软土非单调压缩固结试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际岩土工程中,经常会遇到软土地基受非单调增加的荷载作用而发生的非单调压缩固结问题。虽然固结理论经过八十多余年的发展已经取得了长足的进步,但在分析这类问题时还是将加荷、卸荷过程中土体的压缩性参数视为同一常数,与实际情况并不相符。本文通过室内试验和理论分析,对软土的一维非单调压缩固结理论开展了较系统深入的研究。主要工作和研究成果如下:
     1.研究了GDS先进固结试验系统的功能和特点,编制了能快速处理实验数据的程序GDSDA,并利用GDS先进固结试验系统对13组萧山饱和软土试样进行了一维压缩和渗透试验,较全面地研究了萧山软土的常规压缩和渗透特性,获得了萧山软土渗透系数k_v,随有效应力p的变化规律,即:log k_v-log p和e-log_(10) k_v均呈线性关系。
     2.通过利用GDS先进固结试验系统对3组土样进行加荷-卸荷-再加荷压缩固结和渗透交叉试验以及对9组土样进行循环加载试验,进一步研究了萧山软土的非单调压缩和渗透特性,获得了在加、卸荷状态下的土性参数。试验结果表明:在非单调压缩条件下,萧山软土的e-log_(10) p和e-log_(10) k_v的线性关系仍成立,但直线的斜率因土体所处加、卸荷状态不同而改变。
     3.建立了能考虑土体在固结过程中压缩与回弹特性不同的一维非单调压缩条件下的线性固结模型,运用半解析法进行了求解,编制了相应程序,并对循环荷载下单层地基的一维非单调压缩线性固结性状进行了详细分析。结果表明:影响单层地基在循环荷载作用下固结性状的主要因素是循环荷载系数T_(v0),α,β,以及回弹压缩系数与压缩系数的比值α_e/α_v;考虑土体在固结过程中压缩与回弹特性不同时软土的固结比常规理论更快;比值α_e/α_v越小,固结发展越快。
     4.基于e-log_(10) p和e-log_(10) k_v线性关系,进一步建立了一维非单调压缩条件下的非线性固结模型,编制了基于半解析法的计算程序,并利用该程序较深入地分析了循环荷载下单层软土地基一维非单调压缩非线性固结性状。结果表明:除循环荷载系数T_(v0),α,
In the practical project of geotechnical engineering, the non-monotonic consolidation problems of soil are often encountered when subsoil is subjected to a non-monotonic increasing loading. Though the consolidation theory has been developed for eighty years and made a great achievement in the theoretical field, the compressibility of subsoil is still just taken as a constant in the process of loading, unloading and reloading, which is not consistent with the truth of practical engineering. In this dissertation, the one-dimensional consolidation theory involved with non-monotonic compression is studied systemically through laboratory testing and theoretical investigation. The main original work and results are as follows:1. The functions and features of GDS advanced consolidation testing system (GDSACTS) are investigated, and a program GDSDA is developed for test data fast processing. One-dimensional consolidation and permeability tests are conducted with 13 groups of Xiaoshan clay by GDSACTS to investigate its compressibility and permeability. It shows that both e - log_(10) p and e - log_(10) k_v relationships are linear.2. The compression test of loading-unloading-reloading combined with permeability test as well as the ones under cyclic loading are respectively made with 3 groups and 9 groups of Xiaoshan clay samples by GDSACTS, and the behavior of compression and permeability under non-monotonic compression is studied and the relevant geotechnical parameters representing the property of the clay in the process of loading and unloading are obtained. The test results show that, under the condition of non-monotonic compression, the linear relationships of e-log_(10) p and e-log_(10 ) k_v are also true, but their slopes are different with loading or unloading.3. Considering the variable compression coefficient under loading and unloading, a one-dimensional linear consolidation model is established and solved by semi-analytical method. The corresponding computer program is developed to analyze the behavior of one-dimensional consolidation of soft soil under non-monotonic compression in detail. The
引文
British Standard Methods of test for Soils for Civil Engineering purposes. Part 6: Consolidation and permeability tests in hydraulic cells and with pore pressure measurement (1990), British Standard Institute, London, England. BS 1377.
    Abbott, M. B., 1960. One dimensional consolidation of multi-layered soils. Geotechnique, 10: 151-165.
    Aiban, S. A., Znidarcie, D. Evaluation of the flow pump and constant head techniques for permeability measurements. Geotechnique, 1989, 39(4): 655-666.
    Al-Dhahir, Z. A., Tan, S. B. A note on one-dimensional constant-head permeability tests. Geotechnique, 1968, 18: 499-505.
    Al-Tabbaa, A., Wood, D. M. Some measurements of the permeability of Kaolin. Geotechnique, 1987, 37(4): 499-503.
    Alonso, E. E., Krizek, R. J., 1974. Randomness of settlement rate under stochastic toad. Journal of the Engineering Mechanics Division, ASCE, 100(EM6): 1211-1226.
    Andersen, K. H., Pool, J. H., Brown, S. F., et al., 1980. Cyclic and static laboratory tests on drammen clay. Journal of the Geotechnical Engineering Division, ASCE, 106: 499-529.
    Ansal, A. M., Tuncan, M., 1989. Consolidation in clays due to cyclic stresses. Proc 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Publ Rotterdam.A A Balkeman. 3-6.
    Baligh, M. M., Levadoux, J. N., 1978. Consolidaiton theory for cyclic loading. Journal of the Geotechnical Engineering Division, ASCE, 125(GT4): 415-431.
    Barden, L., Berry, P., 1965. Consolidation of normally consolidated clay. Journal of the Soil Mechanics and Foundations Division, ASCE, 91(SM5): 15-35.
    Battaglio, M., Bellomo, N., Bonzani, I., et al., 2003. Non-linear consolidation models of clay which change type. International Journal of Non-Linear Mechanics, 38(4): 493-500.
    Bejerrum, L., 1967. Engineering geology of Norwegian normally consolidated marine clays as related to the settlement of buildings. Geotechnique, 17(2): 83-119.
    Bejerrum, L., 1972. Embankments on soft ground. Proc. Spec. Conf. on Perf. of Earth and Earth-supported Stuct. ACSE, New York, N. Y. 1-54.
    Bejerrum, L., Huder, J., 1957. Measurement of the permeability of compacted clays. Proc. 4th Internation Conf. on Soil Mechanics and Foundations, London. 6-8.
    Berry, P. L., Wilkinson, W. B., 1969. The radial consolidation of clay soils. Geotechnique, 19(2): 253-284.
    Biot, M. A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics, 12: 155-164.
    Biot, M. A., 1955. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26: 182-185.
    Biot, M. A., 1956. General solutions of the equations of elasicity and consolidation for a porous material. Transactions, Journal of Applied Mechanics, ASME, 78: 91-96.
    Biot, M. A., 1963. Theory of stability and consolidation of a porous medium under initial stress. Journal of Mathematics and Mechanics, ASME, 12: 521-541.
    Biot, M. A., Willis, D. G., 1957. The elastic coefficient of a theory of consolidation. Transactions, Journal of Applied Mechanics, ASME, 79: 594-601.
    Brown, S. F. Soil mechanics in pavement engineering. Geotechnique, 1996, 46(3): 383-426.
    Burland J. B. On the compressibility and shear strength of natural clays. Geotechnique, 1990, 40 (3): 327-378.
    Casgrande, A., 1936. The determination of the preconsolidation load and its practical significance. Proc. 1st Int. Conf. on Soil Mechanics, Camblidge, Mass. 60-64.
    Chen, J. Z., Zhu, X. R., Xie, K. H., et al., 1996. One dimensional consolidation of soft clay under trapezoidal cyclic loading. Proc. 2th International Conference on Soft Soil Engineering, Nanjing, China, Hohai University Press. 211-216.
    Cooling, L. F., Skempton, A. W., 1941. Some experiments on the consolidation of clay. Geotechnical Engineering, ICE, 16(7): 381-398.
    Crawford, C. B., 1964. Interpretation of the consolidation test. Journal of the Soil Mechanics and Foundations Division, ASCE, 90(SM5): 87-102.
    Cryer, C. W., 1963. A comparison of the three-dimensional consolidaton theories of Biot and Terzaghi. Quarterly Journal of Mechanics and Applied Mathematics, 16: 401-412.
    Davis, E. H., Raymond, G. P., 1965. A non-linear theory of consolidation. Geotechnique, 15(2): 161-173.
    Day, R. W., 1995. Limitations Of conventional analysis of consolidation settlement. Journal of Geotechnical Engineering Division, ASCE, 121(6): 513-518.
    De Wet, J. A., 1962. Three-dimensional consolidation. Highway Research Board Bulletin, 342: 152-175.
    Duncan, J. M., 1993. Limitation of conventional analysis of consolidation settlement. Journal of Geotechnical Engineering Division, ASCE, 119(9): 1333-1359.
    Feldkamp, J. R., 1989. Permeability measurement of clay pastes by a non-linear analysis of transient seepage consolidation tests. Geotechnique, 39(1): 141-145.
    Fox, P. J., 1999. Solution charts for finite strain consolidation of normally consolidation clays. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 125(10): 847-867.
    Fox, P. J., Baxter, C. D. P., 1997. Consolidation properties of soil slurries from hydraulic consolidation test. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123(8): 770-776.
    France, J. W., Sangrey, D. A. Effects of drainage in repeated loading of clays. Journal of the Geotechnical Engineering Division ASCE, 1977, 103(GTT): 769-785.
    Fujiwara, H. Consolidation of alluvial clay under repeated loading. Soils and Foundations, 1985, 25(3): 19-30.
    Gibson, R. E., 1958. The progress of consolidation in a clay layer increasing in thickness with time. Geotechnique, 8(4): 171-182.
    Gibson, R. E., 1974. The analytical method in soil mechanics. Geotechnique, 24(2): 115.
    Gibson, R. E., England, G. L., Hussey, M. J. L., 1967. The theory of one-dimensional consolidation of saturated clays, Ⅰ. Finite nonlinear consolidation of thin homogeneous layers. Geotechnique, 17(3): 261-273.
    Gibson, R. E., Schiffman, R. L., Cargill, K. W., 1981. The theory of one-dimensional consolidation of saturated clays. Ⅱ. Finite nonlinear consolidation of thick homogeneous layers. Can. Geotech. J., 18(2): 280-293.
    Grozic, J. L. H., Lunne, T., Pande, S., 2003. An oedometer test study on the preconsolidation stress of glaciomarine clays. Can. Geotech. J., 40: 857-872.
    Gu, X. Y., Xu, D. N., Deng, W., 1995. A computing model based on cyclic consolidation tests. Proc. of 5th. Int. Symposium on Land Subsidence.
    Hardin, B. O. 1-D strain in normally consolidated cohesive soils. Journal of Geotechnical Engineering Division, ASCE, 1989, 115: 689-710.
    Hashiguchi, K., 1995. On the linear relations of V-In p and In v-In p for isotropic consolidation of soils. International Journal for Numerical and Analytical Methods in Geomechanics, 19(5): 367-376.
    Huang, Y. H., 1967. Stresses and displacement in viscoelastic layered systems under circular loaded areas. Proc. 2nd Int. Conf. on the Structural Design of Asphalt Pavements, Ann Arbor, Michigan, USA, University of Michigan. 225-244.
    Huerta, A., Kriegasmann, G. A., Krizek, R. J. permeability and compressibility of slurries from seepage-induced consolidation. Journal of Geotechnical Engineering Division, ASCE, 1988, 114(5): 614-627.
    Idriss, I. M., Dobry, R., Doyle, E. H., et al., 1978. Nonlinear behaviour of soft clays during cyclic loading conditions. Journal of the Geotechnical Engineering Division, ASCE, 104: 1427-1447.
    Imai, G. Development of a new consolidation test procedure using seepage force. Soils and Foundations, Japanese Society of SMFE, 1979, 19(3): 45-60.
    Imai, G. settling behavior of clay suspension. Soils and Foundations, Japanese Society of SMFE, 1980, 20(2): 61-77.
    Imai, G. Experimental studies on sendimentation mechanism and sediment formation of clay materials. Soils and Foundations, Japanese Society of SMFE, 1981, 21(1): 7-20.
    Imai, G., Yano, K., Aoki, S. Applicability of hydraulic consolidation test for very soft clayey soils. Soils and Foundations, Japanese Society of SMFE, 1984, 24(2): 29-42.
    Kaniraj, S. R., Gayathri, V., 2004. Permeability and consolidation characteristics of compacted fly ash. Journal of Energy Engineering, 130(1): 18-43.
    Lancellotta, R., Preziosi, L., 1997. A general nonlinear mathematical model for soil consolidation problems. Int. J. Engng. Sci., 35(10/11): 1045-1063.
    Lay, S. Y., Shieh, M. J., 1995. The step-loading model of subsidence induced by groundwater level changes with time. Land subsidence, Proc. International sysposium, Hague, IASH. 313-321.
    Lee, P. K. K., Xie, K. H., 1993. Consolidation testing of HongKong marine clay with Rowe cell. Proc. ICSSE. 773-778.
    Lee, P. K. K., Xie, K. H., 1993. A laboratory investigation of the permeability characteristics of HongKong marine clay. Proc. ICSSE. 122-127.
    Lee, P. K. K., Xie, K. H., Cheung, Y. K., 1992. A study on one-dimensional consolidation of layered systems. International Journal for Numerical and Analytical Methods in Geomechanics, 16: 815-831.
    Lee, S. R., Kim, Y. S., Kim, Y. S., 2000. Analysis of sedimentation/consolidation by finite element method. Computers and Geotechnics, 27(2): 141-160.
    Lekha, K. R., Krislmaswamy, N. R., Basak, P., 1998. Consolidation of clay by sand drain under time-dependent loading. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124(1): 91-94.
    Lekha, K. R., Krishnaswamy, N. R., Basak, P., 2003. Consolidation of clays for variable permeability and compressibility. Journal of Ge otechnical and Geoenvironmental Engineering, ASCE, 129(11): 1001-1009.
    Leonards, G. A., Altschaeffl, A. G., 1964. Compressibility of clay. Journal of the Soil Mechanics and Foundations Division, ASCE, 90: 133-155.
    Leonards, G. A., Girault, P., 1961. A study of the one-dimensional consolidation test. Proc. 5th Int. Conf. on Soil Mechanics, London. 213-218.
    Leroueil, S., 1988. Recent developments in consolidation of natural clays. Cari. Geoteeh. J., 25(1): 85-107.
    Leroueil, S., 1996. Compressibility of clays: fundamental and proctical aspects. Journal of Geotechnical Engineering Division, ASCE, 122(7): 534-543.
    Liang, X., Cai, Y. Q., Wu, S. M., 2002. Study on one-dimensional consolidation of saturated soil with semi-pervious boundaries and under cyclic loading. Journal of Zhejiang University SCIENCE, 3(5): 513-519.
    Lo, K. Y., 1961. Secondary compression of clays. Journal of the Soil Mechanics and Foundations Division, ASCE, 87(SM4): 61-87.
    Lo, K. Y., 1969. The pore pressure-strain relationship of normally consolidation undisturbed clays. Can. Geotech. J., 9: 383-395.
    Lo, K. Y., 1960. Correspondence on measurement of the coefficient of consolidation of lacustrine clay. Geotechnique, 10(1): 36-39.
    Lowe, J., Jouas, E., Obrician, V., 1969. Controlled gradient consolidation test. Journal of the Soil Mechanics and Foundations Division, ASCE, 95(SM1): 77-97.
    Lowe, J., Zaccheo, P. F., Feldman, H. S., 1964. Consolidation testing with back pressure. Journal of Soil Mechanics and Foundations Division, ASCE, 90(SM5): 69-86.
    McNabb, A., 1960. A mathematical treatment of one dimensional soil consolidation. Q. appl. Math., 27(4): 337-347.
    Mesri, G., Choi, Y. K., 1985. Settlement analysis of embankments on soft clays. Journal of Geotechnical Engineering Division, ASCE, 111: 441-464.
    Mesri, G., Feng, T. W., Shahien, M., 1999, Coefficient of consolidation by inflection point method. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 125(8): 716-718.
    Mesri, G., Rokhsar, A., 1974. Consolidaiton of normally consolidated clay. Journal of the Soil Mechanics and Foundations Division, ASCE, 100(GT8): 889-903.
    Michel, J. C., Beaumont, A., Tessier, D. A laboratory of method for measuring the isotropic character of soil swelling. European Journal of Soil Science, 2000, 51: 689-697.
    Mikasa, M., 1963. Consolidation theory for nonhomogeneous clay layer Proc. of Autumn Convertion of JSSMFE. 41-43.
    Mikasa, M., Takada, N., Oshima, A., et al., 1998. Nonlinear consolidation theory for nonhomogeneous clay layers and its application. Soils and Foundations, 38(4): 205-212.
    NarasimhaRaju, P. S. R., Pandian, N. S., Nagaraj, T. S., 1997. Determination of the coefficient of consolidation from independent measurements of permeability and compressibility. Geotechnical Engineering, ICE, 125(10): 224-229.
    Newland, P. L., Alley, B. H., 1960. A study of the consolidation characteristics of a clay. Geotechnique, 10(2): 62-74.
    Nogami, T., Li, M., 2003. Consolidation of clay with a system of vertical and horizontal drains. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 129(9): 838-848.
    O'Sullivan, M. E, Henshall, J. K., Dickson, J. W. A simplified method for estimating soil compaction. Soil & Tillage Research, 1999, 49(4): 325-335.
    Olson, R. E., Ladd, C. C. One-dimensional problems. Journal of Geotechnical Engineering Division, ASCE, 1979, 105(1): 97-106.
    Olson, R. E., 1998a. Settlement of embankments on soft clays(The Thirty-First Terzaghi Lecture). Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124(4): 278-288.
    Olson, R. E., 1998b. Settlement of embankments on soft clays(The Thirty-First Terzaghi Lecture). Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124(8): 659-669.
    Olson, R. E., Ladd, C. C., 1979. One-dimensional consolidation problems. Journal of Geotechnical Engineering Division, ASCE, 105(1): 11-30.
    Pane, V., Schiffman, R. L., 1985. A note on sedimentation and consolidation. Geotechnique, 35(1): 69-72.
    Parkin, A. K., 1978. Coefficient of consolidation by the velocity method. Geotechnique, 28(4): 472-474.
    Poskitt, T. J., 1967. A note on the consolidation of clay with nonlinear viscosity. Geotechnique, 17(3): 284-289.
    Poskitt, T. J., 1969. The consolidation of saturated clay with variable permeability and compressibility. Geotechnique, 19(2): 234-252.
    Prakash, K., 1997. Theory of consolidation for clays. Journal of Geotechnical Engineering Division, ASCE, 100(8): 889-904.
    Prasad, Y. V. S. N., Rao, S. N., 1995. A new two point method of obtaining from a consolidation test. Can. Geotech. J., 32: 741-746.
    Pyke, R., 1979. Nonlinear soil models for irregular cyctic loadings. Journal of the Geotechnical Engineering Division, ASCE, 105: 715-726.
    Pyrah, I. C., 1996. One-dimensional consolidation of layered soils. Geotechnique, 46(3): 555-560.
    Rahal, M. A., Vuez, A. R., 1998. Analysis of settlement and pore pressure induced by cyclic loading of silo. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124(12): 1208-1210.
    Robinson, R. G., 1997. Consolidation analysis by an inflection point method. Geotechnique, 47(1): 199-200.
    Rowe, R W., 1954. A stress-strain theory for cohesionless soil with application to earth pressure at rest and moving walls. Geotechnique, 4: 70-88.
    Rowe, R W., 1959. Measurement of the coefficient of consolidation of lacustrine clay. Geotechnique, 9: 107-118.
    Rowe, R W., 1964. The calculation of the consolidation rates of laminated varved or layered clays with particular reference to sand drains. Geotechnique, 14: 321-340.
    Rowe, P. W., Barden, L., 1966. A new consolidation cell. Geotechnique, 16(6): 162-170.
    Saka, A., Samang, L., Miura, N., 2003. Partially-drained cyclic behavior and ira application to the settlement of a low embankment road on silty-clay. Soils and Foundations, 43(1): 33-46.
    Sallfors, G., Oberg-Hogsta, A.-l., 2002. Determination of hydraulic conductivity of sand-bentonite mixtures for engineering purposes. Geotechnical and Geological Engineering, 20: 65-80.
    Schiffman, R, L., 1958. Consolidation of soil under time-dependent loading and varying permeability. Proc. Highw. Res. Bd, 37: 584-617.
    Schiffman, R. L., 1980. Finite and infinitesimal strain consolidation. Journal of Geotechnical Engineering Division, ASCE, 106(2): 203-207.
    Schiffman, R. L., Chen, A. T.-F., Jordan, J. C., 1969. An analysis of consolidation theories. Journal of the Soil Mechanics and Foundations Division, ASCE, 95(1): 285-312.
    Schiffman, R. L., Gibson, R. E., 1964. Consolidation of nonhomogeneous clay layers. Journal of the Soil Mechanics and Foundations Division, ASCE, 90(SMS): 1-30.
    Schiffman, R. L., Stein, J. R., 1970. One-dimensional consolidation of layered systems. Journal of the Soil Mechanics and Foundations Division, ASCE, 96(4): 1499-1504.
    Scott, R. E, 1976. New method of consolidation coefficient evaluation. Journal of the Soil Mechanics and Foundations Division, ASCE, 102(SMI): 29-30.
    Seed, H. B., 1964. Settlement analysis, A review of theory and testing procedures. Journal of the Soil Mechanics and Foundations Division, ASCE, 91(SM2): 39-48.
    Sivaram, B., Swamee, P. K., 1977. A computation method for consolidation coefficient. Soils and Foundations, 17(2): 48-52.
    Skempton, A. W., Bjerrum, L., 1957. A contribution to settlement analysis of foundation on clay. Geotechnique, 7(4): 168-178.
    Sridharan, A., Prakash, K., 1997. The logδ-logt method for the determination of the coefficient of consolidation. Geotechnical Engineering, ICE, 125(1): 27-35.
    Tavenas, R, Jean, R, Leblond, R, et al., 1983. The permeability of natural soft clays. Part Ⅱ: Permeability characteristics. Can. Geotech. J., 20(4): 645-659.
    Taylor, D. W., 1942. Research on consolidation of clays. S. 82. Cambridge, Mass., Department of Civil and Sanitary Engineering, Massachusetts Institute of Technology.
    Teh, C. I., Nie, X. Y., 2002. Coupled consolidation theory with non-Darcian flow. Computers and Geotechnics, 29(3): 169-209.
    Terzaghi, K., 1924. Die theorie der hydrodynamischen spannungserscheinungen und ihr erdbautechnisches anwendungs gebeit. Proc, 10th Int. Congress on Applied Mechanics, Elsevier, Amsterdam. 239-242.
    Terzaghi, K., 1925. Principles of soil mechanics- settlement and consolidation of clay. Engineering News-Record: 874-878.
    Thiers, G. R., Seed, H. B., 1968. Cyclic stress-strain characteristics of clay. Journal of the Soil Mechanics and Foundations Division, ASCE, 94: 555-569.
    Thompson, M. R., Robnett, Q. L. Resilient properties of subgrade soils. RJ of Transportation Engineering, ASCE, 1979, 105(1): 71 - 89.
    Unnikrishnan, N., Rajagopal, K., Krishnaswamy, N. R., 2002. Behaviour of reinforced clay under monotonic and cyclic loading. Geotextiles and Geomembranes, 20: 117-133.
    Wang, H. Z., Chen, Y. M., Huang, B. Computation of one-dimensional of double layered ground using differential quadrature method. Journal of Zhejiang University SCIENCE, 2003,4(2): 195-201.
    Wang, Y. H., Tham, L. G., Tsui, Y, et al., 2003. Plate on layered foundation analyzed by a semi-analytical and semi-numerical method. Computers and Geomechanics, 30: 409-418.
    Wilson, N. E., Elgohary, M. M., 1974. Consolidation of soils under cyclic loading. Can. Geotech. J., 2(3): 420-423.
    Xie, K.-H., Li, X.-B., 2005. A theory of consideration for soil exhibiting rheological characteristics under cyclic loading, in press.
    Xie, K. H., 1992. Consolidation and permeability tests in medium Rowe cell with the particular reference to Hong Kong marine clay. HongKong, Department of civil and Structural Engineering, University of Hong Kong.
    Xie, K. H., 1994. Consolidation of soils by vertical drains with special reference to well resistance. HongKong, Department of Civil and Structural Engineering, University of HongKong: 1-46.
    Xie, K. H., Guo, S., Li, B. H., et al., 1997. A theory of consolidation for soils exhibiting rheological characteristics under cyclic loading. Proc. of the 9th Int. Conf. on Computer Methods and Advances in Geomechanics,' Wuhan, China. 1053-1058.
    Xie, K. H., Lee, P. K. K., Cheung, Y. K., 1994. Consolidation of a two-layer system with vertical ideal drains. Proc. 8th Int. Conf. on Computer Methods and Advances in Geomechanics, Morgantown West Virginia, USA. 789-794.
    Xie, K. H., Leo, C. J., 2004. Analytical solutions of one-dimensional large strain consolidation of saturated and homogeneous clays. Computers and Geotechnics, 31(4): 301-314.
    Xie, K. H., Li, B. H., L., L. Q., 1996. A nonlinear theory of consolidation under time-dependent loading. Proc. 2nd Int. Conf. on Soft Soil Engineering, Nanjing, China.
    Xie, K. H., Xie, X. Y, Gao, X., 1999. Theory of one dimensional consolidation of two-layered soil with partially drained boundaries. Computers and Geotechnics, 24(4): 265-278.
    Xie, K. H., Xie, X. Y, Jiang, W., 2002. A study on one-dimensional nonlinear consolidation of double-layered soil. Computers and Geotechnics, 29(2): 151-168.
    Yasuhara, K., 1995. Consolidation and settlement under cyclic loading. Proc. of the International symp. on Compression and . Consolidation of Clayey Soils, Hiroshima, Japan. 979-1001.
    Yasuhara, K., Andersen, K. H., 1989a. Post-cyclic recompression settlement of clay. Proc 4th International Conference on Soil Dynamics and Earthquake Engineering, Mexico City. 159-167.
    Yasuhara, K., Andersen, K. H., 1989b. Effect of cyclic loading on recompression of overconsolidated clay. Proc 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Publ Rotterdam: A A Balkema. 485-488.
    Yasuhara, K., Andersen, K. H., 1991. Recompression of normally consolidated clay after cyclic loading. Soils and Foundations, 31(1): 83-94.
    Yasuhara, K., Hirao, K., Hyodo, M., 1988. Partially drained cyclic behaviour of clay under cyclic loading. Proc. of the 6th Int. Conf. on Numerical Methods and Geomechanics, Innsbruck, Austria. 659-664.
    Yasuhara, K., Hyodo, M., Konami, T., et al., 1991. Earthquake induced settlement in soft ground. Proc. of the Second Int. Conf. on Recent Advances in Geotech. Earthquake Engrg. and Soil Dynamics. 365-370.
    Yasuhara, K., Yamanouchi, T., 1983. Approximate prediction of soil deformation under drained-repeated loading. Soils and Foundations, 23(2): 13-24.
    Zergoun, M., Vaid, Y. P., 1994. Effective stress response of clay to undrained cyclic loading. Can. Geotech. J, 31: 714-727.
    Znidarcic, D., Schiffman, R. L., Pane, V., et al., 1986. The theory of one-dimensional consolidation of saturated clays: Part Ⅴ. Constant rate of deformation testing and analysis. Geotechnique, 36(2): 227-237.
    白冰,刘祖德,1999.饱和软粘土的再固结性状研究.岩土工程学报,21(2):189-195.
    白冰,肖宏彬.软土工程若干理论与应用.北京:中国水利水电出版社,2002.
    蔡袁强,徐长节,丁狄刚,1998.循环荷载下成层饱水地基的一维固结.振动工程学报,11(2):184-193.
    蔡袁强,徐长节,袁海明,2001.任意荷载下成层粘弹性地基的一维固结.应用数学和力学,22(3):307-313.
    陈崇希,裴顺平,2001.地下水开采-地面沉降模型研究.水文地质与工程地质(2):5-8.
    陈永福,曹名葆,1990.上海地区软粘土的卸荷-再加荷变形特性.岩土工程学报,12(2):9-18.
    丁立,刘有录,关惠平.老堆积黄土类路基土回弹模量的室内试验研究.兰州交通大学学报,2004,23(1):46-48.
    董亚钦,谢康和.三角形循环荷载下软粘土非线性解.低温建筑技术,2004,(3):30-32.
    董筱波,袁磊,徐波,等,2001.标准应力路径三轴测试系统及其在K0固结试验中的应用.河海大学学报,29(Supplement):169-172.
    方开泽,1989.半透水边界一维固结的特性值解法.水利学报(3):48-53.
    龚晓南.高等土力学.杭州:浙江大学出版社,1996.
    顾小芸,1998.地面沉降计算的回顾与展望.中国地质灾害与防治学报,9(2):81-85.
    顾小芸,冉启全,1998.地面沉降预测和防治措施研究.中国地质灾害与防治学报,9(增刊):7-13.
    顾小芸,徐达能,1994.上海粘土在反复荷载作用下的固结特性.第七届全国土力学及基础工程会议论文集.
    关山海,谢康和,胡安峰,2003.低频循环荷载下地基一维固结性状分析.岩土力学,24(5):849-853.
    郭东红,梁小略,沈正,2003.软土的单向压缩的应力应变关系研究.安徽建筑(1):87-88.
    郭中华,余湘娟,严蕴,2002.循环荷载作用下软土计算模型初探.河海大学学报,30(1):109-112.
    郝红伟,施光凯.Origin 6.0实例教程.北京:中国电力出版社,2000.
    韩玉明.北京平原区饱和粘性土回弹及再压缩模量的试验研究.工程勘察,1996,(2):10-14.
    何世秀,韩高升,庄心善,等,2003.基坑开挖卸荷土体变形的试验研究.岩土力学,24(1):17-20.
    侯学渊,刘国彬.软土卸荷变形参数及工程应用.第七届土力学及基础工程学术会议论文集,北京,中国建筑工业出版社.1994:169-172.
    黄文熙.土的工程性质.北京:水利电力出版社,1983.
    贾庆山,2003.在天然软土地基上建造大型油罐.石油工程建设,29(1):20-24.
    江雯,谢康和,夏建中,2003.压缩模量随深度变化的软粘土地基一维固结解析解.科技通报,19(6):452-460.
    蒋伯明,1999.国内外固结试验仪器现状及自动化问题.全国岩土工程计算机高效率利用展示与研讨会.27-33.
    蒋军,2002.循环荷载作用下粘土应变速率试验研究.岩土工程学报,24(4):528-531.
    蒋军,陈龙珠,2001.长期循环荷载作用下粘土的一维沉降.岩土工程学报,23(3):366-369.
    赖天文,2003.固结系数对饱和粘性土沉降过程的影响.兰州铁道学院学报(自然科学版),22(4):85-87.
    蓝柳和,谢康和,2003a.成层软粘土地基粘弹性一维固结半解析解.土木工程学报,36(4):105-110.
    蓝柳和,谢康和,2003b.半解析法在成层软粘土地基固结问题中的应用.岩石力学与工程学报,22(2):327-331.
    李冰河,王奎华,谢康和,等,2002b.软粘土非线性一维固结有限差分法分析.浙江大学学报(工学版),34(4):376-381.
    李冰河,谢康和,应宏伟,等,1999b.变荷载下软粘土非线性一维固结半解析解.岩土工程学报,21(3):288-293.
    李冰河,谢康和,应宏伟,等,1999c.初始有效应力沿深度变化的非线性一维固结半解析解.土木工程学报,32(6):47-52.
    李冰河,谢康和,应宏伟,等,2002a.软粘土非线性一维大应变固结分析.岩土工程学报,22(3):368-370.
    李冰河,谢永利,谢康和,等,1999a.软粘土非线性一维固结半解析解.西安公路交通大学学报,19(1):24-29.
    李冰河,应宏伟,谢康和,等,2000.考虑土体自重的一维大应变固结分析.土木工程学报,33(3):55-59.
    李金轩,胡金珠,1996.确定固结系数的标准曲线比拟法.工程勘察(1):21-22.
    李顺群,张业民,裴玉萍,2002.饱和粘土一维固结系数的非线性研究.辽宁工程技术大学学报,21(6):726-729.
    李涛,张仪萍,曹国强,等,2003.推算室内固结系数的剩余沉降对数法.岩土工程学报,25(6):724-726.
    李西斌,谢康和,王奎华,et al.双面半透水边界饱和土层在循环荷载作用下的一维粘弹性固结解析解.工程力学,2004,21(5):103-109
    梁斌,2001.土工固结试验的若干质量问题分析.湖南水利水电(6):13.
    林鹏,许镇鸿,徐鹏,等,2003.软土压缩过程中固结系数的研究.岩土力学,24(1):106-108,112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700