真空堆载联合预压软土地基加固机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预压,有时也称预压缩,是一种常用的软土改善技术。在实践中,预载最常见古老的形式是通过堆积砂填料产生超载机理。近年来,作为一种新技术方法的真空预压法,是一种常见的软土改善处理方法。真空预压是另一种形式的预压,它不需要填料,因为荷载是通过密封的橡皮膜系统以真空的形式作用于土体表面。真空使得土体中的孔隙水流出,并产生负孔压。真空预压法,除了通过增加总应力来增加有效应力外,它还依赖通过减小孔压来增加有效应力。因此,真空—堆载联合预压法可缩短固结时间,对那些需要相当长时间的固结特别适合,而且不危及试验路堤的稳定性。用填土超载的方法来快速预载是行不通的,因为很难在软土上迅速建筑一个数米高的填土路堤。真空预压中,砂井和近年来使用得很多的预制竖向排水板PVDs是用来传递真空以及消散孔压的。预知次固结,对地上建筑物,如建于软土上的高速公路路堤的维护是重要的,因为它们会导致不可忽视的沉降。关于一维,二维以及三维情况下的次固结有很多论文资料,但所有这些都没有研究真空预压法情况下的蠕变固结。本文主要内容包括:
     (1) 本文研究了真空预压下级配良好土体的蠕变特性和微观结构。
     (2) 研制了一种新的三轴固结仪,并试验研究了中国浙江的温州软粘土随时间变化的特性。
     (3) 因为水流的竖向及水平的流动改变了边界和初始条件,所以本文在太沙基的竖向固结理论竖向和巴隆的水平固结理论的基础上,还研究了真空预压、堆载预压和真空—堆载联合预压下的竖向固结的解析解。
     (4) 流变学是研究真实材料的应力应变状态随时间改变的一门科学。本文考虑了土体体积变化的流变特性,即弹性,塑性,粘滞性。当粘土受恒载,在时间间隔内,粘土的变形会有粘滞性。土体随时间变形的大小取决于粘土的性质。真实体取决于时间的变形由粘土的所有性质:弹性,塑性,粘滞性决定。因为其性质可能以不同的组合出现,对真实体变形的描述是很困难的。因而,真实体的变形是通过考虑了简化了的特性或理想体的特性的模型来解释的。这类模型就是流变模型。在本文中,考虑了于粘滞性有关的主要现象,即蠕变。在恒载下,与时间有关的变形叫做蠕变。在土体中,能区分出两种取决于时间的现象类型:一种是由于超孔压的消散;另一种是由土体框架的内在粘滞性,如蠕变,应力松弛以及应变速率引起。在本文中,由于粘滞性将研究土的时效性。因而,下文中的时间效应,实效变形、时效性等,它们都是由土框架的粘滞性而引发的土的性质。
     (5) 对经过真空预压、堆载预压、真空联合堆载预压后的土样进行电子显微镜扫描,通过使用扫描电微和电脑图象处理系统GEOIMAGE,作为微观结构的量化技术,就能得到土骨料的调整以及它的空隙。用参数来反映各向异性并分析了扫描电微图象的平均信息
    
    里旦。
    本文的机理研究表明真空联合堆载预压法是一种有效的软基加固方法。今后可对蠕变中的
    体积应变、应变速率及EVP模型在真空预压下细粒土的蠕变分析做进一步研究。
    关键词:软土,改善,真空预压,超载,机理,固结,三轴仪,渗透性,孔隙比,孔压,理
    论,蠕变,偏应变,微观结构,变形。
Preloading is a popular soil improvement technique for soft soils sometimes named pre-compression. The most common and oldest form of preloading used practically by heaping fill materials of a sand fill inducing mechanical surcharging. Recently, one of the common solutions for soft soil improvement is the use of vacuum preloading as a new method technique.Vacuum preloading is another form of preloading, does not involve a fill material since the load applied to the soil surface is in the form of a vacuum through a sealed membrane system. The vacuum causes the pore-water drain out, and creates negative pore-water pressures in the soil. Vacuum preloading is a technique used to improve the strength of soft clayey soils.In vacuum preloading method, beside of increasing the effective stresses in the soil mass by increasing the total stresses, vacuum preloading relies on increasing the effective stresses by decreasing the pore-water pressure. Thus, vacuum preloading combined with surcharging can shorten the consolidation period, especially the long-term consolidation considerably without endangering the stability of the test embankment. Preloading using a fill surcharge was not feasible as it is difficult to build a fill embankment several meters high on soft soil. Sand drains and more recently prefabricated vertical drains, PVDs are used with vacuum loading to distribute the vacuum and dissipate the pore-water pressure.Predictions of secondary consolidation are important for the maintenance of the earth structures such as highway embankments constructed on soft grounds because they lead to differential settlement. There are many publications on secondary consolidation under one, two, and three- dimensional conditions, but all those studies did not conduct creep consolidation under conditions of vacuum preloading method.This study is concerning on the behaviour of creep and microstructure of fined-grained soils subjected to consolidation by using the vacuum preloading technique. A new triaxial consolidation apparatus has been designed, manufactured, and conducted for experimental investigation of the time-dependent behaviour of a soft clayey soil samples collected from Wen Zhou, Zhe Jiang Province - China.This study is considered a new analytical solution of the vertical consolidation due to the vertical flow of water referring to Terzaghi's theory of vertical consolidation, and reviewing the Barron's theory of horizontal consolidation due to the radial flow of water with changing the boundary and initial conditions to accommodate the vacuum, surcharge, and combined vacuum-surcharge preloading methods. The solution is confirmed the validity of the triaxial apparatus to be used in designing vacuum preloading projects prevails the same three-dimensional conditions.
    
    This study is also considered the Theological behaviour of bodies possessing rheological properties, namely elasticity, plasticity, and viscousity. When clay is subjected to a constant load, within time interval, the clay will be deformed with viscous behaviour. The magnitude of the time-dependent deformation differs of course according to the properties of the clay and also according to the preloading mechanism. The time-dependent deformation of a real body depends on all the properties of elasticity, plasticity, and viscousity. Just as the properties may appear in diverse combination, description of the deformation of real body often becomes very difficult to deal with. Hence, deformation of real bodies is, generally described by models considering simplified characteristics or the characteristics of ideal bodies. This kind of models is known as rheological models.There is mainly phenomena related to the viscousity of soils considered in this study, namely creep. The development of deformation in the course of time under a constant load is called creep. In soils, two types of time-dependent phenomena can be distinguished. One is due to the dissipation of excess pore-water pressure. The other is caused by the inherent viscousity of the skeleton of soils, such as c
引文
1. Aldrich, H.P. 1965. Precompression for support of shallow foundations. J. Soil Mech., Found. Div., ASCE, 91(2): 5-20.
    2. American Standard of Testing and Measurements ASTM. 1990. ASTM D 4767,1988.
    3. Atkinson, M.S. and Eldred, P.J.L. 1981. Consolidation of soil using vertical drains. Geotechnique, 31(1): 33-43.
    4. Azizi, F., 2000. Applied analysis in geotechnics. E & FN Spon, Taylor & Francis Group, Landon and New York.
    5. Barden, L. 1965. Consolidation of clay with non-linear viscosity. Geotechnique, 15 (4): 345-362.
    6. Barden, L. and Sides, G. 1971. Sample disturbance in the investigation of clay structure. Geotechnique 21: 211-222.
    7. Barron, R. A., 1948. Consolidation of fine-grained soils by drain wells. Trans. ASCE 113, 718-754.
    8. Bazant, Z.P. and Kim, J.K. 1986. Creep of anisotropic clay: microplane model. J. Geotechnology Eng. Div., Proc. ASCE, 112 (4): 458-475.
    9. Bazant, Z.P., Ozaydin, K., and Krizek, R.J. 1975. Microplane model for creep of anisotropic clay. J. Eng. Mech. Div., Proc. ASCE, 101 (EMI): 57-78.
    10. Becker, D.E., Jefferies, M.G., Shinde, S.B. and Crooks, J.H.A. 1985. Pore-water pressures in clays below caisson islands. In Proceedings of Arctic'85: Civil Engineering in the Arctic Offshore. San Francisco, pp. 75-83.
    11. Bergado, D.T., Anderson, L.R., Miura, N. and Blalsubramaniam, A.S. 1996. Soft ground improvement in lowland and other environments. ASCE, New York, 427.
    12. Bergado, D.T., Asakami, H., Alfaro, M.C. and Balasubramaniam, A.S. 1991. Smear effects of vertical drains on soft Bangkok clay. ASCE Journal of Geotech. Eng'g. Div., 117(10): 1509-1529.
    13. Bergado, D.T., Enriquez, A.S., Casan, L., Alfaro, M. C. and Balasubramaniam, A.S. 1992. Inverse analysis of geotechnical parameters on improved soft Bangkok clay. ASCE Journal of Geotech. Eng'g. Div., 118(7): 1012-1030.
    14. Bergado, D.T. and Long, P.V. 1994. Numerical analysis of embankment on subsiding ground improved by vertical drains and granular piles, Proc. 13th Intl.Conf. Soil Mech. Found. Eng'g., New Delhi, India, 4: 1361-1366.
    15. Bergado, D.T., Long, P.V. and Balasubramaniam, A.S. 1996a. Compressibility and flow parameters form PVD improved soft Bangkok clay. Geotech. Eng'g. Journal, 27(1): 1-20.
    
    16. Bergado, D.T., Mannivannan, R. and Balasubra-maniam, A.S. 1996b. Proposed criteria for discharge capacity of prefabricated vertical drain. Geotextiles and Geomembranes, 14: 481-505.
    17. Bergado, D.T., Mannivannan, R. and Balasubra-maniam, A.S. 1996c. Filtration criteria of prefa-bricated vertical drains filter jackets on soft Bangkok clay. Geosynthetics Intl., 3(1): 63-83.
    18. Bergado, D.T., Miura, N., Singh, N. and Panichayatum, B. 1988. Improvement of soft Bangkok clay using vertical band drains based on full scale test. Proc. of the Intl. Conf. on Eng'g Problems of Regional Soils, Beijing, China: 379-384.
    19. Berre, T. and Iversen, K. 1972. Oedometer tests with different specimen height on a clay exhibiting large secondary compression. Geotechnique, 22(1): 53-70.
    20. Bishop, A.W. and Lovenbury, H.T. 1969. Creep characteristics of two undisturbed clays. 7th ICSMFE, Mexico, Vol. 1. pp. 29-37.
    21. Bjerrum, L. 1967. Engineering geology of Norwegian normally consolidated marine clays as related to settlement of buildings, Geotechnique, 17(2): 83-118.
    22. Bjerrum, L. 1972. Embankment on soft ground. State of the art report. Proc. of the special conference on performance of the earth and earth-supported structures, Prude University, ASCE 1:1-54.
    23. Bjerrum, L. 1973. Problems of soil mechanics and construction on soft clays. General report. Proc. of 8~th Int. Conf. SMFE, Moscow, 3:111-159.
    24. Borja, R.I. 1992. Generalized creep and stress relaxation model for clays. L. of Geotechnical Engineering, ASCE, 118(11): 1765-1786.
    25. Borja, R.I., Hsieh, H.S. and Kavazanjian, E. 1990. Double-yield-surface model. II: Implementation and verification. J. of Geotechnical Engineering, ASCE, 116(9): 1402-1421.
    26. Borja, R.I. and Kavazanjian, E. 1985. A constitutive model for the stress-strain-time behaviour of 'wet' clays. Geotechnique, 35(3): 283-298.
    27. Campanella, R.G. and Mitchell, J.K. 1968. Influence of temperature variations on soil behaviour. J. of Soil Mechanics and Foundation Division, ASCE, 94(SM3): 709-734.
    28. Carrillo, N. 1942. Simple two-and three-dimensional cases in the theory of consolidation of soils, Mathematics and Physics J., 21(1).
    29. Chai, J.C., Miura, N. and Bergado, D.T. 1995. Behavior of PVD improved ground under embankment loading. Soils and Foundations, 35(4): 49-61.
    
    30. Chang, Y.C.E. 1981. Long term consolidation beneath the test fill at V a sby, Sweden. Swedish Geotechnical Institute, Report 13, Link o ping, Sweden.
    31. Chao, V. 1989. Drains and vacuum preloading pilot test. Proc. of XII ICSMFE, (2): 1347-1350.
    32. Christensen, R.W. and Wu, M. 1964. Analysis of clay deformation as a rate process. Proc. Of American Society of Civil Engineering, ASCE, 94(SM6): 125-133.
    33. Christie, I.F. and Tonks, D.M. 1985. Developments in the time lines theory of consolidation. Proc. of the 11~th Int. Conf. of soil Mechanics and Foundation Engineering, San Francisco, Vol. 1: 423-426.
    34. Chu, J., Yan, S.W. and Yang, H. 2000. Soil improvement by the vacuum preloading method for an oil storage station. Geotechnique,, 50(6): 625-632.
    35. Cognon, J.M. 1991. Vacuum consolidation Rev. French Geotechnique, Vol. 3, No. 57, October, pp. 37-47.
    36. Cognon, J.M., Juran, J. and Thevanayagam, S. 1994. Vacuum consolidation technology -principles and field experience. Proceedings of vertical and horizontal deformation of embankments, ASCE, 2(40): 1237-1248.
    37. Conlin, B.H., Jefferies, M.G. and Maddock, W. P. 1985. An assessment of the behaviour of foundation clat at Tarsiut N-44 caisson retained island. Proc. of 17th Offshore Technology Conference, Houston, Texas, USA, May 6-9,1985, pp. 379-387.
    38. Crawford, C.B. and Eden, W.J. 1967. Stability of natural slopes in sensitive clay. J. of the Soil Mechanics and Foundations Div., 93(SM4): 419-436.
    39. Davis, J.A. and Humpheson, C. 1981. A comparison between the performance of two types of vertical drains beneath a trial embankment in Belfast. Geotechnique, London, England, 31(1): 19-31.
    40. Delage, P., Tessier, D. and Marcel, A.M. 1982. Use of the Cryoscan apparatus for observation of freeze-fractured surfaces of a sensitive Quebec clay in scanning electron microscopy. Can. Geotech J. 19:111-114.
    41. Den Haan, E.J. 1996. A compression model for non-brittle soft clays and peat. Geotechnique, 46(1): 1-16.
    42. Duncan, J.M. and Buchignani, A.L. 1973. Failure of underwater slope in San Francisco. J. of Soil Mechanics and Foundations Division, ASCE, 99(SM9): 687-703.
    
    43. Duncan, J.M., Rajot, J.P. and Perrone, V.J. 1996. Coupled analysis of consolidation and secondary compression. 2nd international conference on soft soil engineering, Nanjing, May 27-30.
    44. Elhassan, M. and Shang, J.Q. 2002. Vacuum and surcharge combined one dimensional consolidation of clay soils. Can. Geotech. J., 39(5): 1126-1138.
    45. Eriksson, L.G. 1989. Temperature effects on consolidation properties of Sulphide clays. Proc. of 12th Int. Conf. on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Vol. 3 pp. 2087-2090.
    46. Feda, J. 1992. Creep of soils and related phenomena. Elsevier.
    47. Flavigny, E. and Nova, R. 1990. Viscous properties of geomaterials. Geomaterials: Constitutive Equations and Modelling, Ed.by F. Drave, Elsevier app. Scie., London and New York, 27-54.
    48. Garlanger, J.E. 1972. Consolidation of soils exhibiting creep under constant effective stress. Geotechnique, 22(1): 71-78.
    49. Gillott, JE. 1968. Clay in Engineering Geology. Elsever, Amesterdam, pp. 221-236.
    50. Gillott, JE. 1970. Fabric of Leda clay investigated by optical electron-optical and X-Ray diffraction methods. Engineering Geology Journal 4:133-153.
    51. Graham, J., Crooks, J.H.A. and Bell, A.L. 1983. Time effects on stress-strainbehaviour of natural soft clays. Geotechnique, 33(3): 327-340.
    52. Hansbo, S. 1960. Consolidation of clay with special reference to the influence of vertical sand drains. Swedish Geotech. Inst. Proc. 18, Stockholm, Sweden.
    53. Hansbo, S. 1979. Consolidation of clay by band-shaped prefabricated drains. Ground Engineering, 12(5): 16-25.
    54. Hansbo, S. 1981. Consolidation of fine grained soil by prefabricated drains. Proceeding of the 10th International Conference on Soil Mechanics and Foundation Engineering, SMFE, Stockholm, Sweden, 3: 677-682.
    55. Hansbo, S. 1993. Band drains. Ground improvement, M. P. Moseley, ed., CRC press Inc., Boca Raton, Fla., pp. 40-62.
    56. Hansbo, S. 1997. Aspects of vertical drain design: Darcian or non-Darcian flow. Geotechnique, 47(5): 983-992.
    57. Harvey, J.A.F. 1997. Vacuum drainage to accelerate submarine consolidation at Chek Lap Kok, Hong Kong. Ground Engng. 30: 34-36.
    58. Hausmann, M.R. 1990. Preloading and the use of vertical drains. Engineering principles of ground modifications. McGraw-Hill Inc., New York, NY: 245-271.
    
    59. Hicher, P.Y., Wahyyudi, H. and Tessier, D. 1994. Microstructural analysis of strain localization in clay, Computers and Geotechnics. Vol. 16, pp. 205-222.
    60. Hird, C.C., Pyrah, I.C. and Russel, D. 1992. Finite element modeling of vertical drains beneath embankments on soft ground. Geotechnique, 42(3): 499-511.
    61. Hird, C.C., Pyrah, I.C, Russel, D. and Cinicioglu, F. 1995. Modelling the effect of vertical drains in two-dimensional finite element analyses embankments on soft ground. Can. Geotech. J, 32: 795-807.
    62. Holts, R.D., Jamiolkowski, M.B., Lancellotta, R. and Pendroni, R. 1991. Prefabricated vertical drains: design and performance. Butter-worth-Heinemann, Oxford, England.
    63. Imai, G. 1989. A unified theory of one-dimensional consolidation with creep. Proc. of the 12~th Int. Conf. of Soil Mechanics and Foundation Engineering, San Francisco, Vol. 1: 57-60.
    64. Imai, G. and Tang, Y. 1992. A constitutive equation on one-dimensional consolidation derived from inter-connected tests. Soils and Foundations, 32(2): 83-96.
    65. Indraratna, B. and Balasubramaniam, A. S. 1995. Consolidation of soft marine clay foundations under embankment loading. Proc, Int. Symp., Compression and consolidation of clayey soils, H. Yoshikaum and O. Kusakabe, eds., A. A. Balkema, Rotterdam, The Netherlands : 683-688.
    66. Indraratna, B. and Redana, I. W. 1997. Plane-Strain modeling of smear effects associated with vertical drains. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123(5): 474-478.
    67. Indraratna, B. and Redana, I.W. 1998. Laboratory determination of smear zone due to vertical drain installation. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124(2): 180-184.
    68. Indraratna, B. and Redana, I.W. 2000. Numerical modeling of vertical drains with smear and well resistance installed in soft clay. Can. Geotech. J., 37(1): 132-145.
    69. Institution of Civil Engineers (ICE). 1982. Vertical drains. Thomas TelfordLtd., London, England.
    70. Jaky, J. (1944). The coefficient of earth pressure at rest. J. of Society of Hingarian Archtectures and engineers, 78 (22), pp. 355-358.
    71. Jamiolkowski, M., Ladd, C.C., Germaine, J.T. and Lancellotta, R. 1985. New developments in field and laboratory testing of soils. Proc. of 11th Int. Conf. on Soil Mechanics and Foundation Engineering, San Francisco, Vol. 1: 57-153.
    
    72. Jiang, M.G, and Shen, Z.J. 1998. Microstructure analysis of shear band in structure clay. Chinese Journal of Geotechnical Engineering Vol. 20, No. 2, pp. 102-108.
    73. Johnson, S, J., 1970. Precompression for improving foundation soils. J. Soil Mech. Found. Div.,ASCE, 96(1): 111-144.
    74. Kabbaj, M., Oka, F., Leroueil, S. and Tavenas, F. 1986. Consolidation of natural clays and laboratory testing, Consolidation of Soils: Testing and Evaluation, ASTM, Special Technical Publication No. 892: 378-404.
    75. Kabbaj, M, Tavenas, F. and Leroueil, S. 1988. In situ and laboratory stress-strain relationship. Geotechnique, 38: 83-100.
    76. Kavazanjian, E. and Mitchell, J.K. 1977. A general stress-strain time formulation for soils. Proc. of 9~th Int. Conf. on Soil Mechanics and Foundation Engineering, Specialty Session 9, Tokyo, pp. 113-120.
    77. Kavazanjian, E. and Mitchell, J.K. 1980. Time-dependent deformation behaviour of clays. J. of Geotechnical Engineering Division, ASCE, 106(GT6): 611-630.
    78. Kjellman, w. 1952. Consolidation of clayey soils by atmospheric pressure. Proceedings of a conference on soil stabilization, Massachusetts institute of technology, Boston: 258-263.
    79. Koerner, R.M. 1994. Wick drains. Design with geosynthetics. 3rd ed., PTentice-hall, Inc., Englewood Cliffs, N.J.: 734-745.
    80. Krizek, R.J., Edil, T.B. and Ozaydin, I.K. 1975. Preparation and identification of clay samples with controlled fabric. Eng. Geol. J., 9:13-38.
    81. Kutter, L. and Sathialingam, N. 1992. Elastic-viscoplastic modeling of the rate-dependent behaviour of clays. Geotechnique, 42(3): 427-441.
    82. Ladd, C.C., foot, R., Ishihara, K., Schlosser, F. and Poulos, H.J. 1977. Stress-deformation and strength characteristics. Proc. 9th ICSMFE, Tokyo,: 421-494.
    83. Leroueil, S. 1988. Tenth Canadian geotechnical colloquium: recent developments in consolidation of natural clays. Can. Geotech. J. 25: 85-107.
    84. Leroueil, S., Kabbaj, M., Tavenas, F. and Bouchard, R. 1985. Stress- strain rate relation for the compressibility of sensitive natural clays. Geotechnique, 35(2): 59-180.
    85. Leroueil, S. and Marques, M.E.S.1996. Importance of strain rate and temperature effects in geotechnical engineering. Measuring and modeling time dependent soil behaviour, Edited by T.C. Sheahan and V. N. Kaliakin, New York, pp. 1-59.
    
    86. Liu X.F. and Bao C.G. 1996. The characteristics of mucky soil under vacuum preloading. 2nd International Conference On Soft Soil Engineering, Nanjing, China, 1996. May 27-30.
    87. Liu, H., Mahfouz, A.H. and Chen Yong-hui. 2004. Ground Treatment of sea embankment by vacuum preloading with PVDs. Southeast University Journal, Nanjing-China, 20(1): 96-101.
    88. Mahfouz, A.H., Liu H., Chiu, C.F, Gao Y. and Zhang Xiu-yong. 2005. Laboratory study for effects of vacuum preloading on physical and mechanical properties of soft clayey soils. Southeast University Journal, SEUJ, Nanjing, China, 26(1):
    89. Mahfouz, A.H., Liu, H. and Gao, Y. 2002. Behaviour of Soft Soils Under Con solidation With Applied Surcharge And Vacuum Preloading. Proc. of Symp. 2002 on Soil/Ground Improv. and Geosyn. Applic.,12-13 Dec. 2002, SEAGS Bangkok-Thailand. 199 - 211.
    90. Mahfouz, A.H., Liu H., and Gao Y. 2004. Ground Improvement By Using Vacuum Preloading with Sand Drains. IS-OSAKA 2004 International Symposium on Engineering Practice and Performance of Soft Deposits 2-4 June, Osaka -Japan. 287-292.
    91. Masse, F., Spaulding, C.A., Wong, I.C. and Varaksin, S. 2001. Vacuum consolidation: A review of 12 years of successful development. Prepared for distribution to attendees at Geo-Odyssey-ASCE/VIRGINIA Tech.-Blacksburg, VA USA June 9-13,2001.
    92. McGown, A. and Hughes, F.H. 1981. Practical aspects of the design and installation of deep vertical drains. Geotechnique, London, England, 31(1): 3-17.
    93. Meschyan, S.R. 1995. Experimental rheology of clayey soils. Balkema.
    94. Mesri, G. 1973. Coefficient of secondary compression, Journal of the Soil Mechanics and Foundations Division, Proceedings of the American Society of Civil Engineers, 99.
    95. Mesri, G. and Choi, Y.K. 1985a. The uniqueness of the end-of-primary (EOP) void ratio-effective stress relationship. Proc. 11th Int. Conf. On SMFE, San Francesco 2: 587-590.
    96. Mesri, G. and Choi, Y.K. 1985b. Settlement analysis of embankments on soft clays. Journal of Geotechnical Engineering Division, ASCE, 111(4): 441-464.
    97. Mesri, G. and Godlewski, P.M. 1977. Time and stress compressibility interrelationship, Journal of the Soil Mechanics and Foundations Division, ASCE, 103(GT5): 417-430.
    98. Mesri, G. and Godlewski, P.M. 1979. Closure to Time and stress compressibility interrelationship, Journal of the Soil Mechanics and Foundations Division, ASCE, 105(GT1): pp. 106-113.
    
    99. Mesri, G., Lo, D.O.K. and Feng, T.W. 1994. Settlement of embankments on soft clays. In vertical and horizontal deformations of foundations and embankments, ASCE, Spec. Pub. (40): 8-55.
    100. Mesri, G. and Rokhsar, A. 1974. Theory of consolidation for clays. ASCE Journal of the Geotechnical Engineering Division, 100(GT8): 889-904.
    101. Mitchell, J.K. 1981. Soil improvement _ State-of-the-art. Proc. of 10th ICSMFE, A. A. Balkema, The Netherlands, 4: 509-565.
    102. Mitchell, J.K. 1993. Fundamentals of soil behaviour. 2nd ed., John Wiley & Sons, New York, pp. 131-160.
    103. Mitchell, J.K., Campanelly, R.G. and Singh, A. 1968. Soil creep as a rate process. Journal of the ASCE (SMI).
    104. Morgenstern, N.R. and Tecalenko, J.S. 1967. Microscopic structures in kaolin subjected to direct shear. Geotechnique, 17 (4) : 309-328.
    105. Murayama, S.S. and Shibata, T. 1961. Rheological properties of clays. Proc. 5th Int. Conf. on Soil Mech. and Found. Engrg. Paris, 1: 269-273.
    106. Nash, D.F.T. and Ryde, S.J. 2001. Modelling consolidation accelerated by vertical drains in soils subject to creep. Geotechnique, 51(3): 257-273.
    107. Nicholson, D.P. and Jardine, R.J. 1981. Performance of vertical drains at Queenborough by pass. Geotechnique, 31(1): 67-90.
    108. Nicholson, P.G., Russell, P.W. and Fuji, C.F. 1996. Soil creep and creep testing of highly weathered tropical soils. Measuring and modeling time dependent soil behaviour, Ed. By T.C. Sheahan and V.N. Kailiakin, New York, USA: 195-312.
    109. Oda, M., Konishi, J. and Nemat - Nasser, S. 1980. Some experimentally based fundamental results on the mechanical behaviour of granular materials, Geotechnique, Vol. 30 No. 4, pp. 479-495.
    110. Onoue, A. 1988a. Consolidation of multi layered anisotropic soils by vertical drains with well resistance. Soils and Foundations, 28(3): 75-90.
    111. Onoue, A. 1988b. Consolidation by vertical drains taking well resistance and smear into consideration. Soils and Foundations, 28(4): 165-174.
    112. Oslon, R.E. and Daniel, D.E. 1981. Measurement of the hydraulic conductivity of finegrained soils. Permeability and groundwater containment transport. American Society for Testing and Materials, Special Technical Publication 746: 18-64.
    113. Pender, M.J. 1978. A model for behaviour of overconsolidated soil. Geotechnique, 28(1): 1-25.
    
    114. Peng, J., Liu, H., Chen, Y. and Li, H. 2002. Effects of vacuum combined surcharge preloading to surrounding environment. Chinese J. of Geotechnical Engineering, (5): 650-659 (in Chinese).
    115. Peterson, R. 1953. Discussion, Proc. of the 3rd Int. Conf. on Soil Mechanics and Foundation Engineering, Zurich, Vol. 3.
    116. Qian , J.H., Zhao, W.B. Cheung, W.B., Cheung, Y.K. and Lee, P.K.K. 1992. The Theory and practice of vacuum preloading. Comput. Geotech. 13:103-118.
    117. Ratnayake, A.M.P. 1991. Performance of test embankments with and without vertical drains at Muar Flats site, Malaysia, ME thesis, Asian Institute of Technology, Bangkok, Thailand.
    118. Richart, F.E. 1957. Review of the theories for sand drains, Discussion by Messrs Yoshichika Nishida; S.J. Johnson; and F.E. Richart, Trans. ASCE. 124: 709-739.
    119. Robertson, P.K., Campanella, R.G., Brown, P.T. and Robinson, K.E. 1988. Prediction of wick drain performance using piezometer cone data. Can. Geotech. J., 25(1): 56-61.
    120. Russell, D., Hird, C.C. and Pyrah, I.C. 1999. Discussion: plane strain modeling of smear effects associated with vertical drains. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 125(1): 96-99.
    121. Saito, M. 1969. Forecasting of time of slope failure by tertiary creep. Proc. of the 7th Int. Conf. on Soil Mechanics and Foundation Engineering, Vol. 2: 677-683.
    122. Scott, R. 1987. Failure. Geotechnique, Vol. 37, No. 4, pp.423-466.
    123. Shang, J.Q., Tang, M. and Maio, Z. 1998. Vacuum preloading consolidation of reclaimed land. Can. Geotech. J. 35(5): 740-749.
    124. Shang, J.Q., Zhang, J. 1999. Vacuum consolidation of soda-ash tailings. Ground Improvement 3(1): 169-177.
    125. Shi, B. 1995. The Quantitative Techniques of microstructure and micromechanical model of clayey soils. PhD thesis, Nanjing University, Nanjing, China.
    126. Shi, B., Murakami, Y. and Wu, Z. 1998. Orientation of aggregates of fine-grained soil: Quantification and application. Eng. Geol. J. 50: 59-70.
    127. Shi, B. and Shui, D. 1991. A new technique for examining the orientation of soil fabric. Chinese Journal of Hydrogeology and Engineering Geology, 6: 54-55.
    128. Shi, B., Wu, Z., Inyang, H., Chen, J. and Wang, B. 1999. Preparation of soil specimens for SEM analysis using freeze-cut-drying. Bull. Eng. Geol. Env. 58:1-7.
    129. Shinsha, H., Watari, Y. and Kurumada, Y. 1991. Improvement of very soft ground by vacuum consolidation using horizontal drains. Proc. of Int. Conf. on Geotechnical Engineering for Coastal Development (Geo-Coast 91), Yokohama, Japan, Sept. 1991, Vol. 1: 387-392.
    
    130. Sills, G.C. 1995. Time-dependent processes in soil consolidation. Int. Symp. on Compression and consolidation on clayey soils-IS-Hiroshima 's 95, Hiroshima, Vol. 2, pp. 875-890.
    131. Silva, A.J., and Brandes, H.G. 1996. Drained creep behaviour of marine clays. Measuring and modeling time dependent soil behaviour, Ed. By T.C. Sheahan and V.N. Kailiakin, New York, USA: 228-242.
    132. Silva, A.J., Tian, W.M., Sadd, M.H. and Brandes, H.G. 1991. Creep behaviour of finegrained ocean sediments. Computer Methods and advanced in Geomechanics : 683-687.
    133. Singh, A. and Mitchell, J.K. 1968. General stress-strain-time function for soils. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 94(1): 21-46.
    134. Skempton, A.W. 1964. Long-term stability of clay slopes. Geotechnique, 14(2):77-101.
    135. Smart, P. and Tovey, N.K. 1988. Theoritical aspects of intensity gradient analysis. Scanning 10:115-121.
    136. Stamatopoulos, A.C., and Kotzias, P.C. 1985. Soil improvement by preloading. Wiley Interscience, New York, NY.
    137. Suklje, L. 1957. The analysis of the consolidation process by the isotache method. Proc. of 4th International Conference on Soil Mechanics and Foundation Engineering, London, 1: 200-206.
    138. Tang, Y. and Gao, Z. 1989. Experimental study and application of vacuum preloading for consolidating soft soil foundation. Proc. of XII ICSMFE, 2:1423-1426.
    139. Tang, M. and Shang, J. Q. 2000. Vacuum preloading consolidation of Yaoqiang airport runway. Geotechnique. 50(6): 613-623.
    140. Tavenas, F. and Leroueil, S. 1981. Creep and failure of slopes in clays. Can. Geotech. J. 18:106-120.
    141. Tavenas, F., Jean, P., Leblond, P. and Leroueil, S. 1983. The permeability of natural soft clays. Part II: Permeability characteristics. Can. Geotech. J. 20: 645-660.
    142. Tavenas, F., Leroueil, S., Rochelle, P.L., and Roy, M. 1978. Creep behaviour of an undisturbed lightly overconsolidated clay. Can. Geotech. J. 20(4):645-660.
    143. Taylor, D.W. 1948. Fundamentals of soil mechanics. John Wiely and Sons, New York, N.Y.
    144. Taylor, D.W. and Merchant, W. 1940. A theory of clay consolidation accounting for secondary compression, Journal of Maths, and Physics, 19(3): pp. 167-185.
    
    145. Terzaghi, K. 1943. Theoretical soil mechanics. London : Chapman & Hall, New York , Wiley.
    146.Tian, W.M., Silva, A.J., Veyera, G.E. and Sadd, M.H. 1994. Drained creep of undisturbed cohesive marine sediments. Can. Geotech. J. 31: 841-855.
    147. Tovey, N.K. 1973. Quantitative analysis of electron micrographs of soil structure. Proc. of Int. Symp. on Soil Structure, Gothenburg, Sweden, pp. 50-59.
    148. Tovey, N.K. and Krinsley, D.H. 1992. Mapping of the orientation of fine-grained mineral in soils and sediments. Bulletin of lAEG 46: 93-101.
    149. TPEI. 1995. Vacuum preloading method to improve soft soils and case studies. Tianjin Port Engineering Institute.
    150. Vaid, Y.P. and Campanella, R.G. 1977. Time-dependent behaviour of undisturbed clays. J. of Geotechnical Engineering Division, ASCE, 103(7):693-709.
    151. Woo, S.M. et al. 1989. Preconsolidation of soft Bangkok clay by vacuum loading combined with non-displacement sand drains. Proc. of XIIICSMFE, 2:1431-1434.
    152. Ye, B.R., Lu, S.Y. and Tang, Y.S. 1983. Packed sand drain-atmospheric preloading for strengthening of soft foundation. Proc.8th European Conf. Soil Mech. And Found. Engng., Helsinki: 717-720.
    153.Yeung, A.T. 1997. Design curves for prefabricated vertical drains. Journal of Geotechnical and Geoenvironmental Engineering ASCE, 123(8): 755-759.
    154. Yin, J.H. and Graham, J. 1989a. Viscous -elastic - plastic modeling of 1-D time-dependent behavior of clays. Can. Geotech. J., 26:199-209.
    155. Yin, J.H. and Graham, J. 1989b. General elastic viscous plastic constitutive relationships for 1-D straining in clay. Proc. of 3rd Int. Symp. on Num. Models in geomech.: 108-117.
    156. Yin, J.H., Graham, J., Clark, J.I. and Gao, L.J. 1994. modelling unanticipated pore-water pressures in soft clays. Can. Geotech. J., 31: 773-778.
    157. Yin, J.H. and Graham, J. 1994. Equivalent times and 1-D elastic visco-plastic modeling of time - dependent stress-strain behavior of clays. Can. Geotech. J., 31: 83-118.
    158. Yin, J.H. and Graham, J. 1996. Elastic visco-plastic modeling of one-dimensional consolidation. Geotechnique, 46 (3): 515-527.
    159. Yoshikuni, H., Kusakabe, O., Okada, M. and Tajima, S. 1995. Mechanism of one-dimensional consolidation. Int. Symp. On Compression and consolidation on clayey soils-IS-Hiroshima's 95, Hiroshima, 1: 497-504.
    
    160. Yoshikuni, H., Nishiumi, H., Ikegami, S. and Seto, K. 1994. The creep and effective stress-relaxation behaviour on one-dimensional consolidation. Proc. of the 29~th Japan National Conf. on Soil Mechanics and Foundation Engineering, Vol. 29: 269-270.
    161. Zhu, J.G. 2000. Experimental study and elastic visco-plastic modeling of the time-dependent stress-strain behaviour of Hong Kong marine deposits. Ph.D. thesis, The Hong Kong Polytechnic University, Hong Kong-China.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700