北京奥林匹克森林公园绿地生态效益研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市绿地被誉为“城市之肺”,其作用和功能一直受到城市建设和规划者的重视。目前,国内外已经有大量的相关研究证明城市绿地在调节空气温湿度、固碳释氧、影响产生空气负离子、抑制空气微生物等方面起到不可替代的作用。相关研究成果显示,这一作用和功能以依据自然生态系统原则构建的城市绿地体现的更加明显。
     北京奥林匹克森林公园(以下简称奥运森林公园)是依据自然生态系统原则建立的大型城市绿地。该绿地是2008年北京奥运会期间服务于赛事的重要基础设施,同时亦是此项赛事在赛后馈赠给北京市居民的珍贵“绿色遗产”。2005年至2010年,我们以此公园绿地为研究样地,在奥运森林公园内外选定17个样点和2个对比样点,持续进行了近6年的二氧化碳浓度、空气负离子浓度和空气微生物浓度测定,并基于测定数据对上述生态效益因子的口变化、季节变化和年度变化等时间变化规律进行了探讨;还对不同群落结构和群落类型条件下生态效益因子的空间差异性进行了探讨。结果如下:
     1、奥运森林公园绿地的二氧化碳浓度在年度内具有显著的日、季节变化特征。
     1)生长季,奥运森林公园绿地二氧化碳日平均浓度为328μmol·mol-1,其日变化特征明显,08:00-11:00,二氧化碳浓度呈现显著的下降趋势:11:00-13:00,公园绿地的二氧化碳平均浓度在310μmol·mol-1上下浮动,13:00-17:00,二氧化碳浓度在14:00达到300μmol·mol-1(此浓度为测定时间内最低值)后呈现显著的升高趋势。2)非生长季节,二氧化碳口均浓度为413μmol·mol-1,此值高于生长季节。此季节的二氧化碳浓度日变化特征与生长季节类似,日最低浓度出现时间除外(13:00,生长季节为14:00)。3)4个季节的二氧化碳平均浓度比较,夏季最低(328μmol·mol-1),秋冬季最高(413μmol·mol-1),而春季(410μmol·mol-1)较秋冬季无显著差异。奥运森林公园绿地的二氧化碳浓度在2005-2010年的不同季节,亦呈现出显著的时间变化特征。4)春季呈现逐渐升高的趋势,上升幅度为33μmol·mol-1,而夏季呈现逐渐下降的趋势,下降幅度约为30μmol·mol-1,秋季的二氧化碳浓度在试验期内呈现的趋势目前尚不显著,冬季的二氧化碳浓度值显著高于其他季节,并在试验期内呈现出高浓度浮动的特征。5)公园建成使用前,其区域的二氧化碳浓度等于或略高于对比区域,公园建成后,二氧化碳浓度则低于对比区域。
     2、奥运森林公园绿地内部不同区域间、不同植物群落结构和类型间的二氧化碳浓度差异显著。1)公园内部区域间在生长季由边缘区(360μmol·mol-1)经由过渡区(336μmol·mol-1)到核心区(332μmol·mol-1)的二氧化碳浓度呈现逐渐降低的梯度变化特征,在非生长季节,样点间二氧化碳浓度的梯度变化特征不及生长季节显著。2)不同群落结构区域的二氧化碳浓度由低到高的顺序为复层群落、双层群落、单层群落;双层群落结构区域由高到低的顺序为乔草结构、乔灌结构、灌草结构;单层群落区域顺序为乔木、草本地被、灌丛。3)不同群落类型区域的二氧化碳浓度由低到高的顺序为针阔叶混交型群落、落叶阔叶型群落、针叶型群落、灌丛、草本地被。
     3、奥运森林公园绿地的空气负离子浓度具有显著的口、季节和年度变化特征。1)空气负离子浓度在08:00-17:00呈现双峰值的变化特征,首次峰值出现于10:00-11:00,二次峰值出现于16:00前后。2)夏季的空气负离子浓度最高,试验期内均值为2745个·cm-3,春季最低,为995个·cm-3,秋季(2258个·cm-3)仅次于夏季而高于冬季(1078个·cm-3)。3)2005-2010年,2008年的空气负离子浓度最高(2710个·cm-3),2005-2007年,空气负离子浓度差异不显著,而2008-2010年,空气负离子浓度逐年降低。
     4、奥运森林公园绿地内部不同植物群落结构和类型间、公园绿地区域与对比样点代表的城市区域间的空气负离子浓度差异显著。1)2008年前,公园区域的空气负离子浓度等于或略低于对比区域,公园建成后,其浓度则高于对比区域。2)不同群落结构区域的空气负离子浓度由低到高的顺序为双层群落、复层群落、单层群落;双层群落结构区域由高到低的顺序为乔草结构、灌草结构、乔灌结构;单层群落区域顺序为草本地被、乔木。3)不同群落类型区域的空气负离子浓度由低到高的顺序为落叶阔叶型群落、草本地被、灌丛、针阔叶混交型群落、针叶型群落。
     5、奥运森林公园绿地的空气微生物浓度具有显著的日、季节和年度变化特征,而空气真菌与空气细菌所呈现出的变化特征有较大差异。1)生长季,空气真菌日平均浓度为176CPU·m-3,08:00-14:00,真菌浓度呈现显著的下降趋势,14:00-17:00,真菌浓度呈现显著的升高趋势;空气细菌日均浓度为96 CPU·m-3,08:00-14:00,细菌浓度呈现显著的下降趋势,而在14:00-17:00则呈现较显著的升高趋势。2)非生长季节,空气真菌日均浓度为111 CPU·m-3,此值低于生长季节,日最低浓度出现时间与生长季节相同;空气细菌日均浓度137CPU·m-3,此值高于生长季节。3)夏季空气真菌浓度最高,为114CPU·m-3,春季空气真菌浓度最低,为66CPU·m-3。同时,秋冬季节空气真菌浓度相当,分别为87CPU·m-3和90CPU·m-3;春季空气细菌浓度最低,而冬季细菌浓度最高,由春季到冬季细菌浓度呈现逐季升高的特征。
     6、奥运森林公园绿地内部不同植物群落结构和类型间、公园绿地区域与对比样点代表的城市区域间的空气微生物浓度差异显著。1)不同群落结构区域的空气真菌浓度由高到低的顺序为复层群落、双层群落、单层群落;双层群落结构区域由高到低的顺序为灌草结构、乔草结构、乔灌结构;单层群落区域顺序为草本地被、灌丛和乔木;空气细菌浓度由高到低顺序为单层群落、双层群落、复层群落;双层群落结构区域由高到低的顺序为灌草结构、乔草结构、乔灌结构;单层群落结构区域由高到低顺序为草本地被结构、灌丛和乔木。2)不同群落类型区域的空气真菌浓度由高到低的顺序为落叶阔叶型群落、草本地被、灌丛、针阔叶混交型群落和针叶型群落;空气细菌浓度由高到低顺序为草本地被、灌丛、落叶阔叶型群落、针阔叶混交型群落、针叶型群落。
     另外,研究还选定海淀公园绿地与奥运森林公园绿地进行生态效益对比分析,后者的植被生态效益要显著优于前者。
     由于绿色植被的影响,城市绿地区域本研究所关注的的生态效益因子具有明显的日变化、季节变化和年度变化规律,与此同时,城市绿地区域的环境质量要显著高于城市一般区域。在城市绿地的不同区域,由于植物群落结构和类型不同,对生态效益产生了不同的影响。上述结论将有益于城市绿地的植物群落景观构建及管理运营。
Urban green space was praised as "Lung of City", and the effect and function of it were much accounted of urban governor and designer all the time. Currently, at local and abroad, relevant research have confirmed that urban green space play an important portion in regulating air temperature and relative humidity, photosynthetic carbon fixation, releasing oxygen and generating nagitive air ions (NAI),especially spatial designs based on natural forests (e.g.,the incorporation of natural floristic composition, type and structure of plant community).
     Beijing Olympic Forest Park (BOFP) is a great urban green space, which was build by natural forestry ecolosystem, and it is located north of the main Olympic stadiums (the Bird's Nest and the Water Cube) and it is a precious'green heritage'for urban dwellers. Here, we established 19 sampling points, including 17 inside the park and 2 outside the park as the urban background level, the concentration of airborne fungus, carbon dioxide and Negative air ions were measured in clear and windless days for 5 years, from 2005 to 2010. Based on these data, we discussed the daily, seasonal and annual variation of those effects. In addition, we discussed the correlation between those effects and the type and structure of plant community (PC).
     1.This paper investigated carbon dioxide (CO2) concentration in the Beijing Olympic Forest Park. And the results indicated that:1) In growing season, the daily average of CO2 concentration was 328μmol·mol-1,the diurnal variation of CO2 in this park was significant, presenting generally a picture of decreasing from 08:00—11:00, then fluctuating at noon (11:00-13:00) around a low concentration point (approx.310μmol·mol-1),13:00-17:00, CO2 reaching the minimum concentration (approx.300μmol·mol-1) at 14:00 pm, and increasing significantly afterwards; 2) In non-growing season, the daily average of CO2 concentration was 413μmol·mol-1, and it was higher than that in growing season. The variation characteristics of CO2 were similar to that in growing season, except for the time of the minimum concentration (13:00 pm); 3) the lowest concentration of CO2 was (328μmol·mol-1 in the summer and the highest one in the winter (413μmol·mol-1) of four seasons, but no significant difference of concentration was between the spring (410μmol·mol-1) and the autumn (413μmol·mol-1).Seasonal and annual data of CO2 concentration from 2005 to 2010 were presented in this paper, to research the vegetation ecological benefits of BOFP. The results indicated that:4) The CO2 concentration of Spring increased gradually about 33μmol·mol-1 through the measurement time (six years);in Summer, CO2 concentration dropped gradually about 30μmol·mol-1 in this period;CO2 concentration of Autumn was not significantly at present; CO2 concentration of Winter was the highest one of four seasons, and it fluctuated around high concentration in six years.5) Before this park was constructed (before 2008), CO2 concentration of this park was higer than that of urban background level, and after this park was constructed, CO2 concentration of this park was lower than that of urban background level.
     2.There are significant differences of CO2 concentration among those zones with different structure and type of PC.1) In BOFP, CO2 concentration in growing season followed a gradient change, decreasing gradually from near the border of the park (360μmol·mol-1) to the buffer area (336μmol·mol-1) and to the center of the park (332μmol·mol-1).2) CO2 concentration of the zones with different PS from high to low was as follow:MPC, DPC, SPC;CO2 concentration of the zones with different DPC from high to low was as follow:TG, TS, SG; and that of different SPC as follow:T, G, S. 3) CO2 concentration of the zone with different PT from high to low was as follow:G, S, CP, DBP, CBP.
     3.Negative air ions (NAI) concentration of BOFP has significant daily, seasonal and annual variation.1) 08:00-17:00, NAI showed significant daily variation with double peak, the first peak showed in 10:00-11:00, and the second one showed in 16:00.2) NAI of Summer was highest one in four seasons, with 2745 n·cm-3 in measurement time, and that of Spring was the lowest one in four seasons with 995 n·cm-3, and that of Autumn (2258 n·cm-3) was lower than that of Summer and higher than that of Winter (1078 n·cm-3).3) NAI of 2008(2710 n·cm-3) was the highest one through the period from 2005 to 2010,2005-2007, the trend of NAI was not significant, and 2008-2010, NAI decreased processly.
     4.There were significant differences of NAI concentration among different zones with different structure and type of PC, between BOFP and urban background level.1) Before 2008, NAI of BOFP was lower than that of urban background level, and after 2008, NAI of BOFP was higher than that of urban background level.2) NAI of zones with different PS from high to low was as follow:DPC, MPC, SPC;NAI of zones with different DPC from high to low was as follow:TG, SG, TS; and that of different SPC as follow:G, T.3) NAI of zones with different PT from low to high was as follow:DBP, G, S, CBP, CP.
     5.In BOFP, the concentration of airborne bacteria and airborne fungi has significant daily, seasonal and annual variation.1) In growing season, the daily average of airborne fungi was 176 CPU·m-3. 08:00-14:00, concentration of airborne fungi decreased significantly,14:00-17:00, it increased significantly; and the daily average of airborne bacteria was 96 CPU·m-3,08:00-14:00, the concentration of airborne bacteria showed decrease trend, and 14:00-17:00, it showed increase trend.2) In non-growing season, the daily average of airborne fungi was 111 CPU·m-3 and the value were lower than that in growing season, the time of the daily lowest concentration of airborne fungi was similar to that in growing season; concentration of airborne bacteria was 137 CPU·m-3, which was higher than that in growing season.3) Concentration of airborne bacteria of Summer was the highest one in four seasons, and that of Spring was the lowest one,114 CPU·m-3 and 66 CPU·m-3, respectly, at the same time, that of autumn and winter was similar,87 CPU·m-3 and 90 CPU·m-3, respectly; concentration of airborne bacteria in summer was the lowest one in four seasons, and that of winter followed, and it showed the characteristics of increased processly.
     6. There were significant differences of airborne bacteria and airborne fungi concentration among different zones with different structure and type of PC, between BOFP and urban background level.1) The airborne fungi concentration of zones with different Ps from high to low was as follow:MPC, DPC, SPC; The airborne fungi concentration of the zones with different DPC from high to low was as follow: SG, TG, TS; and that of different SPC was as follow:G, S, T; The airborne bacteria concentration of zones with different Ps from high to low was as follow:SPC, DPC, MPC; The airborne bacteria concentration of zones with different DPC from high to low was as follow:SG, TG, TS; and that of different SPC was as follow:G, S, T.2) The airborne fungi concentration of zones wth different PT from low to high was as follow:DBP, G, S, CBP, CP; The airborne bacteria concentration of zones with different PT from low to high was as follow:G, S, DBP, CBP, CP.
     Moreover, the comparative study between BOFP and other urban green space (Haidian Park) clarified the factor of green spaces, such as area, shape, the strcture and type of plant community, which affect the ecological effects of green spaces.
     Due to the effects of green vegetation, the ecological factor of urban green space had significant daily, seasonal and annual variation, and the environmental quality of urban green space was better than that of urban generally environment (urban background level).In the zone of urban green space, different Ps and PT had different effect to the ecological effects. And these results would benefit to the construction of plant landscape and government of urban green space.
引文
[1]安倍(芦敬等译).关于空气离子测定[J].空气清净,1980,7(6):243-248.
    [2]柏智勇,吴楚材.空气负离子与植物精气相互作用的初步研究[J].中国城市林业,2008,6(1):56-58.
    [3]陈静,陈欣,唐建军.大气二氧化碳浓度升高对植物根际微生物及菌根共生体的影响[J].应用生态学报,2004,15(12):2388-2392.
    [4]陈步峰,林明献,李意德,等.海南尖峰岭热带山地雨林近冠层二氧化碳及通量特征研究[J].生态学报,2001,21(12):2166-2172.
    [5]陈步峰,李意德,林明献,等.热带山地雨林二氧化碳浓度环境的时空梯度特征[J].生态学报,2001,21(12):2090-2095.
    [6]陈自新,苏雪痕,刘少宗,等.北京城市园林绿化生态效益的研究[J].中国园林,1998,1998(7):57-64.
    [7]陈芳,周志翔,肖荣波,等.城市工业区绿地生态服务功能的计量评价_以武汉钢铁公司厂区绿地为例[J].应用生态学报,2006,26(7):2229-2236.
    [8]董丽,胡洁,吴宜夏.北京奥林匹克森林公园植物规划设计的生态思想[J].中国园林,2006,22(8):34-38.
    [9]范亚民,何平,李建龙,等.城市不同植被配置类型空气负离子效应评价[J].生态学杂志,2005,24(8):883-886.
    [10]方治国,欧阳志云,胡利锋,等.城市生态系统空气微生物群落研究进展[J],生态学报,2004,24(2):315-322.
    [11]方治国,欧阳志云,胡利锋,等.北京市夏季空气微生物群落结构和生态分布[J],生态学报,2005,25(1):83-88.
    [12]高炎冰,王大庆,张黎黎,等.绥芬河国家森林公园生态因子效应分析[J].东北林业大学学报,2007,35(11):39-43.
    [13]韩红霞,高峻,刘广亮.遥感和GIS支持下的城市植被生态效益评价[J].应用生态学报,2003,14(12):2301-2304.
    [14]胡庆轩,徐桂清,徐秀芝,等.大气微生物的粒度分布[J].中国环境科学,1990,10(2):99-102.
    [15]胡庆轩,徐秀芝,陈梅玲.大气微生物的研究-大气细菌粒数中值直径及粒度分布[J].中国环境监测,1994,10(6):37-39.
    [16]胡庆轩,陈振生,徐桂清,等.北京地区大气微生物粒谱研究[J].中国环境监测,1991,7(1):9-11.
    [17]胡洁,吴宜夏,吕璐珊,刘辉.奥林匹克森林公园景观规划设计[J].建筑学报,2006,2006(06):27-31.
    [18]贾丽,巨天珍,石垚,等.校园大气微生物的时空分布及与人群活动关系的研究[J],安全与环境工程,2006,13(2):34-41.
    [19]蒋高明,黄银晓,韩兴国.城市与山地森林地区夏秋季大气二氧化碳浓度变化初探[J].环境科学学报,1998,18(1):109-111.
    [20]蒋高明.全球大气二氧化碳浓度升高对植物的影响[J].植物学通报,1995,12(4):1-7.
    [21]蒋高明.全球变化对陆地生态系统的影响研究—兼介美国MINK和英国TIGER研究计划[J].应用生态学报,1995,1995(6):143-149.
    [22]蒋高明,韩兴国.大气二氧化碳浓度升高对植物的直接影响—国外十余年来模拟实验研究之主要手段及基本结论植物[J].生态学报,1997,21(6):489-502.
    [23]蒋高明,黄银晓,韩兴国.城市与山地森林地区夏秋季大气二氧化碳浓度变化初探[J].环境科学学报,1998,18(1):109-111.
    [24]李安伯.空气负离子研究[J].中华理疗杂志,1988,12(2):100-104.
    [25]李春平,苏繁星,谢静,王美,关文彬.基于地统计学方法的农田防护林网环境场特征分析[J],北京林业大学学报,2010,32(1)13-23.
    [26]李霞,孙睿,李远,等.北京海淀公园绿地二氧化碳通量[J],生态学报,2010,30(24):6715-6725.
    [27]梁娟,蔺银鼎.城市森林对周边小气候时空格局的影响[J],中国农学通报,2007,23(7):379-385.
    [28]蔺银鼎,武小刚,郝兴宇.城市绿地温湿度效应对绿地结构的响应[J],中国园林,2006,2006(09):73-76.
    [29]蔺银鼎,韩学孟,武小刚,郝兴宇,王娟,梁锋,梁娟,王志红.城市绿地空间结构对绿地生态场的影响[J],生态学报,2006,26(10):3339-3346
    [30]蔺银鼎.城市绿地生态效应研究[J],中国园林,2003,2003(11):36-38.
    [31]刘常富,何兴元,陈玮,等.沈阳城市森林三维绿量模拟及其影响因子[J].应用生态学报,2007,19(6):1173-1178.
    [32]刘娇妹,李树华,吴菲,刘剑,张志国.纯林、混交林型园林绿地的生态效益[J],生态学报,2007,27(2):674-684.
    [33]蒙晋佳,张燕.地面上的空气负离子主要来源于植物的尖端放电[J].环境科学与技术,2005,28(1):112-113.
    [34]欧阳友生,陈仪本,谢小保,等.广州城区主要交通枢纽空气微生物浓度的测定[J],中国卫生检疫杂志,2003,13(6):692-693.
    [35]潘剑彬,董丽,廖圣晓,等.北京奥林匹克森林公园二氧化碳浓度特征研究[J].北京林业大学学报,2011,33(1):31-36.
    [36]潘剑彬,董丽.城市绿地空气负离子评价方法以北京奥林匹克森林公园为例[J].生态学杂志,2010,29(9):1881-1886.
    [37]潘剑彬,董丽,乔磊,等北京奥林匹克森林公园空气菌类浓度特征研究[J].中国园林,2010,26(180):7-11.
    [38]潘剑彬,董丽,廖圣晓,等.北京奥林匹克森林公园空气负离子浓度及其影响因素[J].北京林业大学学报,2011,33(02):61-66.
    [39]潘剑彬,董丽.园林植物在城市绿色多功能空间中的应用[J].景观设计,2010,2010(42):86-89.
    [40]潘辉,李永莉,黄石德,等.棕榈科植物群落空气负离子密度影响因素[J].东北林业大学学 报,2010,38(3):69-70.
    [41]彭立华,陈爽,刘云霞,等Citygreen模型在南京城市绿地固碳与削减径流效益评估中的应用[J].应用生态学报,2007,18(6):1293-1298.
    [42]秦俊,张明丽,胡永红,等.上海植物园植物群落对空气质量评价指数的影响[J],中南林业科技大学学报,2008,28(1):70-73.
    [43]任启文,王成,杨颖,等.城市绿地空气微生物浓度研究-以北京元大都公园为例[J],干旱区资源与环境,2007,21(4):80-83.
    [44]邵海荣,贺庆棠,阎海平,等.北京地区空气负离子浓度时空变化特征的研究[J].北京林业大学学报,2005,27(3):35-39.
    [45]邵海荣,贺庆棠.森林与空气负离子[J].世界林业研究,2000,13(5):19-23.
    [46]沈艳,缪启龙,刘允芬.亚热带红壤丘陵人工混交林区二氧化碳源汇及变化[J].生态学报,2005,25(6):1371-1375.
    [47]石强,舒惠芳,钟林生,等.森林游憩区空气负离子评价研究[J].林业科学,2004,40(1):36-40.
    [48]石培礼,李文华.生态交错带的定量判定[J].生态学报,2002,22(4):586-592.
    [49]宋凌浩,宋伟民,施玮.微生物污染对上海儿童呼吸系统的影响[J].环境与健康杂志,2000,17(3):135-138.
    [50]孙健健,林金明,张江山,等.空气负离子属性评价模型的建立及应用[J].环境科学导刊,2008,27(5):84-86.
    [51]苏泳娴,黄光庆,陈修治,陈水森.广州市城区公园对周边环境的降温效应[J],生态学报,2010,30(18):4905-4918.
    [52]谭娟,沈新勇,李清泉.海洋碳循环与全球气候变化相互反馈的研究进展[J].气象研究与应用,2009,30(1):33-36.
    [53]王修信,朱启疆,陈声海,等.城市公园绿地水、热与二氧化碳通量观测与分析[J].生态学报,2007,27(8):3232-3239.
    [54]王洪俊.城市森林结构对空气负离子水平的影响[J].南京林业大学学报,2004,28(5):96-98.
    [55]王继梅,冀志江,隋同波.空气负离子与温湿度的关系[J].环境科学研究,2004,17(2):68-70.
    [56]王娟.城市绿地生态场效应因素分析[J],山西农业大学学报,2008,28(1):77-80.
    [57]王德利.关于生态场的几点评述[J],应用生态学报,2000,11(3):472-476.
    [58]韦朝领,王敬涛,蒋跃林,等.合肥市不同生态功能区空气负离子浓度分布特征及其与气象因子的关系[J].应用生态学报,2006,17(11):2158-2162.
    [59]吴志萍,王成,许积年,等.六种城市绿地内夏季空气负离子与颗粒物[J].清华大学学报,2007,47(12):2153-2157.
    [60]吴志萍,王成.城市绿地与人体健康[J],世界林业研究,2007,20(2):32-37.
    [61]吴际友,程政红,龙应忠.园林树种林分中空气负离子水平的变化[J].南京林业大学学报,2003,27(4):78-80.
    [62]吴楚材,郑群明,钟林生.森林游憩区空气负离子水平的研究[J].林业科学,2001,37(5):75-81.
    [68]吴楚材,钟林生,刘晓明.马尾松纯林林分因子对空气负离子浓度影响的研究[J].中南林学院学报,1998,18(1):70-73.
    [63]吴楚材,黄绳纪.桃源洞国家森林公园的空气负离子含量及评价[J].中南林学院学报,1995,15(1):9-12.
    [64]吴菲,李树华,刘娇妹.城市绿地面积与温湿效益之间关系的研究[J],中国园林,2007,2007(06):71-74.
    [65]吴菲,李树华,刘剑.不同绿量的园林绿地对温湿度变化影响的研究[J].中国园林,2006,2006(07):56-60.
    [66]吴家兵,关德新,赵晓松,等.长白山阔叶红松林二氧化碳浓度特征[J].应用生态学报,2005,16(1):49-53.
    [67]吴家兵,关德新,孙晓敏,等.长白山阔叶红松林二氧化碳湍流交换特征[J].应用生态学报,2005,18(5):951-956.
    [68]吴家兵,关德新,张弥,等.长白山阔叶红松林碳收支特征[J].北京林业大学学报,2007,29(1):1-6.
    [69]谢立勇,林而达.二氧化碳浓度增高对稻、麦品质影响研究进展[J].应用生态学报,2009,18(3):659-664.
    [70]杨永辉,毕绪岱.河北省森林固定二氧化碳的效益[J].生态学杂志,1996,15(4):51-54.
    [71]尹海伟,孔繁花,宗跃光.城市绿地可达性与公平性评价[J],生态学报,2008,28(7):3375-3383.
    [72]尹起范,盛振环,魏科霞,等.淮安市大气二氧化碳浓度变化规律及影响因素的探索[J].环境科学与技术,2009,32(4):54-57.
    [73]尹俊光,彭鹓,章君果,等.城市近自然森林生态效益研究[J].华东师范大学学报,2009,2009(05):63-74.
    [74]张侃,张建英,陈英旭,等.基于土地利用变化的杭州市绿地生态服务价值Citygreen模型评价[J].应用生态学报,2006,17(10):1918-1922.
    [75]赵雄伟,李春友,葛静茹,等.刺槐林地空气负离子水平[J].东北林业大学学报,2007,35(11):29-31.
    [76]钟林生,吴楚材,肖笃宁.森林旅游资源评价中的空气负离子研究[J].生态学杂志,1998,17(6):56-60.
    [77]周志翔,邵天一,唐万鹏,王鹏程,刘学全,徐永荣.城市绿地空间格局及其环境效应——以宜昌市中心城区为例[J],生态学报,2004,24(2):186-192.
    [78]祝宁,李敏,柴一新.城市绿地综合生态效益场[J],中国城市林业,2004,2(1):26-28.
    [79]邹锐.生态场理论及生态场特性[J],生态学杂志,1995,14(1):49-53.
    [80]Bazzaz F A, Williams W E., Atmospheric CO2 concentrations within a mixed forest:Implications for seedling growth [J]. Ecology,1991,72(1):12-16.
    [81]Buehmann N, Kao W Y, Ehleringer J R., Carbon dioxide concentrations within forest canopies-variation with time, stand structure, and type of PC[J]. Global Change Biol,1996,2(5):421-431.
    [82]Chen B F, Lin M X, Li Y D., Study on the a grads and flux in near canopy layer of tropic mountain rainforest at Jianfengling, Hainan Island[J]. Acta Ecol Sin,2001,21(12):2166-2172.
    [83]Clay L.P. Behavior and ecological interactions of larval odonata. Ecology,1985,66(5):1504-1512.
    [84]Culf A. D., Fisch G., Malhi Y., The influence of the atmospheric boundary layer on carbon dioxide concentrations over atropical forest [J]. Agric For Meteorol,1997,85(3-4):149-158.
    [85]Dolman A. J., Schulze E. D., Valentini R. Analyzing carbon flux measurements [J]. Science, 2003,301(5635):916.
    [86]Grace J., Malhi Y., Lloyd J., et al..The use of eddy covariance to infer the net carbon dioxide uptake of a Brazilian rain forest[J]. Global Change Biol,1996,2(3):209-217.
    [87]Iwama H., Negative air ions created by water shearing improve erythrocyte deformability and aerobic metabolism [J]. Indoor Air,2004,14 (4):293-297.
    [88]Krueger A. P., Reed E. J.. Biological impact of small air ions [J]. Science,1976,193(4259): 1209-1213.
    [89]Krueger A. P.. The biological effects of air ion [J]. Biometeorol,1985,29(3):205-209.
    [90]Korublue I. H., The clinical effect of aero-ionization [J]. Medical Biometeorology,1990,33(2): 25-29.
    [91]Li Q., Morimoto K., Kobayashi M, et al.. Visiting a forest, but not a city, increases human natural killer activity and expression of anti-cancer proteins [J]. Internatiinal Journal of Immunopathology and Pharmacology,2008,21(1):117-127.
    [92]Lindmanm J., Constantinidou H., Barchet W.. Plants as sources of airborne bacteria, including ice nucleation-action bacteria [J]. Applied and Environmental Microbiology,1982,44(5):1059.
    [93]Mancinelli R.. Airborne bacteria in an urbn environment [J]. Applied and Environmental Microbiology,1978,35(6):1095.
    [94]Mu D, Liang Y H.. Air negative ion concentration and its relationships with meteorological factors in greenbelts of Jiamusi, Heilongjiang Province [J]. Ying Yong Sheng Tai Xue Bao,2009,20(8):2038-2041.
    [95]Wang Chen-rui, Wu Jie, Liang Zhan-bei, et al.,2004. Soil carbon dioxide fluxes of a typical broad-leaved/Korean pinemixed forest in Changbai Mountain, China [J]. Journal of Forestry Research, 2004,15(4):268-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700