超空泡火箭深水炸弹入水弹道研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水中运动的物体,当其表面上任意点处的压力达到或接近于水的饱和蒸汽压时,溶解在水中的微气核重新逸出,在运动体表面不断形成充满水和水蒸气的空泡。空泡长度接近或超过物体的长度时称为超空泡。利用超空泡的减阻原理,实现水中兵器速度的突破具有重要意义。
     文中采用理论分析与数值模拟相结合的方法,对某型号火箭深水炸弹入水中的流固耦合现象进行了分析,把入水弹道划分四个阶段,总结了每个阶段的特点;构建了入水弹道数学模型;利用FLUENT和LS-DYNA两个软件进行了场分析,得到了该型号火箭深水炸弹在自然空化条件下的一些结论:
     在标准大气压下,σ=0.107是该型火箭深水炸弹的临界空化数;其空泡分离点位于头部稍后5~7.5cm的圆弧部位处,此位置是固定的,不随空化数的改变而改变:相同空化数下由于速度和环境压力的不同会有不同的空泡尺寸;随着空化数的减小,超空泡在弹体上的长度逐渐增大,总阻力系数逐渐减小,对于该种头型,其减阻能力可以达到52.3%~86.5%;深水炸弹入水的撞击压力,其值大小与入水速度相关,随入水速度的增加而增加;不同速度下,该型深水炸弹入水撞击压力持续时间为200微秒;该型深水炸弹的尾翼,在入水初期,使弹道出现不稳定。
As the pressure of minimum point on surface reach or close to the saturated vapor pressure for movement of objects in the water,the bubbles of dissolved in water will re-escape,then they successive form to cavitation bubble that full of water and water vapor.The length of cavitation bubble approach or exceed the length of objects is known as supercavity.Exploit drag reduction principle of supercavity,which have great significance for achieve underwater weapons' speed breakthrough.
     This paper analyze fluid-structure interaction phenomenon of enter water for rocket depth bomb use the method of theoretical analysis and numerical simulation combination,and analyze every phenomenon of four phase according to trait of the depth charge entry water and summarize the characteristics of each phase.The model of water entry trajectory is set up.Then, current field is simulated by using the FLUENT software and LS-DYNA software. Several conclusions of natural cavitation can be get for this type depth bomb, and following are main points.
     At standard presureσ= 0.107 is critical cavitation factor for this type depth bomb.Cavitation bubble separation point fixed at circle position 5~7.5cm later projectile nose,and this position is fixed,not with the cavitation factor change.The size of cavitation bubble is different owing to speed and environment pressure are different for the same cavitation factor.With the decrease in cavitation factor,the length of supercavity is gradually increasing,total resistance coefficient obvious reduce.Skin friction can be reduced 52.3%~86.5% for the this type nose shape.The valve of impingerment pressure for projectile water-entry is relative with velocity,it increase in direct proportion to speed. Impingerment pressure operation on the duration of 200 microseconds In fifferent water-entry speed.The tail of this type of depth bomb makes ballistic instability in the water-entry early.
引文
[1]严忠汗.试论鱼雷入水问题[J].中国造船,2002,43(3):88-92
    [2]傅金祝.德国超空泡水中兵器的研究现状[J].水雷战与舰船防护,2005.4:12-17
    [3]宋伟峰.超空泡技术将改变海战模式[J].舰载武器,2003.2:37-40
    [4]齐鄂荣,曾玉红.工程体力学[M].武汉:武汉大学出版社,2005,416-417
    [5]夏志军.火箭式深弹武器系统的现状与发展[J].舰载武器,2002.2:41-45
    [6]Von Karman.T,et al.The impact on seaplane floats during loading[R].NACA.TN2321.National advisory Committee for Aeronautics 1929
    [7]Burt F.S.New Contribution to Hydroballistics,in Advance in Hydroscience.Chow V T Edit.New York,N.Y.,Academic Press,1964,1:182-280
    [8]张宇文,王育才,党建军.细长体空泡型试验研究[J].水动力学研究与进展.A辑,2004,19(3):394-400
    [9]袁绪龙,张宇文,刘乐华.水下航行体通气超空泡形态实验研究[J].应用力学学报,2004,21(3):33-37
    [10]袁绪龙,张宇文,王育才等.水下航行体通气超空泡非对称性研究[J].力学学报,2004,36(2):146-150
    [11]陈伟政,张宇文,李斌.轴对称超空泡稳定性分析[J].船舶力学,2006,10(1):3-8
    [12]邓飞,张宇文,陈伟政等.头形对细长体超空泡生成与外形影响的实验研究[J].西北工业大学学报,2004,22(3):269-273
    [13]谢正桐,何友声,朱世权.零攻角和小攻角下带空泡轴对称细长体的水动力计算[J].水动力学研究与进展.A辑,1996,11(6):681-689
    [14]谢正桐,何友声.小攻角下轴对称细长体的充气肩空泡试验研究[J].实验力学,1999,14(3):279-287
    [15]谢正桐,何友声,朱世权.小攻角带空泡细长体的试验研究.水动力学研究与进展,A辑,2001,16(3):374-381
    [16]Feng Xue-mei,Lu Chuan-jing,Hu Tian-qun.Experimental research on a supercavitatingslender body of revolution with ventilation.Journal of Hydrodynamics,2002,Vol.14(2):17-23
    [17]Cheng Xiao-jun,Lu Chuan-jing.On the Partially Cavitating Flow Around Two-Dimensional Hydrofoils.Applied Mathematics and Mechanics.2000.Vol.21(12):1450-1459
    [18]Wu Lei,Lu Chuan-jing.An approach in modeling two-dimensional partially cavitation flow.Journal of Hydrodynamics.Ser.B.2002.Vol.14(1):45-51
    [19]程晓骏,鲁传敬.二维水翼的局部空泡研究[J]应用数学和力学,20002,21(2):1310-1318
    [20]李福新,傅慧萍.基于面元法回转体定长局部空泡的绕计算[J].应用力学学报,2002,19(1):66-69
    [21]傅慧萍,李福新.回转体局部空泡绕非线性分析[J].力学学报,2002,34(2):278-284
    [22]朱荣荣.水下高速运动体超空泡及可靠性研究[D].哈尔滨工程大学硕士论文,2007:30-35
    [23]顾建农,高永琪,张志宏等.系列头型空泡特征及其对细长体阻力特性影响的实验研究[J].海军工程大学学报,2003,15(4):5-9
    [24]Mackey A.M.A mathematical model of water entry[R].AD A085774,1979
    [25]颜开,史淦君,薛晓中.用Mackey方法计算鱼雷带空泡航行时的入水弹道[J]弹道学报,1998,10(2):93-96
    [26]叶取源.用E-L方法计算物体垂直入水空泡的面闭合和深闭合[J].应用力学学报,1990,7(4):17-24
    [27]陈学农,何友声.平头物体三维带空泡入水的数值模拟[J].力学学报,22(2):129-137
    [28]陈九锡,颜开.用MAC方法计算平头弹体垂直等速入水空泡[J].水动力学研究与进展,1986,1:32-35
    [29]宣建明,陈九锡.锥和球形头部物体的垂直入水计算[J].水动力学研究与进展A 辑,1991,6(1):26-33
    [30]颜开,史淦君,薛晓中..用Mackey方法计算鱼雷带空泡航行时的入水弹道[J].弹道学报,1998,10(2):93-96
    [31]朱福亚.火箭弹构造与作用[M].北京:国防工业出版社,2005:158-171
    [32]刑景堂,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38
    [33]陈鑫.通气空泡研究[D].上海交通大学博士学位论文,2006:1-3
    [34]张志宏,顾建农,范武杰等.旋转弹体高速入水水中弹道的模拟方法[J].海军工程大学学报,2000,6:1-5
    [35]顾建农,张志宏,郑学龄.弹体入水弹道研究综述[J].海军工程大学学报,2000,1:18-23
    [36]詹致祥.鱼雷体力学[M].西安:西北工业大学出版社,2005
    [37]L.M.米尔恩-汤姆森.理论体动力学[M].李裕立,晏名文译.北京:机械工业出版社,1984:617-633
    [38]顾建农,张志宏,范武杰.旋转弹体入水弹道的计算方法[J].海军工程大学报,2001.Vol.13(4):1-7
    [39]Coutier-Delgosha,O.,Forte-Patella,R.and Rebound,J.L.,Evaluation of the turbulence model influence on the numerial simulation of unsteady cavitation.J Fluid Eng.,2003.Vol.125:38-45
    [40]Wu,J.,Utturkar,Y.and Senocak,I.et al.,Impact of turbulence and compressibility modeling on three-dimensional cavitating flow computations.AIAA 33~(rd) Fluid Dynamic Conference.2003:203-426
    [41]Yakhot,V.and Orszag,S.A.,Renormalization group analysis of turbulence Ⅰ:basic theory.Journal of Scientific Computing.1986.Vol.1(1):1-51
    [42]Choudhury,D.,Introduction to the renormalization group method and turbulence modeling.FLUENT Inc.Technical Memorandum.1993
    [43]江帆,黄鹏.FLUENT高级应用与实例分析[M].北京:清华大学出版社,2008:35-38
    [44]王瑞金,张凯,王刚.FLUENT技术基础与应用实例[M].北京:清华大学出版社,2007
    [45]韩占忠,王敬,兰小平.FLUENT体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [46]陶文铨.数值传热学.第二版[M].西安:西安交通大学出版社,2005:136-176
    [47]王福军.计算体力学--CFD软件原理与应用.北京:清华大学出版社,2004:30-60
    [48]H.Rose and J.S.Mcnown.cavitation and pressure distribution,head form at zero angle of yaw.Iowa institute of hydraulic research,state university of Iowa city,1948
    [49]Saurel,R..and.Cocchi,J.P.,Numerical Study of Cavitation in the Wake of a Hypervelocity Underwater Projectile.Journal of Propulsion and Power.1999,.15(4):513-522
    [50]FLUENT 6.3 Documentation.FLUENT Inc.2003.
    [51]黄寿康.体动力.弹道.载荷.环境[M].北京:中国宇航出版社,1991
    [52]Turkel,E.,"Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations," Journal of Computational Physics.1987,Vol.72,277-298
    [53]孔珑.两相体力学[M].北京:高等教育出版社,2004,2-83
    [54]李裕春,时党勇,赵远.ANSYS11.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2008
    [55]时党勇,李裕春,张胜民.ANSYS/LS-DYNA8.1进行显式动力分析[M].北京:清华大学出版社,2005
    [56]ANSYS/LS-DYNA中国技术支持中心.ANSYS/LS-DYNA算法基础和使用方法[M].北京:北京理工大学出版社,1999
    [57]李裕春,时党勇,赵远.ANSYS10.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2006
    [58]尚晓江,苏建宇.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利出版社,2005
    [59]何涛,杨靖.ANSYS10.0/LS-DYNA非线性有限元分析实例执导教程[M].北京:机械工业出版社,2007
    [60]路龙龙.空投鱼雷技术研究[D].西北工业大学硕士学位论文,2006:35-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700