砂井处理超软地基的固结计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于大变形固结理论,考虑竖向和水平径向同时渗透的实际情况,推导建立了砂井处理超软地基的固结控制方程,选用交替方向隐式差分法,对控制方程进行有限差分求解编程。在特定条件下,依据Carrillo定理,将控制方程分解为竖向和水平径向的一维固结方程,采用迎风格式的显式差分法,分别对两个方程进行了数值求解编程。
     采用GDS固结仪,对深圳湾海相沉积淤泥土样进行固结渗透交叉试验,研究其渗透、压缩和固结参数的变化规律,提出了砂井处理超软地基的固结计算参数的测定方法。
     对分别服从幂函数或半对数函数关系的美国磷酸盐尾矿污泥、深港西部通道口岸区海相淤泥两个固结实例进行对比计算,验证本文计算方法及程序的正确性和适用性。
     采用砂井处理超软地基的预压固结法是地基处理常用措施,本文将大变形固结理论引入砂井处理超软地基的固结计算,对该类地基的固结预测估算方法进行了一次有意义的探索。
Based on the large strain theory of consolidation, considering the actual situation of the vertical and horizontal radial permeation at the same time, the governing equation of consolidation of Super-Soft Ground with Vertiacl Drains(SSGVD) was developed. The alternating direction implicit method of finite difference method was being adopted to solve the governing equation, and the calculating program is prepared. Under certain conditions, according to Carrillo's theory, consolidation of SSGVD might be decomposed into vertical and horizontal radial consolidation respectively, and the explicit difference method of the upwind scheme was be adopted to solve the two equations, and the calculating programs are prepared too.
     The advanced instrument of GDS consolidation system, was used to carry out the test of consolidation and permeability on the ShenZhen marine clay, the development gularity of the permeability parameter、compression parameter and the consolidation parameter were studied. The article puts forward the proposal method of determining the parameters of large strain consolidation of SSGVD.
     The two cases, the waste ponds of U.S.A. Florida phosphate industry and the port of Shenzhen-Hongkong Western Corridor, in which the permeability and compressibility of the soil is subject to the power function or the semi-logarithmic function respectively, are calculated and forecasted by the above methods and the programs. The analytic result demonstrates the correctness and applicability of the proposed method of calculation and the programs.
     The method of preloading consolidation with vertical drains is the conventional measure for strengthening the super soft ground currently. The large strain consolidation theory was brought into SSGVD, this paper provides a significant attempt on the project.
引文
[1]Aiban, S. A., Znidarcic, D. (1989). Evaluation of the flow pump and constant head techniques for permeability measurements[J]. Geotechnique,39(4):655-666.
    [2]Al-Tabbaa, A., Wood, D. M. (1987). Some measurements of the permeability of Kaolin[J]. Geotech-nique,37(4):499-50
    [3]Balasubramaniam, A. S., Chowdary, A. R.(1978). Deformation and strength characteristics of soft Bangkok clay[J]. Journal of Geotechnical Engineering Division, ASCE,104(9):1153-1167.
    [4]Bergado D T, Enriquez A S. Inverse analysis of geotechnical parameters on improved soft Bangkok clay. Journal of Geotechnical Engineering,1992,118(2):1012-1030.
    [5]Bipul C.Hawlader,Balasingam Muhunthan,Goro Lmai.Viscosity effects on one-dimensional consolida-tion of clay[J].International Journal of Geomechanics,September 2003:99-110.
    [6]Bo M W. Discharge capacity of prefabricated vertical drain and their field measurements. Geotextiles and Geomembranes,2004(22):37-48.
    [7]Butterfield, R.. A natural compression law for soils (an advance on e-logp')[J]. Geotechnique,1979. 29(4):469-480.
    [8]Cargill, Kenneth W., Prediction of consolidation of very soft soil[J], Journal of Geotechnical Engineer-ing, June 1984. Vol.110, No.6,775-795.
    [9]Chai, J. C., Miura, N, Zhu, H. H., Yudhbir (2004). Compression and consolidation characteristics of structured natural clay[J].Canadian Geotechnical Journal,41(6):1250-1258.
    [10]Chu,J,Myint Win Bo,Chang,M,F,Choa,V.(2002). Consolidation and permeability properties of Singapore Marine Clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, September 2002:724-732.
    [11]Davis E.H.,Raymond G.P. A non-linear theory of consolidation[J]. Geotechnique.1965.15(2).161-173. (http://courses.civil.queensu.ca/Civl840/0a2-NonLinConso.pdf)
    [12]Den.Hann.E.J. A compression model for non-brittle soft clays and peat[J]. Geotechnique.1996.4.,46(1) 1-16.
    [13]Dennes T. Bergado, Sayeed Ahmed,etc. Settlements of Bangna-Bangpakong Highway on soft Bangkok clay[J]. ASCE.1990.1.,116(1).136-155.
    [14]Dubin, B., Moulin,G. (1986). Influence of a critical gradient on the consolidation of clays[R]. Consolidation of soils, Testing and Evaluation, ASTM STP 892, Yong, R.N. and Townsend, F.C., Eds., Philadelphia:American Society for Testing and Materials,354-377.
    [15]Dubin, B., Moulin,G. (1986). Influence of a critical gradient on the consolidation of clays[R]. Consolidation of soils, Testing and Evaluation, ASTM STP 892, Yong, R.N. and Townsend, F.C., Eds., Philadelphia:American Society for Testing and Materials,354-377.
    [16]Feldkamp, J. R. (1989). Permeability measurement of clay pastes by a non-linear analysis of transient seepage consolidation tests[J].Geotechnique,39(1):141-145.
    [17]George Blaman、Sukeyuki Kumei. On the remarkable nonlinear diffusion equation[J]. Journal of Mathematical Physics.1980.5.21(5).1019-1023.
    [18]Gibson R.E., Schiffman R.L., Cargill K.W. The theory of one-dimensional consolidation of saturated clays[J]. Ⅱ.Finite nonlinear consolidation of thick homogeneous layers. Can.Geotech. J.,1981.18, 280-293.
    [19]Gibson R.E., G.L.England,M.J.L.Hussey. The theory of one-dimensional consolidation of saturated clays[J]. I.Finite Non-linear consolidation of thin homogeneous layers. Geotechnique.1967.17,261-273.
    [20]Gibson R.E.,The progress of consolidation in a clay layer increasing in thickness with time[J]. 171-182.
    [21]Hansbo, S. (1973). Influence of mobile particles in soft clay on permeability[A].Proceedings of the International Symposium on Soil Structure[C]. Goteborg:Sweden:[s.n.].
    [22]Hansbo S. Consolidation of fine-grained soils by prefabricated drains. Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Balkema, Rotterdam, The Netherlands,1981,3:677-682.
    [23]Hvorslev, M. (1960). Physical components of the shear strength of saturated clays[A]. Proc. Research Conference on Shear Strength of Cohesive Soils, ASCE[C]. New York,169-273.
    [24]Indraratna B, Redana I W. Plane strain modeling of smear effects associated with vertical drains. Journal of Geotechnical Engineering.ASCE,1997,123(5):474-478.
    [25]Juarez-Badillo, E. (1981). Discussion on A natural compression law for soils(an advance on e-logp') by Butterfield(1979)[J].Geotechnique,31(4):567.
    [26]Koppula S.D., Morgenstern N.R. On the consolidation of Sedimenting clays[J]. Can. Geotech. J.,.1982.19.260-268.
    [27]Laing Barden. consolidation of clay with non-linear viscosity[J]. Geotechnique.1965.15.345-362.
    [28]Lancellotta R., Perziosi L. A general nonlinear mathematical model for soil consolidation problems. Int. J.Engng Sci.1997.35(10).1045-1063.
    [29]Lee, K., Choa, V., Lee, S. H., Queek, S. H. (1993). Constant rate of strain consolidation of Singapore Marine Clay[J]. Geotechnique,43(3):471-488.
    [30]Lee, P. K. K., Xie, K. H., Cheung, Y. K. (1992). A study on one-dimensional consolidation of layered systems[J]. InternationalJournal for Numerical and Analytical Methods in Geomechanics,16:815-831.
    [31]Lee,K. An analytical and experimental study of large strain soil consolidation. Linacre College,Oxford Unicersity.1979
    [32]Lee,K.(1981).Consolidation with constant rate of deformation[J].Geotechnique 31,No.2,215-229.
    [33]Lee, P. K. K., Xie, K. H., Cheung, Y. K. (1992). A study on one-dimensional consolidation of layered systems [J]. InternationalJournal for Numerical and Analytical Methods in Geomechanics,16:815-831.
    [34]Lekha, K. R., Krishnaswamy, N. R., Basak, P. (2003). Consolidation of clays for variable permeability and compressibility[J].Journal of Geotechnical and Geoenvironmental Engineering, ASCE,129(11): 1001-1009.
    [35]Lekha, K. R., Krishnaswamy, N. R., Basak, P. (2003). Consolidation of clays for variable permeability and compressibility[J].Journal of Geotechnical and Geoenvironmental Engineering, ASCE,129(11): 1001-1009.
    [36]Leroueil S., Kabbaj M.,etc..Stress -Strain-Strain rate relation for the compressibility of sensitive natural clays[J]. Geotechnique.1985.35(2).283-290.
    [37]Leroueil, S. (1996). Compressibility of clays:fundamental and practical aspects[J]. Journal of Geotechnical Engineering Division,ASCE,122(7):534-543.
    [38]Leroueil, S., Lerat, P., Hight, D. W., Powell, J. J. M. (1992). Hydraulic conductivity of a recent estrarine silty clay at Bothkennar[J].Geotechnique,42(2):275-288.
    [39]Leroueil,S.(1996). Compressibility of clays fundamental and practical aspects[J].Journal of Geotechnical Engineering, July:534-543.
    [40]Lewallen K.T.,Wang H.F. Consolidation of a double-porosity medium. Int. J.Soils Structures.1998.35. 4845-4867.
    [41]Lewallen.K,T,Wang,H,F.(1998).Consolidation of a double-porosity medium[J]. Int,J,Solids Structures Vol,35.Nos 34-35.pp.4845-4867,1998.
    [42]Loganathan N., Balasubramaniam A.S., Bergado D.T. Deformation analysis of Embankments[J]. Journal of the Geotechnical Engineering, ASCE.1993.8.,119(8).1185-1206.
    [43]Masato Mikasa, Naotoshi Takada etc. nonlinear consolidation theory for nonhomogeneous clay layers and its application[J]. Soils and foundations/Japanese Geotechnical Society.1998.12.38(4).205-212.
    [44]MCNABB A. A mathematical treatment of one-dimensional soil consolidation [J]. Quarterly of Applied Mathematics,1960,17(4):337-347.
    [45]Mesri G., Castro A. Ca/Cc concept and K0 during secondary compression[J]. Journal of the Geotech-nical Engineering, ASCE.1987.3.,113(3).230-247.
    [46]Mesri G., Choi Y.K. Strain rate behaviour of Strain-Jean-Vianney clay[J]. Can.Geotech. J.,1979.16. 831-834.
    [47]Mesri G..Visco-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays[J]. Can. Geotech.J.1990.27.259-261.
    [48]Mesri, G., Choi, Y. K. (1985). Settlement analysis of embankments on soft clays[J]. Journal of Geotech-nical Engineering, ASCE,111 (4):441-464.
    [49]Mesri, G., Feng, T. W., Shahien, M. (1999). Coefficient of consolidation by inflection point method[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,125(8):716-718.
    [50]Mesri, G., Olson, R E. (1971). Mechanisms controlling the permeability of clays[J]. Clay and Clay Mineral,19(3):151-158.
    [51]Mesri,G., Anoushiravan Rokhsar.Theory of consolidation for clays[J]. Journal of the Geotechnical Engineering, ASCE.1974.8.,100(GT8).889-904.
    [52]Mesri,G., Godlewski P.M. Time and Stress-compressibility interrelationship[J].Journal of the Geotechnical Engineering, ASCE.1977.5.,103(GT5).417-430.
    [53]Murray R.T. Developments in Two and Three-dimensional consolidation theory.Soil Mechanics. Applied Science Publishers Ltd..1978.103-147.
    [54]Myint Win Bo,Wong Kai Sin, Victor Choa, Teh Cee Ing. Compression tests of ultra-soft soil using an Hydraulic consolidation cell[J]. Geotechnical Testing Journal.2003.26(3).310-319.
    [55]Myint Win Bo.Compressibility of Ultra-Soft Soil.Singapore:World Scientific Printers.2008.
    [56]Olson R.E.,Charles C.Ladd. One-dimensional consolidatin problems[J]. Journal of the Geotechnical Engineering, ASCE.1979.1.105(GT 1).11-30.
    [57]Olsen, H. W. (1965). Deviation from Darcy's law in saturated clays[A]. Proceedings of Soil Science Society of America[C].29(2):135-140.
    [58]P.K.K.Lee,K.H.Xie. A Laboratery investigation of the permeability characteristics of HongKong Marine clay. Peoceedings of the international conference on soft soil engineering.1993.122-127.
    [59]P.K.K.Lee,K.H.Xie. consolidation testing of HongKong marine clay with Rowcell. Peoceedings of the international conference on soft soil engineering.1993.773-778.
    [60]Pane, V., Schiffman, R. L. (1985). A note on sedimentation and consolidation[J]. Geotechnique, 35(1):69-72.
    [61]Patrick J.Fox,Associate Member,ASCE.(1999).Solution charts for finite strain consolidation of normally consolidated clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, October: 847-867.
    [62]Peter J.Olver. Evolution equations possessing infinitely many symmetries[J]. Journal of Mathematical Physics.1977.6.18(6).1212-1215.
    [63]Pickles A.R., Tosen R.. Settlement of reclainmed land for the new HongKong international airport. Proc.Instn.Civ.Engrs Geotech.Engng.1998.10.131.191-209.
    [64]Poskitt T.J. The consolidation of Saturated clay with variable permeability and compressibility[J]. Geotechnique.1969.19(2).234-252.
    [65]Raymond, G. P. (1966). Laboratory consolidation of some normally consolidated soils[J]. Canadian Geotechnical Journal,4(4):217-234.
    [66]Robent.W.Day.Limitations of conventional analysis of consolidation settlement. Journal of the Geotechnical Engineering, ASCE.1995.513-518.
    [67]Robert L..Finite and Infinitesimal Strain Consolidation[J]. Journal of Geotechnical Engineering, ASCE,109(6):873-878.
    [68]Robert L.The consolidation of soft marine sediments[J].Geo-Marine Letters Vol.2,1982,199-203.
    [69]Rowe R.K., Landva A.O., Valsangkar A.J.. Calculated and observed behaviour of a reinforced embankment over soft cmpressible soil[J]. Can.Geotech.J.1996.33.324-338.
    [70]Schiffman, R. L. (1980). Finite in infinitesimal strain consolidation[J]. Journal of Geotechnical Engineering, ASCE,106(2):203-207.
    [71]Schiffman,R.L., Pane,V. and Gibson, R.E., An overview of nonlinear finite strain sedimentation and consolidation, in ASCE, Convention in Francisco, California,1984,1-29
    [72]Silvano Marchetti,Paola Monaco,Gianfranco Totani.Discussion of "Consolidation and permeability properties of Singapore Marine Clay" by J.Chu, Myint Win Bo, M.F.Chang and V.Choa[J]. Journal of Geotechnical and Geoenvironmental Engineering,September 2002,Vol.128,No.9,pp.724-732.
    [73]Sinsuke Sakai,Takuo Yamagami. A finite difference solution to self-weight consolidation equations using a predictor-corrector method. Copression and Consolidation of Clayey Soils.1995..783-788.
    [74]Sridharan, A., Jayadeva, M. S. (1982). Double layer theory and compressibility of clays[J]. Geotechnique,32(2):133-144.
    [75]Swartzendruber, D. (1962). Modification of Darcy's law for the flow of water in soils[J]. Soil Science, 93:22-29.
    [76]Takeo Moriwaki, ken Umenhara. Method for determining the coefficient of permeability of clays[J]. Geotechnical Testing Journal.2003.3.26(1).47-56.
    [77]Tan Swan Beng. A non-linear theory for the one-dimensional constant head permeability test.4th southeast asian conference on soil engineering Kuala Luppur, Malaysia.1975.,1-5.
    [78]Tavenas, F., Des Rosiers, J.P., Leroueil,S. et al. (1979). The use of strain energy as a yield and creep criterion for lightlyoverconsolidated clays[J]. Geotechnique,29(3):285-303.
    [79]Tavenas, F., Leblond, P., Jean P., Leroueil, S. (1983). The permeability of natural soft clays. Part Ⅱ: Permeability characteristics[J].Canadian Geotechnical Journal,20(4):645-659.
    [80]Teh, C. I., Nie, X. Y. (2002). Coupled consolidation theory with non-Darcian flow[J]. Computers and Geotechnics,29(3):169-209.
    [81]Tian.Ho.Seah,Siant Koslanant. Anisotropic consolidation Behaviour of soft Bangkok clay[J]. Geotechnical Testing Journal.2003.26.266-276.
    [82]Townsend, F.C., SOA:Large strain consolidation preditions,(Journal of Geotechnical Engineering, 1990. February Vol.116, No.2,222-243
    [83]Xie K.H., X.W.Liu. A study on one dimension consolidation of soils exhibiting rheological characteristics. Compression and Consolidation of Clayey Soils. Proceedings of the international symposium on compression and consolidation of clayey soils -is-hiroshima.1995.5:385-389.
    [84]Xie K.H.,S.Guo,B.H.Li GX.Zeng. A theory of consolidation for soils exhibiting rheological characteristics under cyclic loading. Computer methods and Advances in Geomechanics. Proceeding of the ninth international conference on computer methods and advances in geomechanics.1997.11:1053-1058.
    [85]Xie K. H., Xie X. Y., Gao X. (1999). Theory of one dimensional consolidation of two-layered soil with partially drained boundaries[J]. Computers and Geotechnics,24(4):265-278.
    [86]Xie K. H., Xie X. Y., Jiang W. (2002). A study on one dimensional nonlinear consolidation of double-layered soil[J]. Computers and Geotechnics,29(2):151-168.
    [87]Xie K. H., Leo C. J. (2004) Analytical solutions of one-dimensional large strain consolidation of saturated and homogeneous clays[J]. Computers and Geotechnics,31(4):301-314.
    [88]YANG L.A.,Tan T.S.. One-dimensinal self-weight consolidation of a lumpy clay fill. Geotechnique. 2002.52(10).713-725.
    [89]Znidarcic,D,Schiffman,R,L,Pane, V,Croce,P,KO,H, Y,Olsen,H, W.(1986).The theory of one-dimensional consolidation of saturated clays:part V,constant rate of deformation testing and analysis [J]. Geotechni -que 36, No.2,227-237.
    [90]白冰.饱和土体固体变形特征的一种非线性描述[J].岩石力学与工程学报,2005,24(11):1966-1971.
    [91]龚镭,余文天.新吹填土淤泥的工程性质变化特性研究[J].工程勘察,2008,6:23-25.
    [92]龚晓南.高等土力学.杭州:浙江大学出版社,1996.
    [93]何开胜、沈珠江、彭新宜.两种Lagrangian大变形比奥固结有限元法及其小变形法的比较[J].岩土工程学报.2000.1.22(1).30-34.
    [94]洪振舜.吹填土的一维大变形固结计算模型[J].河海大学学报.1987.12.15(6).27-35.
    [95]洪振舜.大变形固结计算模型及定解条件的探讨[J].河海大学学报.1988.10.16(5).103-111.
    [96]洪振舜.一维大变形固结方程的近似函数解.水利学报.1988.5.49-54.
    [97]黄文熙主编.上的工程性质.北京:水利电力出版社,1983.
    [98]江辉煌,赵有明,刘国楠.深圳湾海底淤泥大变形固结试验研究[J].中国铁道科学,2008,(06),18-21.
    [99]蒋明镜、沈珠汀.饱和软土的弹塑性大变形有限元平而固结分析.河海大学学报.1998.1.26(1).73-77.
    [100]蓝柳和(2002),成层软粘土地基非线性流变固结性状研究.博士学位论文,浙江大学.
    [101]蓝柳和,谢康和,.半解析法在成层软粘土地丛固结问题中的应用.岩石力学与工程学报,2003.22(2):327-331.
    [102]蓝柳和,谢康和,成层软粘土地基粘弹性—维固结半解析解.土木工程学报,2003.36(4):105-110.
    [103]李冰河,工奎华,谢康和.软粘土非线性一维固结有限差分法分析.浙江大学学报(工学版),2002.34(4):376-381.
    [104]李冰河,谢康和,应宏伟,软粘土非线性一维大应变固结分析.岩土工程学报,2002.22(3):368-370.
    [105]李冰河,谢康和,应宏伟.变荷载下软粘土非线性一维固结半解析解.岩土工程学报,1 999.21(3):288-293.
    [106]李冰河,谢康和,应宏伟.初始有效应力沿深度变化的非线性一维固结半解析解.土木工程学报,1999.32(6):47-52.
    [107]李冰河,应宏伟,谢康和,考虑土体自重的一维大应变固结分析.土木工程学报,2000.33(3):55-59.
    [108]李冰河,成层饱和软粘土地基大应变固结理论研究,博士学位论文,浙江大学,1999.
    [109]李春葆,刘圣才,张植民Visual Basic程序设计.北京:清华大学出版社,2005.
    [110]刘祚秋,周翠英.软粘土地基非线性一维大变形固结的有限差分法分析[J].中山大学学报(自然科学版),2005,44(3):25-41.
    [111]陆金甫,顾丽珍,陈景良,.偏微分方程差分方法.高等教育出版社,1988.
    [112]鲁少宏、姜珂.用孔隙水压力静力触探探求软基土的固结系数[J].公路.2000.7.7.24-28.
    [113]罗振东,混合有限元法基础及其应用.北京:科学出版社,2006.
    [114]马驰.考虑固结系数为非常数时固结方程差分解[J].硕十学位论文,2006.铁道部科学研究院.
    [115]梅国雄、宰金珉、赵维炳等.固结试验的数学描述[J].岩土力学.2004.11,25(增)577-580.
    [116]齐添、谢康和、李西斌.软土的一维非线性固结计算参数及测定[J].浙江大学学报(工学版).2006.8.40(8).1388-1392.
    [117]齐添,谢康和,胡安峰等.萧山黏土非达西渗流性状的试验研究.浙江大学学报(工学版),2007,41(6):1023-1028.
    [118]齐添,谢康和,应宏伟等.基于GDS的萧山黏土非线性压缩特性试验研究.科技通报,2007, 23(5):723-728.
    [119]齐添,软十一维非线性固结理论与试验对比研究,博土学位论文,浙江大学,2008.
    [120]钱家欢,殷宗泽主编.土工原理与计算,中国水利水电出版社,1980.
    [121]钱家欢,殷宗泽.土工数值分析.北京:中国铁道出版社,1991.
    [122]徐志英译(K.太沙基著),理论土力学(Theoretical soil mechnics 1943),北京:地质出版社,1960.
    [123]魏道垛、胡中雄.上海浅层地基土的前期固结压力及有关压缩性系数的试验研究.岩土工程学报.1980.12.2(4).13-22.
    [124]魏汝龙,软粘土的强度和变形,北京:人民交通出版社,1987.9.2-23.
    [125]文海家,严春风,汪东云.吹填软土的工程特性研究[J].重庆建筑大学学报,1999,21(2):79-83.
    [126]文海家、张永兴、柳源.多层超软土大变形固结的有限元差分解[J].重庆大学学报.2003.6.26(6).101-104.重庆大学
    [127]吴晓辉Magnan一维固结模型及应用[J].中国铁道科学.1995.9.16(3).97-106.
    [128]谢康和(1994),双层地基一维固结理论及应用。岩土工程学报,16(5),24-35。
    [129]谢康和(1996),层状土一维固结形状分析。浙江大学学报(自然科学版),30(5),567-575。
    [130]谢康和,1987.砂井地基:固结理论、数值分析与优化设计.土木工程学系.杭州,浙江大学:200.
    [131]谢康和,曾国熙.等应变条件下的砂井地基固结解析理论[J].岩土工程学报,1989.1(2):3-17.
    [132]谢康和.双层地基一维固结理论及应用.岩土工程学报,1994.16(5):24-35.
    [133]谢康和,1996.层状土半透水边界一维固结分析.浙江大学学报(自然科学版),30(5):567-575.
    [134]谢康和,潘秋元,1995.变荷载下任意层地基一维固结理论.岩土工程学报,17(5):80-85.
    [135]谢康和,郑辉,Leo, C. J.,2002软黏土一维非线性大应变固结解析理论.岩土工程学报,24(6):680-684.
    [136]谢康和,郑辉Leo, C. J.,2003b变荷载下饱和软黏土一维大应变固结解析理论.水利学报(10):6-13.
    [137]谢康和,郑辉,李冰河,等,2003a.变荷载下成层地丛一维非线性固结分析.浙江大学学报(工学版),37(4):426-431.
    [138]谢康和,周健.岩土工程有限元分析理论与应用.北京:科学出版社,2002.
    [139]谢康和,李冰河(1999),半解析法在软粘土一维大应变固结问题中的应用,中国学术期刊文摘,5(2),254-255。
    [140]谢康和,潘秋元(1995),变荷载下任意层地基一维固结理论。岩土工程学报,17(5),80-85。
    [141]谢康和,庄迎春,李西斌.萧山饱和软粘土的渗透性试验研究[J].岩土工程学报,2005,27(5):591-594.
    [142]谢康和.双层地基一维固结理论与应用[J].岩土工程学报.1994.9.16(5).24-35.
    [143]谢康和,齐添,胡安峰等.基于GDS的黏土非线性渗透特性试验研究.岩上力学,2008,29(2):420-424.
    [144]谢新宇、夏建中、朱向荣、潘秋元.饱和土体一维大变形固结系数研究[J].浙江大学学报(工学版).1998.5.32(3).319-324.
    [145]谢新宇、谢永利、潘秋元.饱和土体一维大变形固结理论研究.西安公路交通大学学报.1996.12.16(4)14-18.
    [146]谢新宇、张继发、曾国熙.半无限体地基一维非线形大变形固结解析分析方法研究[J].水利学报.2002.7.7.16-22.
    [147]谢新宇、张继发、曾国熙.饱和土体一维主固结解析方法研究[J].浙江大学学报(工学版).2002.7.36(4).347-351.
    [148]谢新宇、张继发、曾国熙.饱和土体自重固结问题的相似解[J].应用数学和力学.2005.9.26(9).1061-1066.
    [149]谢新宇.考虑变形耦合的一维大变形固结分析[J].浙江大学学报(工学版).2002.9.36(5).544-548.
    [150]谢新宇,一维大变形固结理论的研究.博士学位论文,浙江大学,1996.
    [151]谢永利、潘秋元、曾国熙.物质描述的大变形固结理论及有限元法.浙江大学学报(自然科学版).1995.7.29(4).476-485.
    [152]谢永利,大变形固结理论及其有限元分析.博十学位论文.浙江大学.1995.
    [153]薛兴度,魏道垛.上海软粘土固结参数变化分析及非线形固结计算.第二届华东地区岩土力学学术讨论会论文集.1992..133-138.
    [154]薛禹群,谢春红,.地下水数值模拟,北京:科学出版社,2007.
    [155]杨树才、邓学钧.软土地基沉降机理与计算方法分析.东南大学学报.1998.5.28(3).73-78.
    [156]殷宗泽、张海波、朱俊高、李国维.软土的次固结.岩土工程学报.2003.9.25(5).521-526.
    [157]殷宗泽.土的一维固结理论/土体沉降与固结....31-57.
    [158]余闯、刘松玉.考虑应力水平的软土固结系数计算与试验研究[J].岩土力学.2004.11,25(增).103-107.
    [159]于芳,非线性流变结构性软粘土弹粘塑性固结理论及砂井地基沉降计算.博士学位论文.河海大学2006.
    [160]张长生,张伯友,江辉煌.深圳湾浅海相淤泥固结变形特性研究[J].水文地质工程地质 2005,(03).35-37
    [161]张惠明、徐玉胜、曾巧玲.深圳软土变形特性与工后沉降.岩土工程学报.2002.7.24(4).509-514.
    [162]张继发、谢新宇、曾国熙.考虑土层厚度随时间增加的大变形固结问题.水力发电学报.2003.4.83(4).39-44.
    [163]张继发、谢新宇、曾国熙.李群变换求解一维非线形有限变形固结问题
    [164]赵有明,江辉煌,张惠明.深圳地区软粘土变形参数研究[J].2004年第25卷第03期,40-43.
    [165]赵维炳,广义Voigt模型模拟的饱和上体固结理论研究及其应用.博士学位论文,河海大学,1987。
    [166]赵维炳,广义Voigt模型模拟的饱和土体轴对称固结理论解[J].河海大学学报,1988.(16)5,48-55.
    [167]赵维炳,钱家欢.砂井固结理论应用中的几个问题[J].港口工程.1988年2期.21-28.
    [168]赵维炳,广义Voigt模型模拟的饱和土体一维固结理论及其应用。岩土工程学报,1989.11(5),78-85。
    [169]赵维炳,施建勇.软十固结与流变.南京:河海大学出版社,1996.
    [170]中华人民共和国水利部主编.土工试验方法标准(GB/T 50123-999,).北京:中国计划出版社.1999.
    [171]周镜.软土沉降分析中的某些问题.中国铁道科学,1999.20(2):17-29.
    [172]周琦,刘汉龙,陈志波.考虑固结参数变化时砂井地基的非线性径向固结[J].岩土力学,2007,增刊,855-858.
    [173]庄迎春,刘世明,谢康和.萧山软粘土一维固结系数非线性研究[J].岩石力学与工程学报,2005,24(24):4565-4569.
    [174]庄迎春.软土非单调压缩固结试验与理论研究.博士学位论文,浙江大学.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700