643-698.
    4. Gallo M A, Lawryk N J.1991. In:Hayes W J, Laws E R (Eds.), Handbook of Pesticide Toxicology. Classes of Pesticides[M]. San Diego, Academic Press, pp:917-1123.
    5. Gandhi S, Caplashb N, Sharma P, et al. Strip-based immunochromatographic assay using specific egg yolk antibodies for rapid detection of morphine in urine samples[J]. Biosens. Bioelectron.2009,25:502-505.
    6. Gas F, Baus B, Pint L, et al. One step immunochromatographic assay for the rapid detection of Alexandrium minutum[J]. Biosens. Bioelectron.,2010,25:1235-1239.
    7. Gui W J, Wang S T, Guo Y R, et al. Development of a one step strip for the detection of triazophos residues in environmental samples[J]. Anal. Biochem.2008,377:202-208.
    8. Guo Y R, Liu S Y, Gui W J, et al. Gold immunochromatographic assay for simultaneous detection of carbofuranand triazophos in water samples[J]. Anal. Biochem.2009,389:32-39.
    9. Kim M J, Lee H S, Chung D H, et al. Synthesis of haptens of organophosphorus pesticides and development of enzyme-linked immunosorbent assays for parathion-methyl[J]. Anal. Chim. Acta,2003a,493:47-62.
    10. Kim Y J, Cho Y A, Lee H S, et al. Investigation of the effect of hapten heterology on immunoassay sensitivity and development of an enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion[J]. Anal. Chim. Acta,2003b,494: 29-40.
    11. Kim Y J, Kim Y A, Lee Y T, et al. Enzyme-linked immunosorbent assays for the insecticide fenitrothion influence of hapten conformation and sample matrix on assay performance[J]. Anal. Chim. Acta,2007,591(1):183-190.
    12. Kolosova A Y, Park J H, Sergei A. Comparative study of three immunoassays based on monoclonal antibodies for detection of the parathion-methyl in real samples[J]. Anal. Chim. Acta,2004,511(1):323-331.
    13. Li D W, Wei S, Yang H, et al. A sensitive immunochromatographic assay using colloidal gold-antibody probe for rapid detection of pharmaceutical indomethacin in water samples[J]. Biosens. Bioelectron.,2009,24:2277-2280.
    14. Morozova V S, Levashova A I, Ermin S A. Determination of Pesticides by Enzyme Immunoassay [J]. J. Anal. Chem.,2005,60(3):202-217. Translated from Zh. Anal. Khim.,2005,60(3):230-246.
    15. Qian G L, Wang L M, Wu Y R, et al. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples[J]. Food Chem., 2009,117:364-370.
    16. Xu Y, Huang Z B, He Q H, et al. Development of an immunochromatographic strip test for the rapid detection of deoxynivalenol in wheat and maize[J]. Food Chem.,2010, 119:834-839.
    17. Zhang G P, Wang X N, Yang J F, et al. Development of an immunochromatographic lateral flow test strip for detection of β-adrenergic agonist Clenbuterol residues. J. Immunol[J]. Methods,2006,312:27-33.
    18. Zhou P, Lu Y T, Zhu J, et al. Nanocolloidal gold-based immunoassay for the detection of the N-methylcarbamate pesticide carbofuran[J]. J. Agric. Food Chem.,2004,52: 4355-4359.
    1. Blazkova M, Mickova-Holubova B, Rauch P, et al. Immunochromatographic colloidal carbon-based assay for detection of methiocarb in surface water[J]. Biosens. Bioelectron.,2009,25:753-758.
    2. Brun E M, Garces-Garcia M, Puchades R, et al. Enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Influence of hapten structure[J]. J Immunol. Methods,2004,295 (1-2):21-35
    3. Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold label[J]. Anal. Chem.,2000,72,5521-5528.
    4. Farran A, Ruiz S, Serra C, et al. Comparative study of high-performance liquid chromatography and micellar electrokinetic capillary chromatography applied to the analysis of different mixtures of pesticides[J]. J. Chromatogr. A,1996,737:109-116.
    5. Frens G, Preparation of gold dispersions of varying particle size:controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J].1973, Nat. Phys. Sci.241:20-22.
    6. Gandhi, S., Caplashb, N., Sharma, P., RamanSuri, C.,2009. Strip-based immunochromatographic assay using specific egg yolk antibodies for rapid detection of morphine in urine samples Biosens[J]. Bioelectron.25,502-505.
    7. Garrote J A, Sorell L, Alfonso P, et al. A novel visual immunoassay for celiac disease screening[J]. Eur. J. Clin. Invest.,1999,29:697-699.
    8. Gas F, Baus B, Pint L, et al. One step immunochromatographic assay for the rapid detection of Alexandrium minutum[J]. Biosens. Bioelectron.,2010,25:1235-1239.
    9. Gui W J, Liu Y H, Wang C M, et al. Development of a direct competitive enzyme-linked immunosorbent assay for parathion residue in food samples[J]. Anal. Biochem.,2009,393:88-94.
    10. Guo Y R, Liu S Y, Gui W J, et al. Gold immunochromatographic assay for simultaneous detection of carbofuranand triazophos in water samples [J]. Anal. Biochem.2009,389:32-39.
    11. Hasegawa A, Yamada T, Azumi J, et al. The establishment of highly sensitive monoclonal antibodies for influenza viruses and development of the new lateral flow strip test device[J]. Int. Congr. Series,2004,1263:259-262.
    12. Horton J K, Swinburne S, O'Sullivan M J. A novel, rapid, single-step immunochromatographic procedure for the detection of mouse immunoglobulin[J]. J. Immunol. Methods,1991,140:131-134.
    13. Jang M S, Lee S J, Xue X P, et al. Production and characterization of monoclonal antibodies to a generic hapten for class-specific determination of organophosphorus pesticides[J]. Bull. Korean Chem. Soc.,2002,23:1116-1120.
    14. Kim M J, Lee H S, Chung D H, et al. Synthesis of haptens of organophosphorus pesticides and development of enzyme-linked immunosorbent assays for parathion-methyl[J]. Anal. Chim. Acta,2003,493:47-62.
    15. Kim Y A, Lee E H, Kim K O, et al. Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos[J]. Anal. Chim. Acta,2011, 693:106-113.
    16. Kolosova A Y, Park J H, Eremin S A, et al. Comparative study of three immunoassays based on monoclonal antibodies for detection of the pesticide parathion-methyl in real samples[J]. Anal. Chim. Acta,2004,511:323-331.
    17. Krotzky A J, Zeeh B. Immunoassays for residue analysis of agrochemicals:proposed guidelines for precision, standardization and quality control[J]. Pure Appl. Chem.,1995, 67:2065-2088.
    18. Lee E Y, Kang J H, Kim K A, et al. Development of a rapid, immunochromatographic strip test for serum asialo al-acid glycoprotein in patients with hepatic disease[J]. J. Immunol. Methods,2006,308:116-123.
    19. Li D W, Wei S, Yang H, et al. A sensitive immunochromatographic assay using colloidal gold-antibody probe for rapid detection of pharmaceutical indomethacin in water samples[J]. Biosens. Bioelectron.,2009,24:2277-2280.
    20. Liu Y, Lou Y, Xu D, et al. Production and characterization of monoclonal antibody for class-specific determination of O, O-dimethyl organophosphorus pesticides and effect of heterologous coating antigens on immunoassay sensitivity[J]. Microchem. J.,2009, 93:36-42.
    21. Nagainis P A, Nakagawa C H, Baron S L, et al. A rapid quantitative capillary tube enzyme immunoassay for human chorionic gonadotropin in urine[J]. Clin. Chim. Acta, 1986,160:273-279.
    22. Padron-Sanz C, Halko R, Sosa-Ferrera Z, et al. Combination of microwave assisted micellar extraction and liquid chromatography for the determination of organophosphorous pesticides in soil samples[J]. J. Chromatogr. A,2005,1078:13-21.
    23. Piao Y Z, Kim Y J, Kim Y A, et al. Development of ELISAs for the class-specific determination of organophosphorus pesticides[J]. J. Agric. Food Chem.,2009,57: 10004-10013.
    24. Qian G L, Wang L M, Wu Y R, et al. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples[J]. Food Chem., 2009,117:364-370.
    25. Reverberi R, Reverberi L, Factors affecting the antigen-antibody reaction[J]. Blood Transfus.,2007,5:227-240.
    26. Roex E W M, Keijzers R, van Gestel C A M, Acetylcholinesterase inhibition and increased food consumption rate in the zebrafish, danio rerio, after chronic exposure to parathion[J]. Aquat. Toxicol.,2003,64:451-460.
    27. Sithigorngul W, Rukpratanporn S, Sittidilokratna N, et al. A convenient immunochromatographic strip test for rapid diagnosis of yellow head virus infection in shrimp[J]. J. Virol. Methods,2007,140:193-199.
    28. Soroka S D, Granade T C, Phillips S, et al. The use of simple, rapid tests to detect antibodies to human immunodeficiency virus types 1 and 2 in pooled serum specimens[J]. J. Clin. Virol.,2003,27:90-96.
    29. Sun J W, Dong T T, Zhang Y, et al. Development of enzyme linked immunoassay for the simultaneous detection of carbaryl and metolcarb in different agricultural products[J]. Anal. Chim. Acta,2010,666:76-82.
    30. Tahboub Y R, Zaater M F, Al-Talla Z A, Determination of the limits of identification and quantitation of selected organochlorine and organophosphorous pesticide residues in surface water by full-scan gas chromatography/mass spectrometry[J]. J. Chromatogr. A,2005,1098:150-155.
    31. Wang C M, Li X B, Liu Y H, et al. Development of a Mab-based heterologous immunoassay for the broad-selective determination of organophosphorus pesticides[J]. J. Agric. Food Chem.,2010,58:5658-5663.
    32. Xu Y, Huang Z B, He Q H, et al. Development of an immunochromatographic strip test for the rapid detection of deoxynivalenol in wheat and maize[J]. Food Chem.,2010, 119:834-839.
    33. Yao Z W, Jiang G B, Liu J M, et al. Application of solid-phase microextraction for the determination of organophosphorous pesticides in aqueous samples by gas chromatography with flame photometric detector[J]. Talanta,2001,55:807-814.
    34. Zhang C, Zhang Z, Yu B, et al. Application of the biological conjugate between antibody and colloid Au nanoparticles as analyte to inductively coupled plasma mass spectrometry[J]. Anal. Chem.,2002,74:96-99.
    35. Zhang G P, Wang X N, Yang J F, et al. Development of an immunochromatographic lateral flow test strip for detection of β-adrenergic agonist Clenbuterol residues[J]. J. Immunol. Methods,2006,312:27-33.
    36. Zhang Q, Wang L B, Ahn K C, et al. Hapten heterology for a specific and sensitive indirect enzyme-linked immunosorbent assay for organophosphorus insecticide fenthion[J]. Anal. Chim. Acta,2007,596:303-311.
    37. Zhu J, Chen W, Lu Y, et al. Development of an immunochromatographic assay for the rapid detection of bromoxynil in water[J]. Environ. Pollut.,2008,156,136-142.
    1. Ahn K C, Watanabe T, Gee S J, et al. Hapten and antibody production for a sensitive immunoassay determining a human urinarymetabolite of the pyrethroid insecticide permethrin[J]. J. Agric. Food Chem.2004,52:4583-4594.
    2. Cardozo S, Gonzalez-Techera A, Last J A, et al. Analyte peptidomimetics selected from phage display peptide libraries:a systematic strategy for the development of environmental immunoassays[J]. Environ. Sci. Technol.2005,39:4234-4241.
    3. Chiu Y W, Chen R, Li Q X, et al. Derivationandproperties of recombinant Fab antibodies to coplanar polychlorinated biphenyls[J]. J. Agric. Food Chem.2000,48: 2614-2624.
    4. Du B, Qian M, Zhou Z, et al. In vitro panning of a targeting peptide to hepatocarcinoma from a phage display peptide library[J]. Biochem. Biophys. Res. Commun.2006,342:956-962.
    5. Dufner P, Jermutus L, Minter R R. Harnessing phage and ribosome display for antibody optimization [J]. Trends Biotechnol.2006,24:523-529.
    6. Goldman E R, Pazirandeh M P, Charles P T, et al. Selection of phage displayed peptides for the detection of 2,4,6-trinitrotoluene in seawater[J]. Anal. Chim. Acta 2002, 457:13-19.
    7. Gui W J, Liu Y H, Wang C M, et al. Development of a direct competitive enzyme-linked immunosorbent assay for parathion residue in food samples[J]. Anal. Biochem.,2009,393:88-94.
    8. Kim H J, Gonzalez-techera A, Gonzalez-sapienza G G, et al. Phage-borne peptidomimetics accelerate the development of polyclonal antibody-based heterologous immunoassays for the detection of pesticide metabolites[J]. Environ. Sci. Technol.2008,42:2047-2053.
    9. Kim H J, Rossotti M A, Ahn K C, et al. Development of a noncompetitive phage anti-immunocomplex assay for brominated diphenyl ether 47[J]. Anal. Biochem.2010, 401:38-46.
    10. Kim Y G, Lee C S, Chung W J, et al. Screening of LPS-specific peptides froma phage display library using epoxy beads[J]. Biochem. Biophys. Res. Commun.2005,329: 312-317.
    11. Knopp D. Immunoassay development for environmental analysis[J]. Anal. Bioanal. Chem.2006,385:425-427.
    12. Liu R R, Yu Z, He Q H, et al. An immunoassay for ochratoxin A without the mycotoxin[J]. Food Control,2007,18:872-877.
    13. Menendez A, Scott J K. The nature of target-unrelated peptides recovered in the screening of phage-displayed random peptide libraries with antibodies [J]. Anal. Biochem.2005,336:145-157.
    14. Morozova V S, Levashova A I, Eremin S A. Determination of pesticides by enzyme immunoassay [J]. J. Anal. Chem.2005,60:202-217.
    15. Shan G, Huang H, Stoutamire D W, et al. A sensitive class specific immunoassay for the detection of pyrethroidmetabolites in human urine[J]. Chem. Res. Toxicol.2004,17: 218-225.
    16. Smith G P. Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface[J]. Science 1985,228:1315-1317.
    17. Sompuram S R, Kodela V, Ramanathan H, et al. Synthetic peptides identified from phage-displayed combinatorial libraries as immunodiagnostic assay surrogate quality-control targets[J]. Clin. Chem.2002,48:410-420.
    18. Sun J W, Dong T T, Zhang Y, et al. Development of enzyme linked immunoassay for the simultaneous detection of carbaryl and metolcarb in different agricultural products[J]. Anal. Chim. Acta,2010,666:76-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700