深圳前湾吹填淤泥固结性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪90年代以来,我国经济建设快速发展,沿海地区土地资源日益紧张,国内沿海地区普遍开展了大规模围海造陆工程,特别是在填海工程中普遍结合疏浚工程、吹淤造陆的方法。吹填土与天然海相沉积淤泥形成的双层地基,具有高含水量、大孔隙比等特点,工程实际表明建立于小变形假定基础上的太沙基固结理论不能准确地预测固结过程,指导设计和施工。所以有必要对吹填淤泥的固结特性和吹填形成的双层软基固结性状开展深入的研究。
     本文研究工作以“招商局深圳前湾填海造陆软基处理工程”为背景,通过现场与室内试验研究、理论分析和数值分析等方法,对吹填淤泥和海相沉积淤泥的固结特性及双层软基固结性状进行了研究,取得的研究成果如下:
     (1)吹填淤泥落淤后,仍然发生以自重固结为主的变形,本文推导了以有效应力为变量的一维自重固结方程,该方程考虑了自重固结过程中颗粒体有效应力及渗透系数与体积浓度之间的非线性关系,编制程序SFCCP对方程进行数值求解,该方程能为软基处理前落淤后的土性指标提供一种预测方法。利用程序SFCCP分析了初始压缩性、初始渗透性和初始体积浓度等因素变化对土层孔隙比、体积浓度、自重有效应力、表面沉降及沉降速率的影响,同时对落淤后自重固结过程孔隙比的变化进行了数值模拟,结果与现场试验较为吻合,验证了分析方法的有效性和实用性。
     (2)利用浙江大学GDS固结仪,对深圳前湾吹填淤泥试样进行了分级加载固结渗透试验,较全面地研究了吹填淤泥的渗透与压缩特性。结果表明,渗透系数、压缩变形参数与孔隙比之间呈现明显的非线性关系,固结计算时需考虑这些参数的变化特性。通过吹填淤泥与天然海相淤泥试验成果分析,总结出了吹填淤泥与天然海相淤泥渗透系数k v、有效应力p′与孔隙比e之间的最优拟合关系为非线性幂函数关系k v= ced与( )e = a p′b。
     (3)采用Gibson大变形固结理论与Barron轴对称固结问题的某些简化与假定,推导了以超静孔压为变量的双层砂井地基大变形固结控制方程,采用ADI差分格式,编制程序TSDTC进行求解。该程序可考虑双层地基、土体渗透与压缩非线性关系、分级加载、径向与竖向渗流、初始超静孔压分布模式等因素与条件。
     (4)利用程序TSDTC将算例固结计算结果与已有文献进行对比,两者基本吻合,验证了程序的合理性。进一步分析了非线性渗透关系k v= ced拟合参数、非线性压缩关系e = a p′b拟合参数、土层厚度比、分级加载、初始超静孔压分布模式等对双层砂井地基固结性状的影响。
     (5)结合深圳前湾填海造陆软基处理工程,利用程序TSDTC对吹填双层软基进行了固结分析,结果表明本文方法预测的固结沉降过程曲线较经典固结理论更接近于实测曲线。
     本文的研究工作对于认识吹填淤泥工程性质具有重要的理论价值,对于指导围海造陆吹填场地双层软基处理工程具有重要的实际意义。
With the rapid development of economic construction and the increasing lack of coastal land resources in China since 1990’s, a lot of land reclamation projects have commenced to conduct for the remission on limited land, especially dredging and land reclamation was commonly used in reclamation projects. Double-layered soft clay foundation of dredged fill and marine deposit silt is characterized by high water content and void ratio, of which the engineering practice showed that Terzaghi consolidation theories based on small strain can not accurately predict the consolidation process, guide the design and construction. Consequently, It is very necessary for the systematic study on consolidation characteristics of dredged fill and consolidation behaviors of double-layered soft clay foundation.
     In this dissertation, based on the engineering background of“Qianwan Reclamation Soft Clay Foundation Improvement Projects Shenzhen China”, consolidation characteristics of dredged fill and marine deposit silt and consolidation behaviors of double-layered soft clay foundation are studied in detail by means of in-situ tests, laboratory experiment, theoretical analysis, numerical analysis and so on. The main research achievements are shown as follows:
     Considering of self-weight consolidation deformation as the main effect during self-weight deposition, one dimension self-weight consolidation governing equation of dredged fill is established. The new equation includes the nonlinear relationship between effective stress, permeability coefficient and solid volume fraction, which are solved by the SFCCP computing program. The new equation can also provide a favorable prediction on physical mechanical indices for self-weight deposition. Some significant influence of initial compressibility, initial permeability and initial solid volume fraction on void ratio, solid volume fraction, self-weight effective stress, surface settlement and settlement rate is analyzed by the SFCCP computing program. It is showed that the void ratio results based on the new model are close to the results from in-situ tests, which the effectiveness and practicability of the analytical model are validated.
     One-dimensional incrementally-loaded consolidation and permeability tests are performed on dredged fill specimens in Qianwan area Shenzhen by GDS consolidation test systems from Zhejiang University. Permeability and compressibility characteristics of dredged fill are studied, it is shown that the relationships of permeability coefficient-void ratio and compressibility parameters-void ratio is nonlinear, which are taken into account variations of parameters. The optimal permeability coefficient-void ratio fitting relationship kv=ced and effective stress-void ratio fitting relationship e=a(p’)b for dredged fill and marine deposit silt are summarized by the analysis of test results.
     Based on the Gibson one-dimensional finite-strain consolidation theory and Barron vertical sands axisymmetric consolidation theory, a vertical drains and finite-strain consolidation governing equation for double-layered soft clay foundation is established, and solved by the TSDTC computing program. The new program includes some factors of double-layered soft clay foundation, nonlinear compressibility and permeability relationship, multi-stage filling, radial and vertical drainage conditions, initial excess pore pressure distribution.
     The computing results of consolidation for Florida phosphate mining sludge are compared with the published literatures and the rationality of the computing program is validated accordingly. Consolidation behaviors of double-layered vertical drains foundation are analyzed by the TSDTC computing program. Several influential factors including nonlinear permeability relationship kv=ced fitting parameters, nonlinear compressibility relationship e=a(p’)b fitting parameters, layer thickness ratio, multi-stage filling, initial excess pore pressure distribution are also studied as well.
     Compared with the classical consolidation theory, based on the observed data in situ, Qianwan Reclamation Soft Clay Foundation Improvement Projects Shenzhen China, it is showed that the consolidation settlement process obtained by the mentioned method in this dissertation is more reasonable.
     The research achievements in this dissertation will have theoretical values to understand the engineering properties of dredged fill, and also have engineering significance in guiding double-layered soft clay foundation improvement projects in land reclamation.
引文
[1]朱伟,张春雷,刘汉龙等.疏浚泥处理再生资源技术的现状[J].环境科学与技术, 2002, 25(4):39-41.
    [2]朱伟,冯志超,张春雷.疏浚泥固化处理进行填海工程的现场试验研究[J].中国港湾建设, 2005, 5: 27-30.
    [3]朱伟,张春雷,高玉峰等.海洋疏浚泥固化处理土基本力学性质研究[J].浙江大学学报(工学版), 2005, 39(10): 1561-1565.
    [4]姬凤玲,朱伟,张春雷.疏浚淤泥的土工材料固化处理技术的试验与探讨[J].岩土力学, 2004, 25(12): 1999-2002.
    [5]郭宏宇,严弛,凌光懋.外用改良剂改善吹填土工程性质的试验研究[J].港工技术, 2005, 1: 50-51.
    [6]杨静.高粘粒含量吹填土加固过程中结构强度的模拟试验研究[D].长春:吉林大学博士学位论文, 2009.
    [7] Chu J, Bo M W, Choa V. Improvement of ultra-soft soil using prefabricated vertical drains[J]. Geotextiles and Geomembranes, 2006, 24: 339-348.
    [8]杜焯芳,于庆斌,余文天等.超载预压快速加固吹填淤泥[A].第五届地基处理学术讨论会论文集[C].北京:中国建筑工业出版社, 1997. 71-78.
    [9]娄言.真空排水预压法加固软土技术[M].北京:人民交通出版社, 2002.
    [10]叶柏荣,王兆龙.新吹填地基的加固方法[J].港口工程, 1990, 4: 28-31.
    [11]刘兵,蔡南树,艾英钵.大面积吹填软土地基真空预压施工工艺[J].水运工程, 2006, 9: 73-76.
    [12]郭全元.吹填土真空预压工程实例分析[J].铁道建筑, 2006, 3: 48-50.
    [13]董志良,胡利文.南沙港区陆域吹填工程真空预压软基处理应用技术及加固效果分析[A].第六届全国工程排水与加固技术研讨会论文集[C].北京:人民交通出版社, 2005.16-24.
    [14]刘莹,肖树芳,王清.吹填土室内模拟试验研究[J].岩土力学, 2004, 25(4): 518-521.
    [15]刘莹,王清.江苏连云港地区吹填土室内沉积试验研究[J].地质通报, 2006, 25(6): 762-765.
    [16]刘莹.吹填土固化后结构强度的形成及影响因素[D].长春:吉林大学博士学位论文, 2001.
    [17]詹良通,童军,徐洁.吹填土自重沉积固结特性试验研究[J].水利学报, 2008, 39(2): 201-205.
    [18]洪振舜.吹填土固结特性的试验研究[D].南京:河海大学硕士学位论文, 1986.
    [19] Coe H S, Clevenger G H. Methods for determining the capacities of slime settling tanks[J]. Trans. Amer. Institute Mining Eng, 1916, 55: 356-384.
    [20] Kynch G J. A theory of sedimentation[J]. Trans Faraday Society, 1952, 48: 166-176.
    [21] Fitch B. Current theory and thickener design[J]. Ind Eng. Chem, 1966, 58: 18.
    [22] Fitch B. A mechanism of sedimentation[J]. Ind Eng Chem Fundament, 1966, 5(1): 129-131.
    [23] Bustos M C. A modification of the Kynch theory of sedimentation[J]. AIChE J, 1987, 33(2): 312-319.
    [24] Fitch B. Sedimentation of flocculating suspensions-state of the art [J]. AIChE. J, 1979, 25: 913-930.
    [25] Tiller F M. Revision of kynch sedimentation theory[J]. AIChE J, 1981, 27: 823.
    [26] Fitch B. Kynch theory and compression zones[J]. AIChE J, 1983, 29(6): 940-947.
    [27] McRoberts E C, Nixon J F. A theory of soil sedimentation[J]. Can Geotech J, 1976, 13: 294-310.
    [28] Been K, Sills G C. Self-weight consolidation of soft soil: an experimental and theory study[J]. Geotechnique, 1981, 31(4): 519-535.
    [29] Pane V, Schiffman R L. A note on sedimentation and consolidation[J]. Geotechnique, 1985, 35(1): 69-72.
    [30] Gibson R E, Lo K J L. A theory of consolidation for soils exhibiting secondary compression[M]. Oslo: Norwegian Geotechnical Institute, 1961.
    [31] Davis E H, Raymond G P. A non-linear theory of consolidation[J]. Geotechnique, 1965, 15(2): 161-173.
    [32] Mikasa M. The consolidation of soft clay: a new consolidation theory and its application[J]. Japan Society of Civil Engineers, 1965, 4:21-26.
    [33] Mikasa M, Takada N. Non-linear consolidation theory for none homogeneous soil layers[J]. Compression and Consolidation of Clayed Soil, 1995, 2:447-452.
    [34] Gibson R E, England G L, Hussey M J L. The theory of one-dimensional consolidation of saturated clays I: Finite non-linear consolidation of thin homogeneous layers[J]. Geotechnique, 1967, 17(3):261-273.
    [35] Gibson R E, Schiffman R L, Cargill K W. The theory of one-dimensional consolidation of thick homogeneous layers[J]. Can Geotech J, 1981, 18(2):280-293.
    [36] Schiffman R L. Finite and infinitesimal strain consolidation[J]. J Geotech Eng Div, 1980,106:203-207.
    [37] Schiffman R L, Cargill K W. Finite strain consolidation of sedimenting clay deposits: Proc 10th Int Conf[C]. Soil Mech, 1981, 1:239-242.
    [38] Znidarcic D, Schiffman R L. Finite strain consolidation test condition:Technical Note[R]. J Geotech Eng Div, 1981, 107:684-688.
    [39] Lee K, Sills G. C. The consolidation of a soil stratum, including self-weight effects and large strains[J]. Int. J. Numer. Anal. Meth. Geomech, 1981, 5:405-428.
    [40] Cargill K W. Consolidation of soft layers by finite strain analysis[R]. US Army Engineer Waterways Experimental Station, Vicksburg, Miss, 1982.
    [41] Cargill K W. Prediction of consolidation of very soft soil[J]. J Geotech Eng, 1984, 110(6): 775-795.
    [42] Foriero, B Ladanyi. FEM assessment of large-strain thaw consolidation[J]. J of Geotechnical Engineering, 1995, 121(2): 126-138.
    [43] Cai Y Q, Geng X Y, Xu Ch J. Solution of one-dimensional finite-strain consolidation of soil with variable compressibility under cyclic loadings[J]. Computers and Geotechnics, 2007, 34: 31-40.
    [44] Xie Kang He, Xie Xin Yu, Jiang Wen. A study on one-dimensional nonlinear consolidation of double-layered soil[J]. Computers and Geotechnics, 2002, 29: 151-168.
    [45]李冰河.成层饱和软粘土地基大应变固结理论研究[D].杭州:浙江大学博士学位论文, 1999.
    [46]张继发.一维大应变固结问题的解析理论研究[D].杭州:浙江大学博士学位论文, 2002.
    [47]郑辉.软粘土地基大应变非线性流变固结理论研究[D].杭州:浙江大学博士学位论文, 2004.
    [48] Sheeran D E, R J Krizel. Preparation of homogeneous soil samples by slurry consolidation[J]. Journal of Materials, 1971, 6(2):356-373.
    [49] Katagiri M G, Imai. A new in-laboratory method to make homogeneous clayey samples and their mechanical properties[J]. Soils and Foundations, 1994, 34(2):87-93.
    [50] Imai G. Experimental studies on sedimentation mechanism and sediment formation of clay minerals[J]. Soils and Foundations, 1981, 21(1):7-20.
    [51] Umehara Y, K Zen. Consolidation characteristics of dredged marine bottom sediments with high water content[J]. Soils and Foundations, 1982, 22(2):40-54.
    [52] Scully R W, Schiffman R L, Olsen H W et al. Validation of consolidation properties of phosphatic clay at very high void rates[C]. Proceedings of symposium on sedimentation consolidation models: Predications and Validation, R.N. Young, F.C. Townsend: ASCE, 1984, 158-181.
    [53] Hilde Torfs, Helen Mitchener, Heidi Huysentruyt et al. Settling and consolidation of mud/sand mixtures[J]. Coastal Engineering, 1996, 29:27-45.
    [54] A SRIDHARAN, K PRAKASH. Self Weight Consolidation: Compressibility Behavior of Segregated and Homogeneous Finegrained Sediments[J]. Marine Georesources and Geotechnology, 2003, 21: 73-80.
    [55] Papanicolaou A N, Maxwell A R. Methodological considerations for studying self-weight fluidization in a sedimentation column[J]. Int. J. Miner. Process. 2006, 78:140-152.
    [56] Lincar Pedroni, Jean-Baptiste Dromer, Michel Aubertin et al. Properties of treatment sludge during sedimentation and consolidation tests[C]. the 7th International Conference on Acid Rock Drainage, St. Louis MO. R.I. Barnhisel (ed.), American: Lexington, 2006, 3:26-30.
    [57] Berilgen S A, Bicer P, Mehmet M et al. Assessment of consolidation behavior of Golden Horn marine dredged material[J]. Marine Georesources and Geotechnology, 2006, 24:1-16.
    [58]方开泽.青岛前湾港吹填土试验研究报告[R].南京:河海大学土力学教研室, 1988.
    [59]杨坪,唐益群,王建秀等.基于大变形的冲填土自重固结分析及离心模型试验[J].岩石力学与工程学报, 2007, 26(6): 1212-1219.
    [60] Imai G. Development of a new consolidation test procedure using seepage force[J]. Soils and Foundations, 1979, 19(3): 45-60.
    [61] Patrick J Fox, Christopher D P Baxter. Consolidation properties of soil slurries from hydraulic consolidation test[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 8: 770-776.
    [62] Bo M W. Compressibility of Ultra-Soft Soil[M]. Singapore: World Scientific Publishing Co. Pte. Ltd, 2008.
    [63] Aboshi H, Yoshikuni H, Maruyama S. Constant loading rate consolidation test[J]. Soil Found, 1970, X(1): 43-56.
    [64] Burghignoli A. An experimental study of the structural viscosity of soft clays by means of continuous consolidation tests: Brighton: 7th European Conf[C]. Soil Mech. Foundation Eng, 1979, 2: 23-28.
    [65] Smith R E, Wahls H E. Consolidation under constant rates of strain[J]. J Soil Mech Foundation Div Proc. ASCE, 1969, 95:519-539.
    [66] Anwar E Z, Wissa A M. Christian J T et al. Consolidation at constant rate of strain[J]. J Soil Mech. Found. Div, 1971, 1393-1413.
    [67] Gorman C T, Hopkins T C, Deen R C et al. Constant rate of strain and controlled-gradient consolidation testing[J]. Geotech Test J, 1978, 1(1): 3-15.
    [68] Sheahan T C, Watters P J. Using an automated rowe cell for constant rate of strain consolidation testing[J]. Geotech Testing J, 1996, 19(4): 354-363.
    [69] Barden L, Berry P L. Consolidation of normally consolidated clay[J]. Journal of Soil Mechanics and Foundation Division, ASCE, 1965, 91(5):15-35.
    [70] Mersi G, Rokshar A. Theory of consolidation for clays[J]. Journal of Geotechnical Engineering, ASCE, 1974, 100(8): 889-904.
    [71] Cargill K W. Prediction of consolidation of very soft soil[J]. Journal of Geotechnical Engineering, 1984, 110(6): 775-795.
    [72] Manuel Perez, Rafael Font, Carlos Pastor. A Mathematical model to simulate batch sedimentation with compression behavior[J]. Computers Chem. Engng, 1998, 22(11):1531-1541.
    [73] Nader Abbasi, Hassan Rahimi, Akbar A Javadi et al. Finite difference approach for consolidation with variable and permeability[J]. Computers and Geotechnics, 2007, 34: 41-52.
    [74]洪振舜.吹填土的一维大变形固结计算模型[J].河海大学学报, 1987, 15(6): 27-36.
    [75]洪振舜.一维大变形固结方程的近似函数解[J].水利学报, 1988, 5: 49-54.
    [76]洪家宝,方开泽.统一固结理论在吹填土中的应用[J].河海大学学报, 1991, 19(6): 16-21.
    [77]江辉煌.砂井处理超软地基的固结计算[D].北京:中国铁道科学研究院博士学位论文, 2009.
    [78] Sandhu R S, Wilson E L .Finite element analysis of seepage in elastic media[J]. Journal of Engineering Mechanics Division, ASCE, 1969, 95(3): 641-652.
    [79] Cater J P, Small J C, Booker J R. A theory of finite elastic consolidation[J]. Int J Soilds Structures, 1977, 13: 467-478.
    [80] Shodja H M, Feldkamp J R. Numerical analysis of sedimentation and consolidation by the moving finite element method[J]. Int J Numer Anal Meth Geomech, 1993, 17: 753-769.
    [81] Seung Rae Lee, Yun Sung Kim, Young Sang Kim. Analysis of sedimentation/consolidation by finite element method[J]. Computers and Geotechnics, 2000, 27: 141-160.
    [82]周正明.饱和土体大变形固结有限元分析[J].水利水运科学研究, 1992, 1: 106-110.
    [83]谢永利.大变形固结理论及其有限元分析[D].杭州:浙江大学博士学位论文, 1994.
    [84]谢康和,郑辉, Leo C J.软黏土非线性一维大应变固结解析理论[J].岩土工程学报, 2002, 24(6): 680-684.
    [85]中交第三航务工程勘察设计院,招商局深圳前湾填海造陆工程第一阶段地基处理施工图设计说明, 2006,10.
    [86]深圳蛇口华力工程有限公司,招商局前湾A塘软基处理效果检测报告, 2008, 1.
    [87]深圳蛇口华力工程有限公司,招商局前湾(A、B1、B2、C1、C2、C3、C4塘)软基处理前岩土工程勘察报告, 2007.
    [88]中交第三航务工程勘察设计院有限公司,招商局深圳前湾吹填造陆工程施工图设计说明, 2005,11.
    [89]中交第三航务工程勘察设计院有限公司,招商局深圳前湾填海造陆工程(A、B1、B2、C1、C2、C3、C4区)地基处理施工图设计说明.
    [90] Pedroni L, Dromer J B, Aubertin M et al. Properties of Treatment Sludge During Sedimentation and Consolidation Tests[C]. the 7th International Conference on Acid Rock Drainage, 2006, 26-30.
    [91]文海家,严春风,汪东云.吹填软土的工程特性研究[J].重庆建筑大学学报, 1999, 21(2): 79-83.
    [92] Scott J D, Dusscault M B, Carrier W D. Large scale self-weight consolidation testing, Consolidation of soils: testing and Evaluation, ASTM STP 892. Yong R N, Townsend F C Eds., American Society for Testing and Materials, Philadelphia, 1986, 500-515.
    [93] Morris P H. Correlations for zero effective stress void ratio of fine-grained marine and riverine sediments[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 2007, 7:305-308.
    [94] K H Xie, C J Leo. Analytical solutions of one-dimensional large strain consolidation of saturated and homogeneous clays[J]. Computers and Geotechnics, 2004, 31: 301-314.
    [95] Peter Morris, David Lockington. Geotechnical compressibility and consolidation parameters and correlations for remoulded fine-graines marine and riverine sediments[R]. Australia, 2002.
    [96]王丙乾.吹填淤泥土性指标分布规律及固结沉降的概率描述[D] .北京:中国铁道科学研究院硕士学位论文, 2009, 7.
    [97] Taylor D W. Fundamental of soil mechanics[M]. New York: John Wiley & Sons Inc, 1948, 700p.
    [98] Hvorslev M. Physical components of the shear strength of saturated clays[A]. Proc Research Conference on Shear Strength of Cohesive Soils, ASCE[C]. New York, 1960. 169-273.
    [99] Raymond G P. Laboratory consolidation of some normally consolidated soils[J]. Canadian Geotechnical Journal, 1966, 4(4):217-234.
    [100] Balasubramaniam A S, Chowdary A R. Deformation and strength characteristics of soft Bangkok clay[J]. Journal of Geotechnical Engineering Division, ASCE, 1978, 104(9): 1153-1167.
    [101] Leroueil S, Lerat P, Hight D W et al. Hydraulic conductivity of a recent estrarine silty clay at Bothkennar[J].Geotechnique, 1992, 42(2): 275-288.
    [102] Imai G., Tang Y X. A constitutive equation of one dimensional consolidation derived from inter-connected tests[J]. Soils and Foundations, 1992, 32(2): 83-96.
    [103] Tavenance P, Jean P. The permeability of nature soft soil[J]. Can Geotech, 1983, 20:645-659.
    [104] Fox P J, Baxter CDP. Consolidation properties of soil slurries from hydraulic consolidation test[J]. Geotech Geoenviron Eng, 1997, 123(4): 770-776.
    [105] Moriwaik T, Umhara K. Method for determining the coefficient of permeability of clays[J]. Geotech Testing, 2003, 26(1): 47-56.
    [106] Sridharan A, Nagaraj T S. Coefficient of consolidation and its correlation with index properties of remoulded soils[J]. Geotechnical Tesing Journal, 2004, 27(5): 469-474.
    [107] Mesri G., Tavenas F. Discussion: permeability and consolidation of normally consolidated soils[J]. Journal of Geotechnical Engineering, ASCE, 1983, 109(6): 873-878.
    [108] Tavenas F, Leblond P, Jean P et al. The permeability of natural soft clays. Part I: Methods of laboratory measurement[J]. Canadian Geotechnical Journal, 1983, 20(4): 629-644.
    [109] Mesri G, Choi Y K. Settlement analysis of embankments on soft clays[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(4): 441-464.
    [110] Sivakumar Babu, G L, Pandian N S et al. A re-examination of permeability index of clays[J]. Canadian Geotechnical Journal, 1993, 30(1): 187-191.
    [111] Mesri G, Olson R E. Mechanisms controlling the permeability of clays[J]. Clay and Clay Mineral, 1971, 19(3): 151-158.
    [112] Somogyi F. Analysis and prediction of phosphatic clay consolidation: Implemantation Package. Technical Report, Lakeland, Florida, USA: Florida Phosphatic Clay Research Project, 1979.
    [113] AI-Tabbaa A, Wood D M. Some measurements of the permeability of Kaolin[J]. Geotechnique, 1987, 37(4): 499-503.
    [114] Aiban S A, Znidarcic D. Evaluation of the flow pump and constant head techniques for permeability measurements[J]. Geotechnique, 1989, 39(4): 655-666.
    [115] Kozeny J S. Uber Kapillare Leitung des Wassers im Boden. Sitzungsberichte der Akadamie der Wissenschaften in Wien, Abteilung Ila, 1927, 136.
    [116] Carman P C. Flow of gass through porous media[M]. London, 1956.
    [117] Samarasinghe A M, Huang Y H, Drnevich V P. Permeability and consolidation of normally consolidated soils[J].Journal of Geotechnical Engineering, ASCE, 1982 , 108(6): 835-849.
    [118]齐添.软土一维非线性固结理论与试验对比研究[D].杭州:浙江大学博士学位论文, 2008.
    [119] Butterfield R. A natural compression law for soils[J]. Geotechnique, 1979, 29(4): 469-480.
    [120] Leroueil S, Kabbaj M, Tavenas F et al. Stress-strain-strain rate relation for the compressibility of sensitive natural clays[J]. Geotechnique, 1985, 35(2): 159-180.
    [121] Chai J C, Miura N, Zhu H H et al. Compression and consolidation characteristics of structured natural clay[J]. Can Geotech J, 2004, 41:1250-1258.
    [122] Nishda Y. A brief note on compression index of soil[J]. Journal of Soli Mechanics and Foundation Engineering Division, ASCE, 82(3): 1027-1-1027-14.
    [123] Hansen B. A mathematical model for creep phnomena in clays[A]. Proc 7th Int Conf Soil Mech[C]. Mexico City, 1969, Specially session 12.
    [124] Garlanger J E. The consolidation of soils exhibiting creep under constant effective stress[J]. Geotechnique, 1972, 22(1): 71-78.
    [125] McVay M C , Townsend F C , Bloomquist D. Quiescent consolidation of phosphatic waste clays[J]. J Geotech Engrg, ASCE, 1986, 112(11): 1033-1052.
    [126] Huerta A, Kriegasmann G A, Krizek R J. Permeability and compressibility of slurries from seepage-induced consolidation[J]. Journal of Geotechnical Engineering Division, ASCE, 1988, 114(5): 614-627.
    [127] Juarez-Badillo E. Compression of soils[A]. Proc 5th Symp Behaviour of Soil under Stress[C]. Bangalore: India Institute of Science 1, 1965, A2/1-35.
    [128] Juarez-Badillo E. Constitutive relationships for soils[A]. Symp Recent Development Anal. Soil Behavior and their App. To Geotech Structures[C]. Kensington, Australia. The University of NewSouth Wales, 1975.
    [129] Juarez-Badillo E. Discussion on A natural compression law for soils(an advance on e-logp’) by Butterfield(1979)[J]. Geotechnique, 1981, 31(4): 567.
    [130] Sridharan A, Abraham B M, Jose B T. Improved technique for estimation of preconsolidation pressure[J]. Geotechnique, 1991, 41(2): 263-268.
    [131]南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社, 2003.
    [132]闵涛,张海燕,周宏宇等.二维变系数热传导方程初边值问题的交替方向隐格式[J].西安工业大学学报, 2007, 27(2): 199-204.
    [133]张宝琳,陆金甫,匡剑平.解二维对流扩散方程的块ADI方法[J].计算物理, 1998, 15(1): 114-120.
    [134] Townsend F C, McVay M C. SOA: Large strain consolidation predictions[J]. Journal of Geotechnical Engineering, 1990, 2(116): 222-243.
    [135]《地基处理手册》编写委员会,地基处理手册(第三版)[M].北京:中国建筑工业出版社, 2008. 95-96.
    [136]深圳蛇口华力工程有限公司,前湾填海造陆吹填塘淤泥室内试验、十字板原位测试及淤泥面沉降观测报告(第十次), 2007.
    [137]深圳蛇口华力工程有限公司,招商局前湾B2塘真空预压区软基处理效果检测报告, 2008.
    [138]深圳市铁科检测工程有限公司,招商局深圳前湾填海造陆工程B2区软基处理监测总结报告, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700