渗流条件下重塑饱和黄土的渗透性劣化试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家自然科学基金项目“黄土工程性质劣化机理与构筑物寿命预测研究”,以杨凌Q3黄土为研究对象,在总结和吸收前人成果的基础上,通过室内试验模拟自然状态下土坝等黄土构筑物所经历的长期渗流作用。对重塑饱和黄土样以乙酸溶液作为渗透液加速渗流劣化过程,测量其渗透系数随时间的变化过程,测定渗透期间的钙离子的淋失量和淋失率,探讨重塑饱和黄土样在长期渗流条件下损伤劣化的实质。
     主要结论如下:
     (1)在重塑饱和黄土渗流过程中,渗透系数k均随着渗透时间而持续减小;前期小颗粒运移频率大,k减小幅度较大;后期小颗粒运移频率降低,k减小幅度较小。
     (2)渗透液中的氢离子和乙酸根离子与黄土中的盐分会发生复杂的化学反应,但主要以氢离子与碳酸盐的反应为主。常规渗透试验中,有一部分气体滞留在孔隙中使得渗透水流的有效通道降低。而在三轴渗透试验中,由于围压和反压的存在,渗透液中的氢离子与黄土中的碳酸盐反应也生成了碳酸,碳酸溶液很难分解成二氧化碳,因此,可以忽略气体对其渗透系数的影响。
     (3)对于任一干密度的渗透试样,在小围压下,渗透系数随着渗透液PH值的增大而减小;不同PH值对应的渗透系数的方差也随着围压的增大而减小;当围压增值300kPa时,渗透系数不再遵循上述规律,围压对渗透系数的影响已经大于PH值对渗透性的影响。不同的初始干密度不同的固结渗透围压和不同PH值渗透液共同耦合决定着渗透系数的大小。
     (4)长期渗流条件下黄土劣化的机理是渗透液体与黄土土粒的相互作用造成了孔隙比的不可逆的改变。主要体现在:渗透力引起的颗粒运移、渗透液带入的气体、颗粒间胶结物(主要是碳酸钙)的淋失使得颗粒黏聚力的不断丧失进一步引起颗粒运移。三者最终表现在引起了孔隙比沿渗流方向的不均匀分布,出现了最小孔隙比面,该面最终决定渗透系数的大小。对于三轴渗透试验,由于围压的存在,气体的影响可以忽略,对于常规渗透试验气体影响不能忽略。
     (5)对于三轴渗透试验,孔隙比沿黄土渗流方向的分布或最小孔隙比面的孔隙比可作为黄土渗透劣化的损伤指标。笔者定义了最小孔隙比面的孔隙比与初始孔隙比的比值κ作为黄土渗流条件下的损伤率,以用来描述黄土在长期渗流条件下渗透性的劣化程度,并利用已有数据结合黏性土非线性渗透模型得出了重塑饱和黄土渗透性劣化公式。对于常规渗透试验渗透性劣化损伤率的定义,由于存在气体对渗透性的影响,除了考虑最小孔隙比还应考虑气体对渗流通道的影响。
This paper relies on the national natural science foundation project“The Research of Properties Deterioration Mechanism of Loess Engineering and Life Prediction of Loess Structures”.On the summary predecessors' achievements, by doing experiments in the laboratory to simulates natural condition of earth dam under long-term seepage effects using acid solution as penetration fluid accelerate the degradation process of remolded saturated loess samples, this paper explored the essence of degradation on remolded saturated loess samples under long-term seepage condition to research Q3 remolded loess in Yangling through the measurements of the permeability coefficient, the leaching quantity of calcium ions infiltration and its rate leaching rate.
     The main conclusions are as follow:
     (1) The permeability coefficient k reduces as the penetration processed during the Seepage of the remolded saturated loess. In the early stage, soil particles migration had a big frequency and k reduced in larger extent; while later soil particles migration had Small frequency and k reduced slowly.
     (2) A complex chemical reactions happened between the salts of Loess and both hydrogen ions and acetic root ions of Penetration fluid, Mainly by hydrogen ions and carbonate reaction. Some gas is trapped in the pore which reduces the effective channel of penetration fliud in the conventional penetration test, but in the Triaxial penetration test, the effect of gas to permeability coefficient can be ignored because carbonic acid which was formed after the reaction of hydrogen ions and carbonate could hardly be decomposed into carbon dioxide gas owing to confining pressure and back pressure exists.
     (3) For any dry density of penetration samples, the permeability coefficient reduce as the increase of PH value of the seepage fluid in lower confining pressure, The variance of the permeability coefficient corresponded with different PH value also decreases as confining pressure increasing and The permeability coefficient is no longer follow the above rules when the confining pressure increases at 300kPa, meanwhile the influence of the permeability coefficient on the confining pressure has exceeded the influence of the PH value. Different dry density and consolidation penetration confining pressure, different PH value mutual coupling determined the size of the permeability coefficient.
     (4) After long-term seepage condition, the essence of loess degradation are the action between Penetration liquid and Loess particles which caused irreversible changes of porosity ratio. The main exemplifications are as follow: 1) The seepage force caused Particles migration; 2) The gas was bring in through permeability fluid; 3) Particles sticky gathered force was constantly lost through the loss of Cementation content among particles which caused a further particle migration. Three aspects eventually reflect that Uneven distribution of porosity ratio along the Seepage direction. Minimal porosity ratio face appeared which eventually determined The size of the permeability. the influence of gas can be ignored in the triaxial penetration tests, but it cannot be ignored in the Conventional penetration tests.
     (5) Porosity ratio of the distribution along the seepage direction or the face of minimum porosity ratio can be used as the damage index of loess penetration degradation. the ratio between minimal porosity ratio and Initial porosity ratio is defined as the damage rate of loess seepage condition by the author ,which can be used to describe degradation degree of the loess permeability under long-term seepage condition. For the Conventional penetration tests, both the minimal porosity ratio and the influence of gas needed to be considered.
引文
西北水利科学研究所.1959.西北黄土的工程性质.陕西人民出版社:4,49~71
    刘东生.1985.黄土与环境.北京:科学出版社:27,46,58
    张宗祜,张之一,张平.1985.黄土湿陷变形过程中微结构变化特征及湿陷性评价.国际交流地质学术论文集(6).北京:地质出版社:67~78
    高国瑞.1994.我国黄土湿陷性质的形成研究.南京建筑工程学院学报,12(3):2~6
    董邑宁.1999.饱和粘土渗透特性的试验研究.青海大学学报,17(1):6~9
    李广信.2004.高等土力学.北京:清华大学出版社:207~209
    张伯平,党进谦.2006.土力学与地基基础.北京:中国水利水电出版社:29~33
    王永焱,林在贯.1990中国黄土的结构特征及物理力学性质.北京:科学出版社:127~129
    邓津等.2007.黄土显微结构特征与震陷性.岩土工程学报,29(4):543~549
    王永焱,张宗祜.1982.中国黄土.西安:山西人民美术出版社:42~44
    郭玉文,加藤诚等.2004.黄土高原黄土团粒及其碳酸钙关系的研究.土壤学报,41(3):362~367
    张永双等.2005.陕北晋西砂黄土的胶结物与胶结作用研究.工程地质学,13(01):18~27
    刘连文,王洪涛,陈骏. 2002.黄土醋酸淋溶实验及其碳酸盐组分的地球化学特征.岩石矿物学杂志,21(1):69~75.
    许卉,杨昕.2002.黄土中矿物元素的淋溶释放研究.土壤与环境,11(1):38~41
    郭玉文等.2008.由灌溉引起的黄土湿陷过程中碳酸钙行为的研究.土壤学报,25(3):314~319
    B.A.拉宾诺维奇等.1983.简明化学手册.北京:化学工业出版社:321~322
    周鲁.2002.物理化学教程.北京:科学出版社:45~47
    李永新等.1999.作图法求算碳酸钙水溶液的溶解度及pH值.安徽师范大学学报,1:20~23
    王文林.2007.为何规定pH小于5.6的雨水是酸雨.化学教育,3:62~65
    齐占波,赵勇.2004.缘何正常雨水的pH为5.6.化学教学,1(2):91~95
    孙玉鹏等.2003.我国沿海和西北地区降水化学特性的分析.西安工业学院学报,23(3):249~253
    韩亚芬,孙根年等.2006.西安市酸雨及化学成分时间变化分析.陕西师范大学学报,34(4):109~112
    薛华等.2000.分析化学:第二版.北京:清华大学出版社:186~187
    朱宏等.2007.土壤CaC03淀积对降水量及环境变化的指示.土壤通报,38(4):810~812
    赵景波等.2002.黄土形成与演变模式.土壤学报,39(40):459~466
    赵景波等.2000.黄土形成过程的实质与环境.干旱区地理,23(4):315~318
    肖军等.2006.黄土岩溶泉岩溶发育特征综合研究.中国沙漠,26(2 ):180~183
    赵景波等.2003.关中地区全新世大暖期的土壤与气候变迁.地理科学,23(5):554~558
    赵景波等.2000.陕西长武古土壤深部风化剖面与环境研究.中国沙漠,20(3):252~255
    赵景波等.2004.陕西洛川黄土中第5层古土壤与环境研究.中国沙漠,24(1):30~34
    陈秀玲等.2008.黄土中碳酸盐的研究进展.新疆有色金属,31(4):21~25
    李秉成等.2002.黄土中的CaC03与环境.西安工程学院学报,24(4):73~75
    呼世斌等.2004.无机及其分析化学.北京:高等教育出版社:67~68,89~92
    赵景波.2002.淀积理论与黄土高原环境演变.北京:科学出版社:43~45
    谢和平等.2004.岩石力学.北京:科学出版社:199~207
    郑少河等.2001.裂隙岩体渗流损伤耦合模型的理论分析.岩石力学与工程学报,20(2):156~159
    谢康和等.2008.基于GDS的黏土非线性渗透特性试验研究.岩土力学,29(2):420~424
    马耀光,刘俊民等.1995.灌溉对黄土易溶阳离子淋溶的试验研究.干旱地区农业研究,13(3):50~53
    葛本伟等.2008.豫中黄土地区全新世土壤剖面成壤环境变化研究.土壤通报,39(2):223~227
    李保雄等.2007.兰州马兰黄土的物理力学特性.岩土力学,28(6):1077~1080
    李俊连等.2008.结构性黄土临界状态力学性状.岩土力学,29(1):63~67
    易念平,吴恒,张信贵等.2000.水土作用的力学机理探讨.广西大学学报(自然科学版),25(1):14~17
    张信贵,吴恒等.2005.水土化学作用体系中钙镁对土体结构强度贡献的试验研究.地球与环境,33(4):58~64.
    张信贵,易念平,吴恒等.2006.不同pH水环境下土变形特性的试验研究.高校地质学报,12(2):242~248.
    张信贵,吴恒等.2005.水土相互作用与土细观结构变异的x射线衍射分析.桂林工学院学报,25(3):301~304
    黄文熙.1983.土的工程性质.北京:水利电力出版社:70-107
    孔海龙,李国聚,孔军涛.2001.黄土类土渗透溶滤变形机制及影响因素.工程勘察,5:29~34.
    劳海等.2008.土坝渗流破坏及处理方法.广东科技,200:186~187
    李涛,胡金生等.2008.乙酸和碳酸对粘土土工性状影响的试验.煤田地质与勘探,36(6):46~48
    梁军,孙陶等.1997.瓦屋山面板坝含软岩堆石体长期渗流研究.四川水利,18(4):26~31
    刘春生,杨守祥等.1999.模拟酸雨对褐土盐基离子淋失的影响.土壤通报,30(1):42~43
    Osipov V 1,Sokolov V N.1994.Factors and Mechanism of Loess Collapsi—bility.NATO ASI Series.49~64
    TAYLOR D.W.1948. Fundamentals of Soil Mechanics.NewYork,John Wiley&Sons:48~49
    SAMARASINGHE AM,HUANG YH.1982.Permeability andconsolidation of normally consolidated soils.Journalof the Geotechnical Engineering Division,ASCE.108(GT6):835~850
    MESRI G ROKHSARA.1974.Consolidaiton of normally consolidated clay.Journal of the Soil Mechanics andFoundations Division,ASCE.100(GT8):889~903
    MESRI G, OLSON R E.Mechanisms controlling thepermeability of clays.Clay and Oay Mineral,1971.19(3):151~158
    Ho Y A, Pufahl D E, Barbour S L. 1989.Effects of contamination on volume change behavior of fine-grained soils.Materials from Theory to Practice, 1989 Proceedings of the 42nd Canadian Geotechnical Conference, Winnipeg, Manit, Can, Oct 23-25:272~279
    Kutilek,M. 1969.Non-Darcian Fundamentals of Water in soil Laminar Region,Symposium on Fundamentals of Transport Phenomena in Porous Media,l:5~9
    Miller,R.J.&Low, P. F.1963.Threshold Gradient for Water Flow in Clay Systems, Proc. SSSA, 6(27):18~22
    Mitehell,J.K.1976.Fundamentals of Soil Behavior. John Wiley & Sons,Inc. N.Y.,5:102~106.
    Mulhare, Michael J, Therrien.1995.Comparison of field and laboratory methods for the characterization of contaminated soils.Geotech Spec Publ. Proceeding of the Specialty Conference on Geotechnical Practice in Waste Disposal. Part 1, New Orlerns, LA, USA. 16 ~27
    Olsen,H.W.1966.Darcy’s Law in Saturated Kaolinite.Water Resources Research, 2:18~24
    Olsen,H.W. .1966. Darcy’s Law in Saturated Kaolinite ,Water Resources Research,2(2):6~10
    Piccoll, Stefano, Benoit.1995.Geo– environmental testing using the envirocone.Geotech Spec Publ.Proceeding of the Specialty Conference on Geotechnical Practice in Waste Disposal. Part 1, New Orlerns, LA, USA. 93 ~104
    Rajput V S, Higgins A J, Single M E.1994.Cleaning of excavated soil contaminated with hazardous organic compounds by washing. Water Environ Res. Sept - Oct 1994 Water Environment Federation, Alexandria, V A, USA. 819~827
    Sholkovitz E R.1989.Artifacts associated with chemical leaching of sediments for rare-earth elements. Chem.Geol,77: 47~51
    Sridharan A, Nagaraj T S, Sivapullaiah P V.1980.Heaving of soil due to acid contamination. Geotechnique, 2:88~93
    Saturated Porous Media,Journal of Geophysical Research, 5:32~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700