长期施肥下我国典型农田土壤有机碳与全氮分布特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探明我国典型农田土壤长期不同施肥下有机碳与全氮的剖面分布特征,本研究以五种不同气候区典型农田土壤(黑土、灰漠土、塿土、红壤、潮土)进行不同施肥长期定位试验,监测分析了1m深剖面包括五个层次的土壤有机碳与全氮含量,并系统总结了有机碳与全氮的时间、空间分布特征,为我国土壤肥力提升、农业可持续发展提高理论依据。主要结果与结论如下:
     (1)在不同土壤中随着土壤深度的增加土壤有机碳不断降低,在40-100cm土层之间降幅逐渐减小。黑土有机无机配施处理(NPKM、NPKM2)的0-40cm土层有机碳含量在施肥年限内表现为在后十年增高趋势;塿土与灰漠土在施肥年限内有机肥配施化肥处理的0-40cm土壤有机碳含量随着施肥年限的增长而增加。在0-40cm内,所有土壤类型的系统碳投入量与有机碳变化量呈显著的正相关关系,且有机肥的固碳效率大于秸秆还田处理。
     施肥20年后,与CK相比, NPKM、NPKM2均可提高土壤0-40cm有机碳含量,但增幅差异较大,其中在0-20cm土层中NPKM、NPKM2处理有机碳增幅分别达到29.0%-109.7%和49.4%-183.1%,它们在不同土壤的增幅表现为从西到东、从南到北依次增幅依次变大,即灰漠土>塿土>红壤>潮土>黑土,NPKM2还提高了灰漠土、塿土、潮土40-60cm的有机碳含量。NPKS除黑土外其余土壤均提高了0-20cm有机碳含量,增幅在21.9%-69.1%,它们在不同土壤的增幅表现为塿土>潮土>红壤>灰漠土,NPKS还提高了黑土、塿土、潮土20-40cm的有机碳,增幅为18.8%-63.1%。CK0处理0-20cm土壤有机碳均显著增加,增幅为20.8%-55.7%,它们在不同土壤的增幅为红壤>塿土>灰漠土>潮土>黑土,CK0还提高了塿土20-40cm与红壤20-60cm的有机碳。长期施用化肥(N、NK、PK)不利于有机碳的增加,其余施用化肥处理(NPK、NP)处理可以提高塿土、红壤、潮土的0-20cm有机碳含量,增幅在21.3%-33.8%。
     (2)在不同土壤中随着土壤深度的增加土壤全氮不断降低,在40-100cm土层之间降幅逐渐减小。全氮含量随时间的变化与有机碳变化相似。施肥20年后,与CK相比,NPKM、NPKM2均可以显著提高土壤0-40cm全氮含量,0-20cm常量与高量增幅分别为32.0%-106.2%与54.7%-206.3%,它们在不同土壤的增幅表现为灰漠土>塿土>潮土>红壤>黑土;20-40cm常量与高量增幅分别为15.0%-143.6%与33.6%-306.3%,它们在不同土壤中的增幅表现为灰漠土>黑土>潮土>红壤>塿土。由于氮素淋溶作用,20-100cm土层中,黑土、塿土、红壤、潮土所有处理全氮均有不同程度提高,但增幅小于0-40cm。
     (3)施肥11(12)年后,与CK相比,黑土、塿土碳氮比(C/N)无明显变化,灰漠土不同处理碳氮比有升有降,未表现出规律性变化。在施肥20年年限内,黑土、塿土随着施肥年限的增加土壤C/N提高,灰漠土随着施肥年限的增加C/N降低。所有土壤的C/N在0-80cm内随着土壤深度的增加而降低,80-100cm与60-80cm相比又有所升高。施肥20年后黑土、灰漠土C/N无显著性变化。与CK相比氮肥(N)与氮钾(NK)降低了塿土与红壤的0-20cm土壤C/N,其余处理耕层均有所升高。NPKM2提高了潮土中耕层C/N。各土壤耕层C/N在8.72-11.0,它们在不同土壤中的碳氮比表现为潮土>黑土>灰漠土>塿土>红壤。
In order to investigate profile distribution feature of organic carbon and total nitrogen in typical cropland of China under various kinds of long-term fertilization, black soil, grey desert soil, lou soil, red soil and fluvo-aquic soil were collected from different cropland of climatic region. Organic carbon and total nitrogen content in different five levels of soil profile with depth of 0-100cm were analyzed and characteristic of temporal and spatial distribution of organic carbon and total nitrogen was also summarized systemically, as provides important theoretical basis for soil fertility enhancement and sustainable agricultural development in China. The main results and conclusions were listed as follows.
     (1)Soil carbon content decreased gradually with increase of soil depth in various soil, and the magnitude of decrease in soil layers with depth of 40-100cm turn out to be less. Through the application of NPKM or NPKM2, organic carbon content in black soil with depth of 0-40cm showed a increasing trend in the last decade during fertilization age, while organic carbon content in lou soil and grey desert soil with the same depth range increased year by year during fertilization age. In all kinds of soil with depth of 0-40cm, carbon inputs were positively correlated to changes of organic carbon content in soil, and the carbon sequestration efficiency of organic fertilizer was greater than the straw treatment.
     After 20 years of fertilization, in contrast to CK, application of NPKM and NPKM2 can both increase organic carbon content with soil depth of 0-40cm, but the amplitudes of carbon content were changed in difference. In the soil with depth of 0-20cm, application of NPKM and NPKM2 increased the organic carbon content by 29.0%-109.7% and 49.4%-183.1% respectively. The amplitudes of carbon content showed a increasing trend in various soil from the west to the east and from the south to the north in China, or were in an order of grey desert soil>lou soil>red soil> fluvo-aquic soil>black soil. Application of NPKM2 also increased organic carbon content in grey desert soil, lou soil and fluvo-aquic soil with soil depth of 40-60cm. Application of NPKS increased organic carbon content in various soils except black soil with depth of 0-20cm. The amplitudes of carbon content were 21.9% -69.1%, and were in an order of lou soil>fluvo-aquic soil>red soil>grey desert soil. Application of NPKS also increased organic carbon content in black soil, lou soil and fluvo-aquic soil with depth of 20-40cm, and the amplitudes of carbon content were 18.8%-63.1%. CK0 treatment can increase organic carbon content significantly in soil with depth of 0-20cm, and the amplitudes of carbon content were 20.8%-55.7%, and the amplitudes were in an order of red soil>lou soil>grey desert soil> fluvo-aquic soil>black soil. CK0 treatment also increased organic carbon content in lou soil with depth of 20-40cm and red soil with depth of 20-60cm. Long-term application of N, NK and PK was not helpful to increase of carbon content in soil, but NPK and NP can improve carbon content in lou soil, red soil, and fluvo-aquic soil with depth of 0-20cm, and the amplitudes were 21.3%-33.8%.
     (2) Total nitrogen in various kinds of soil decrease gradually with increase of soil depth, and the magnitude of decrease in soil layers with depth of 40-100cm turn out to be less. The change of total nitrogen with fertilization age is similar to that of organic carbon content in soil. After 20 years of fertilization, Application of chemical fertilizers combined with manure(NPKM, NPKM2)can increase total nitrogen content with soil depth of 0-40cm remarkably. Application of NPKM and NPKM2 can increase carbon content with soil depth of 0-20cm by 32.0%-106.2% and 54.7%-206.3% respectively, and the amplitudes of carbon content in different soil were in an order of grey desert soil > lou soil > fluvo-aquic soil > red soil > black soil. The treatments of NPKM and NPKM2 can improve carbon content with soil depth of 20-40cm by 15.0%-143.6% and 33.6%-306.3% respectively, and the amplitudes of carbon content in different soil were in an order of grey desert soil > black soil > fluvo-aquic soil > red soil > lou soil. Due to nitrogen leaching, total nitrogen content in soil layers with depth of 20-100cm was improved differently by all treatments in black soil, lou soil, red soil and fluvo-aquic soil, but the increase amplitudes were lower than those in soil layers with depth of 0-40cm.
     (3) After 11 or 12 years of fertilization, carbon and nitrogen ratio (C/N) showed no obvious change in black soil and lou soil in contrast to control treatment (CK). Different treatments resulted in changes of C/N in grey desert soil, including rise and fall, therefore C/N in grey desert soil showed no regular change.During 20 years of fertilization, C/N in black soil and lou soil increased year by year with increasing fertilization age, but C/N in grey desert soil decreased gradually with increasing fertilization age. C/N in all soil decreased with increased soil depth among 0cm and 80cm, but surprisingly, C/N in soil with depth of 80-100cm was higher than that in soil with depth of 60-80cm. After 20 years of fertilization, C/N in black soil and grey desert soil showed no notable change. Compared with control treatment (CK), the treatments of N and NK decreased C/N in lou soil and red soil with depth of 0-20cm, but other treatments increased C/N in soil. Application of chemical fertilizers combined with manure (NPKM2) increased C/N in soil layers of fluvo-aquie soil. C/N in different soil layers was between 8.72 and 11.0, and the C/N in different soil were in an order of fluvo-aquic soil > black soil > grey desert soil > lou soil > red soil.
引文
1.曹升赓.土壤剖面.土壤,1980,3,112~115.
    2.陈盈,闫颖,张满利,等.长期施肥对黑土团聚化作用及碳、氮含量的影响.土壤通报,2008,39(6):1288~1291.004
    3.段英华,徐明岗,王伯仁,等.红壤长期不同施肥对玉米氮肥回收率的影响.植物营养与肥料学报,2010,16(5):1108~1113.
    4.高晓宇,韩晓日,战秀梅,等.长期不同施肥对棕壤氮储量的影响.植物营养与肥料学报,2009,15(3):567~572.
    5.古巧珍,杨学云,孙本华,等.灌溉条件下长期定位施肥对塿土剖面的养分分布特征的影响.中国农学通报,2004,20(5):139~147.
    6.古巧珍,杨学云,孙本华,等.有机~无机肥料配合施用对塿土的培肥效果.甘肃农业大学学.
    7.报,2004,4(39):418~422.
    8.韩晓日,马玲玲,王晔青.长期定位施肥对棕壤无机磷形态及剖面分布的影响.水土保持学报,2007,21(4):51~55,144.
    9.韩晓日,苏俊峰,谢芳,等.长期施肥对棕壤有机碳及各组分的影响.土壤通报,2008,39(4):730~733.
    10.黄绍敏,宝德俊,皇甫湘荣,等.不同栽培因子对河南潮土上小麦产量的影响.麦类作物学报,2005,25(5):69~74.
    11.黄绍敏,宝德俊,皇甫湘荣,等.长期施肥对潮土耕层土壤养分状况的影响.植物营养与肥料学报,2002a,8(增刊):135~140.
    12.黄绍敏,宝德俊,皇甫湘荣,等.长期施肥对潮土作物产量及肥料对产量的贡献的影响.植物营养与肥料学报,2002b,8(增刊):141~145.
    13.姜勇,郝伟,张玉革等.潮棕壤不同利用方式营养元素随剖面深度的变化特征.水土保持学报,2006,20(3):93~96、122.
    14.解宪丽.不同植被下中国土壤有机碳的储量与影响因子。土壤学报,2004,41(5):687~699.
    15.李东坡,武志杰,陈利军,等.长期培肥黑土微生物量碳动态变化及影响因素.应用生态学报,2004,15(8):1334~1338.
    16.李家康,林葆,梁国庆,等.对我国化肥使用前景的剖析.植物营养与肥料学报,2001,7(1):1~10.
    17.李双来,胡诚,乔艳.水稻小麦种植模式下长期定位施肥土壤氮的垂直变化及氮储量,生态环境学报,2010, 19(6): 1334~1337.
    18. .李维福,解宏图,白震,等.长期施肥对黑土颗粒有机质的分布及其碳、氮含量的影响.土壤通报,2009,40(2):267~271.
    19.李酉开.土壤农业化学常规分析方法.北京:科学出版社,1983:272~273.
    20.林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化.植物营养与肥料学报,1994,1(1):6~18.
    21.刘晶淼,安顺清,廖荣伟,等.玉米根系在土壤剖面中的分布研究.中国生态农业学报,2009,17(3)517-521.
    22.刘骅,林英华,王西和,等.长期配施安对灰漠土的质量的影响.生态环境2007, 16(5): 1492~1497.
    23.刘骅,佟小刚,许咏梅,等.长期施肥下灰漠土有机碳组分含量及其演变特征.植物营养与肥料学报,2010,16(4):794~800.
    24.刘小兰,李世清.土壤中的氮素与环境.干旱地区农业研究,1998,16(4):36~43.
    25. .鲁彩艳,陈欣.不同施肥处理土壤及不同C/N比有机物料中有机N的矿化进程.土壤通报,2003,34(4):267~270.
    26.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000:308~311.
    27.鲁如坤.我国土壤氮、磷、钾的基本状况.土壤学报,1989,36(3)280~286.
    28.马力.长期施肥下水稻土氮素剖面分布及温度对土壤氮素矿化特性的影响.土壤学报,2010, 47(2): 286~294.
    29.马溶之.土壤剖面之研究及其地文意义.地质评论,1948,Z2.277~279.
    30.苗果园,张云亭,尹钧等.作物学报,1989,15(2):104-115.
    31.谬驰远,刘宝元,刘刚.东北典型黑土区剖面粒径分布特征及其可蚀性研究.2008,22(3):18~23.
    32.邱建军,王立刚,唐华俊,等.东北三省耕地土壤有机碳储量变化的模拟研究.中国农业科学,2004,37(8):1166~1171.
    33.沈善敏.长期土壤肥力试验的科学价值.植物营养与肥料学报, 1995, 1(1):1~9.
    34.沈善敏.国外的长期肥料试验(一).土壤通报,1984,(2):85~91.
    35.沈善敏.国外的长期肥料试验(二).土壤通报,1984,(3):134~138.
    36.沈善敏.国外的长期肥料试验(三).土壤通报,1984,(4):184~185.
    37.隋跃宇,刘光源,谷思玉,等.典型农田黑土剖面理化性状分析.农业系统科.学与综合研究,2005,21(4):299~301.
    38.隋跃宇,张兴义,焦晓光,等.长期不同施肥制度对农田黑土有机质和氮素的影响.水土保持学报,2005,19(6):190~200.
    39.孙宏德,朱平,刘淑环,等.有机无机肥料对黑土肥力和作物产量影响的监测研究.植物营养与肥料学报,2002,8(增刊):110~116.
    40.佟小刚,黄绍敏,徐明岗,等.长期不同施肥模式对潮土有机碳组分的影响.植物营养与肥料学报,2009,15(4):831~836.
    41.佟小刚,王伯仁,徐明岗,等.长期施肥红壤矿物颗粒结合有机碳储量及其固定速率.农业环境科学学报,2009.28(12):2584~2589.
    42.王伯仁,蔡泽江,李东初.长期不同施肥对红壤旱地肥力的影响.水土保持学报,2010,24(3):85~88.
    43.王伯仁,徐明岗,文石林,等.长期施肥对红壤旱地作物产量及肥料效益的影响.土壤肥料科学,2008,24(10):322~326.
    44.王伯仁,徐明岗,文石林.有机肥和化学肥料配合施用对红壤肥力的影响.土壤肥料科学,2005,21(2):160~163.
    45.王浩清.土壤剖面记载表的改进设计.土壤,1987,3:140~143.
    46.王胜佳,王家玉,陈义.稻田土壤氮素淋失的形态及其在剖面分布特征.浙江农业学报,1997,9(2):57~61.
    47.文启孝.土壤有机质的组成、形成和分解.土壤, 1984, 16(4):121~129.
    48.文顺元,王伯仁,李东初,等.长期不同施肥对红壤微生物生长的影响,中国农学通报,2010,26(22):206~209.
    49.吴乐知,蔡祖冲.基于长期试验资料对中国农田表土有机碳含量变化的估算.生态环境,2007,16(6):1768~1774.
    50.肖伟伟,范晓晖,杨林章,等.长期定位施肥对潮土有机氮组分和有机碳的影响.土壤学报,2009,46(2):274~280.
    51.徐江兵,李成亮,何园球.不同施肥处理对旱地红壤团聚体中有机碳含量及其组分的影响.土壤学报, 2007, 44(4): 675~682.
    52.徐明岗,梁国庆,张夫道.中国土壤肥力演变.北京:中国农业科学技术出版社,2006.
    53.许泉.我国农田土壤碳氮耦合特征的区域差异.生态与农村环境学报,2006, 22 (3): 57~60.
    54.闫颖,何红波,白震,等.有机肥对棕壤不同粒级有机碳和氮的影响.土壤通报,39(4),2008,738~742.
    55.杨学云,张树兰,刘杏兰.有机~无机肥配施增产效应及土壤剖面硝态氮累积定位研究.西北农业学报,1998,7(2):63~66.
    56.张鸿程,宝德俊,皇甫湘荣,等.潮土定位试验施肥对土壤养分变化及环境质量监测研究.土壤通报,2002,33(1):28~31.
    57.张文菊.长期施肥的农田土壤固碳与增产效应.博士后研究工作报告.2008.
    58.赵秉强,梅旭荣.对我国土壤肥料若干重大问题的探讨.科技导报,2007,25(8):65~70.
    59.赵秉强,张夫道.我国的长期肥料定位试验研究.植物营养与肥料学报,2002,(8):3~8.
    60.郑杰炳,王子芳,周春蓉,等.土地利用方式对紫色土丘陵区土壤剖面碳、氮影响.生态环境,2008, 17(5): 2041~2045.
    61.中国土壤普查办公室,1998:中国土壤,876~886,科学出版社.
    62.周建斌,李昌纬,赵伯善.长期施肥对塿土底土养分含量的影响.土壤通报,1993,24(1):21~23.
    63.朱兆良.中国土壤氮素研究.土壤学报,2008,45(5):778~783.
    64.朱兆良.中国土壤.科学出版社:1987, 464~480.
    65. Franzluebbers A.J, Stuedmann J.A. Soil profile organic carbon and total nitrogen during 12 years of pasture management in the Southern Piedmont USA. Agriculture, Ecosystems and Environment 2009, 129:28~36.
    66. Davidson E.A, Trumbore S.E, Amundson R. Biogeochemistry: Soil warming and organic carbon content.Nature 2000, 408:789~790.
    67. Dominy C. S, Haynes, R. J, and van Antwerpen R.: Loss of soil organic matter and relatedsoil properties under long~term sugarcane production on two contrasting soils, Biol. Fert. Soils 36,350~356, 2002, doi: 10.1007/s00374-002-0538-5.
    68. Fugen Dou.Depth distribution of soil organic C and N after long~term soybean cropping in Texas. Soil & Tillage Research 2007, 94:530~536.
    69. Jane J. Kapkiyai, Nancy K. Karanjaa, Javaid N. Qureshi, et.al. Soil organic matter and nutrient dynamics in a Kenyan nitisol under long-term fertilizer and organic input management. Soil Biology and Biochemistry 1999, 31:1773~1782.
    70. Jerry C. Ritchie, Gregory W. McCarty,et. al. Soil and soil organic carbon redistribution on the landscape, Geomorphology 2007,89:163~171.
    71. Potter K.N. Morrison. Distribution and amount of soil organic C in long~term management systems in Texas.Soil & Tillage Research 1998, 47:309~321.
    72. Keith E. Schilling, Jason A. Palmer, E. Arthur Bettis III, Peter Jacobson, Richard. Schultz, Thomas M. Isenhart.Vertical distribution of total carbon, nitrogen and phosphorus in riparian soils of Walnut Creek, southern Iowa.Catena 2009, 77:266~273.
    73. Kern J.S, Johnson, M.G, 1993. Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci. Soc. Am. J.57, 200~210.
    74. Lorenz, K., Lal, R., 2005. The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv. Agron. 88, 35~66.
    75. Manjaiah Kanchikerimath, Dhyan Singh. Soil organic matter and biological properties after
    26 years of maize–wheat–cowpea cropping as affected by manure and fertilization in a Cambisol in semiarid region of India. Agriculture, Ecosystems and Environment 2001, 86:155~162.
    76. Muhammad Abid, Rattan Lal. Tillage and drainage impact on soil quality I. Aggregate stability, carbon and nitrogen pools. Soil & Tillage Research 2008, 100:89~98.
    77. Paustian, K, Collins, H.P, Paul, E.A., 1997. Management controls in soil carbon. In: Paul, E.A., et. al. (Eds.), Soil Organic Matter in Temperate Ecosystems: Long Term Experiments in North America. CRC Press, Boca Rotan, FL, pp. 15~49.
    78. Post W M, Emanuel W R, Zinke P J et . al. Soil carbon pools and life zones.Nature 1982, 298: 156~159.
    79. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304(5677):1623~1627.
    80. Lal R.Soil erosion and the global carbon budget. Environment International ,2003,29:437~450
    81. Rex A. Vertical distribution of soil organic carbon and nitrogen under warm~season native grasses relative to croplands in west-central Indiana. USA Agriculture Ecosystems and Environment 2006, 117 :159~170.
    82. Sarah M. Walker, Paul V. Desanker. The impact of land use on soil carbon in MiomboWoodlands of Malawi. Forest Ecology and Management 2004. 203:345~360.
    83. William H.Schlesinger, Jeffrey A, Andrews. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48: 7~20.
    84. Yang X.M, Tan. Impacts of long-term and recently imposed tillage practices on the vertical distribution of soil organic carbon.Soil & Tillage Research 2008, 100: 120~124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700