二维熔体相变特征及其不均匀性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于二维薄膜材料具有不同于块体材料的物理和化学性能,从而引起了人们的广泛关注。二维薄膜的生长过程直接影响到材料表面及界面结构,从而使得薄膜材料的热学、电学、光学等性质产生显著变化。因此,开展二维熔体薄膜的相变过程及结构演变规律的研究,对于薄膜中晶体结构的控制和薄膜器件的研制开发有着重要的理论意义和应用价值。
     本论文采用分子动力学模拟方法深入研究了二维态薄膜在快速冷却过程中的结构演变,揭示了二维薄膜的相变现象及结构演化规律。研究结果对于通过控制二维熔体冷却条件来实现二维薄膜材料的性能优化具有重要的理论指导意义。全文的主要内容如下:
     (1)二维空间下的凝固能更直观地反映凝固的本质特征,这对人们更好的理解凝固的微观本质有着重要的研究价值。第三章主要研究了在准二维空间下态金属薄膜的凝固过程,并重点分析了凝固过程中局域原子的结构演变规律和动力学特性。在较高的冷却速度下,态金属Cu易形成“环状短程有序结构”;在足够低的冷却速度下,形成FCC单晶结构;当冷速介于两者之间时,易形成非晶和FCC晶体特征共存的复合结构。通过进一步研究表明,我们发现径向分布函数第二峰的劈裂是“环状短程有序结构”和“FCC短程有序结构”在凝固过程中相互竞争的结果。这种生长竞争是造成准二维体系中晶体和非晶结构共存的主要原因。事实上,材料中特征结构单元的相互连接和密排是非晶态中结构不均匀性的一种体现,而结构不均匀与动力学不均匀的关系一直是困扰研究者的一个难题。我们提出了一个表征材料动力学特征的参数P(a,τ,v)来评估在不同的冷却速度下材料的原子局域排列序,通过研究发现在凝固过程中P(a,τ,V)与冷却速度成正幂指数关系,而形核率与冷却速度成反幂指数关系。动力学参数P(a,τ,v)可以恰如其分地表征材料内部的原子排列情况。这对准二维态金属的凝固有重要的指导意义。通过进一步研究准二维非晶薄膜的径向分布函数,发现径向分布函数第二峰的劈裂与原子排列中的短程序以及中程有序结构的比例分数有直接的关系。
     (2)第四章研究了二维态Si在凝固过程中局域原子结构的变化情况。发现液液相变既存在于块体态Si中,也存在准二维状态下。我们认为,径向分布函数中第一峰与第二峰之间的肩峰的形成是准二维态Si发生液液相变的标志。在准二维态Si中发生液液相变的根源是体系在短程序范围内形成了六角有序结构。六角有序结构的作用类似于晶胚,该结构为接下来的液固转变形成大尺寸次晶区提供了必要的结构起伏。六角有序结构及大范围次品区的形成,是造成准二维态Si在降温过程中由金属性向半金属性转变的根本原因。通过以上分析表明在二维态薄膜冷却过程中,体-非晶转变并不是简单的态结构的冻结,非晶内部原子排列并非全是完全无序结构。在二维薄膜中,径向分布函数第二峰劈裂,不是非晶形成的标志,而是内部出现了一定比例的有序团簇,是内部有序团簇和无序团簇统计平均的结果。
     (3)第五章主要研究了在准二维状态下Al-Fe、Au-Si两种态合金不同的凝固形式以及其非品形成能力。二维Al-Fe态合金冷却过程中,优先形成类似于晶胚的短程有序结构单元。这个短程序结构单元会作为晶体生长的核心,在一定的条件下转变长程序的晶体结构。在二维Au-Si态合金中,由于Au原子与Si原子的排布方式的差别较大,不易形成晶体生长的核心,具有很强的非晶形成能力。
     (4)第六章主要研究了一维CuZr合金非晶一晶体复合结构的拉伸力学性能。具有晶体芯-非晶壳体的一维CuZr合金,既保留了晶体结构良好的拉伸塑性(>40%),也提高了相当客观的抗拉强度(>1.5GPa)。并且,在拉伸过程中,内部晶体结构会发生B2-BCT转变,最后演变为非晶态结构。通过进一步分析表明,一维CuZr合金非晶-晶体复合结构中的原子在外力下遵循“扩散”规则。另外,这种复合结构在拉伸过程中呈现不均匀变化。这种变化归因于纳米材料的尺寸效应和内部结构的不均匀性。
     本文系统地阐述了在凝固过程中二维薄膜材料相变过程及原子演变规律,为以后二维薄膜材料的制备和应用提供了必要的理论依据和指导。
Ultrathin metal films with a thickness of one or a few monolayers attract much attention, since their spectial physical and chemical properties which are different from the bulk one. Generally, the growth process of ultrathin metal film will have a direct effect on the atomic structure of surface and interface, which in turn results in their's heat, electricity and optics properties. Therefore, the understanding on the phase transformation and structural evolution in two dimensional ultrathin metal film is significantly theoretical importance for the design of the film devices. Currently, numerous researches are devoted to build the relationship between the atomic arrangement in ultrathin metal film and their properties in nanoscale.
     In the present work, molecular dynamic simulations have been performed to investigate the structural evolution of quasi-two dimensional ultrathin metal film during cooling and to reveal the nature of phase transformation and structural evolution.These theories are important to guide the practical application of ultrathin metal film materials by controlling their cooling process. The main content of this thesis is as follows:
     (1) The structural and dynamical features of a liquid metallic nano-film during cooling are investigated by molecular dynamics simulations. Several unique structural transformations from liquid to nanocrystalline or glass are observed. Meanwhile, the crystalline fraction change and dynaical propensity are detailed discussed with different cooling rate. Results indicate a close relation between the local structural ordering and the dynamic signature. We use a new parameter P(a,τ,v) as an effective indicator for predicting both local structural order and dynamical propensity in liquid metallic film, and find the fraction of crystalline clusters follows a negative power-law scaling with the cooling rate increasing, which is the inverse of the P(a,τ,v). A quasi-two-dimensional inhomogeneous structural model, which contains both crystal-like and fully disordered regions, is proposed to interpret the origin of the splitting of the second peak in pair correlation functions of metallic glasses. Contrary to the perspective taken in previous studies, the splitting of the second peak is not the signature of the amorphous structure formation, but that of the local well-organized crystal-like structure formation. In fact, the second-peak splitting is a prototype of the crystal-like peak exhibiting distorted and vestigial features, which is the result of the statistical average of the crystal-like and disordered regions in the system.
     (2) The local atomic structure of the two dimensional liquid silicon during solidification is further investigated. Results show that the appearance of the left subpeak in pair correlation functions is the signature of the liquid-liquid phase transition (LLPT). The structural origin of the LLPT is the formation of a crystal-like ordered structure with a short-or medium-range scale, which in turn forms the local well-organized paracrystalline region. Unlike in the bulk liquid silicon, the stages of the LLPT and liquid-solid phase transition (LSPT) in the quasi-two-dimensional liquid silicon do not overlap. The crystal-like ordered structures formed in the LLPT are precursors which are prepared for the subsequent LSPT. Also observed was a strong interconnection between the appearance of the local well-organized paracrystalline region and the transition from the typical metal to the semimetal in the two-dimensional silicon. This study will aid in better understanding the essential phase change in two-dimensional liquid silicon. The above analysis shows that the liquid-amorphous transformation in quasi two-dimension is not just the simple freeze of liquid structure. The atomic arrangement in two-dimensional materials up cooling is not the pure results of the fully disordered clusters. The split of the second peak in pair correlation functions is not the signiture of the formation of the amorphous, but the appearance of ordered clusters with a certain percentange. It can be viewed as the result of the statistical average of the crystal-like and disordered regions in the system. The findings of this study provide physical and dynamic insights into the solidification feature of the quasi-two-dimensional metallic melt.
     (3) The solidification process and the glass-forming ability of Al-Fe alloy, as well as Au-Si alloy, are mainly studied under quasi-two-dimensional states. In the cooling process of two-dimensional Al-Fe liquid, it is more likely to form the short-range ordered structures which serve as the embryo. The short-range ordered structure will grow and transform into long-range crystalline structure under certain conditions. However, for the two-dimensional Au-Si, due to the different atomic arrangement of Au and Si atoms, it is different to form the crystal nuclei, so the two-dimensional Au-Si exhibits a strong glass-forming ability.
     (4) Dynamic elongation of the core/shell CuZr metallic nanowire (MNW) has been examined by molecular dynamics (MD) methods. Results indicate that the deformation region in the core/shell MNW represents an evident martensitic phase-transforming feature, which subsequently results in local amorphization. Meanwhile, the finite-size effect on the MNW with different crystalline-amorphous ratio is discussed. In addition, stress variation and Honeycutt and Anderson (HA) bond-type index during elongation provide reliable evidence to explain why these phenomena take place in the MNW. Our results illustrate that the corresponding martensitic phase transformation and local amorphization are closely related to the finite-size effect and crystalline-amorphous interfaces.
引文
[1]陆坤权,态物理进展概述.物理1994,23,257-265.
    [2]A. K. Doolittle, Studies in newtonian flow. Ⅱ. the dependence of the viscosity of liquids on free-space. J. Appl. Phys.1951,22,1471.
    [3]X. F. Bian, M. H. Sun, L. Wu, et al. Variation of activation energy in Al-Ni-based alloy melts. Mater. Res. Bull.2002,37,1451.
    [4]H. Sasaki, E. Tokizaki, X. M. Huang, et al. Temperature dependence of the viscosity of molten silicon measured by the oscillating cup method. J. Appl. Phys. 1995,34,3432-3436.
    [5]陆坤权,态物理进展概述.物理1994,23,257-265.
    [6]Y. Marcus, Introduction to liquid state chemistry. WILEY, London 1977.
    [7]陆坤权,态物理发展展望.物理1997,26,23-25.
    [8]A. P. Sokolo, Why the glass transition is still interesting. Science 1996,273, 1675-1676.
    [9]F. Sette, M.H. Kirseh, Dynamics of glasses and glass-forming liquids studied by inelastic X-ray scattering. Science 1998,280,1550.
    [10]P. H. Poole, T. Grande, C. A. Angell, P. Mcmillan, Polymorphic phase transitions in liquids and glasses. Science 1997,275,322-323.
    [11]胡汉起,金属凝固原理.机械工业出版社北京,2000.
    [12]G. S. Cargill, Structural investigation of noncrystalline nickel-phosphorus alloys. J. Appl. Phys.1970,41,12.
    [13]M. H. Cohen, D. Tumbull, Metastability of amorphous structures. Nature 1964, 203,964.
    [14]G. S. Cargill, Dense random packing of hard spheres as a structural model for noncrystalline metallic solids. J. Appl Phys.1970,41,2248.
    [15]J. D. Bernal, A geometrical approach to the structure of liquids. Nature 1959,183, 141-147.
    [16]G. D. Scott, Radial distribution of the random close packing of equal spheres. Nature 1962,194,956-957.
    [17]M. H. Cohen, D. Turnbull, Metastability of amorphous structures. Nature 1964, 203,964.
    [18]J. L. Sadoc, J. Dixmier, A. Ginier, Theoretical calculation of dense random packings of equal and non-equal sized hard spheres applications to amorphous metallic alloys. J. Non-Cryst. Solids 1973,12,46-60.
    [19]G. A. N. Connel, Dense random packings of hard and compressible spheres. Solid State Commun 1975,16,109-112.
    [20]J. A. Barker, M. R. Hoare, J. L. Finney Relaxation of the Bernal model. Nature 1975,257,120-122.
    [21]P. H. Gaskill, A new structural model for transition metal-metalloid glasses. Nature 1978,276,484-485.
    [22]D. B. Miracle, A structural model for metallic glasses. Nature 2004,3,697-702.
    [23]H. W. Sheng, W. K. Luo, F. M. Alamgir, et al. Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006,439,419-425.
    [24]J. Enderby, Direct methods for the determination of atomic-scale structure of amorphous solids, J. Non-Cryst. Solids 1987,31,1-40.
    [25]黄胜涛,非晶态材料的结构和结构分析.科学出版社北京,1987.
    [24]W. William, Jr. Warren, Summary-experiment. J. Non-Cryst. Solids 1996, 205-207,930-933.
    [25]G. Kahl, J. Hafner The influence of medium- and long-range forces on the structure of liquid binary alloys. Phys. Chem. Liq.1988,17,267-277.
    [26]徐祖耀,金属材料热力学.科学出版社北京,1981.
    [27]下地光雄,态金属.科学出版社北京,1987.
    [28]陈焕盗,结晶化学.山东教育出版社济南,1985.
    [29]S. R. Elliott, Medium-range structural order in covalent amorphous solids. Nature 1991,354,445-452.
    [30]S. R. Elliott, Medium-range structural order in covalent amorphous solids. Nature 1991,354,445-452.
    [31]L. E. Busse, S. R. Nagel, Temperature dependence of the structure factor of As2Se3 glass up to the glass transition. Phys. Rev. Lett.1981,47,1848-1851.
    [32]L. E. Busse, Temperature dependence of the structures of As2Se3 and AsxS1-x glasses near the glass transition. Phys. Rev. B 1984,29,3639-3651.
    [33]S. R. Elliott, Origin of the first sharp diffraction peak in the structure factor of covalent glasses. Phys. Rev. Lett.1991,67,711-714.
    [34]W. Hoyer, R. Jodicke, Short-range and medium-range order in liquid Au-Ge alloys. J.Non-Cryst. Solids 1995,192-193,102-105.
    [35]M. Cobb, D. A. Drabold, Ab initio molecular-dynamics study of liquid GeSe2-Phys. Rev. B 1997,56,3054-3065.
    [36]B. P. Alblas, W. Vander Lugt, J. Dijkstra, W. Geertsma, C.Van. Dijk, Structure of liquid Na-Sn alloys. J. Phys. F:Metai Phys.1983,13,2465-2477.
    [37]B. P. Alblas, C. Van der Marel, W. Geertsma, J. A. Meijer, A. B. Van Oosten, J. Dijkstra, P. C. Stein, W. Vander Lugt, Experimental results for liquid alkali-group IV alloys. J. Non-Cryst. Solids 1984,61,201-206.
    [38]M. Tenhover, M. A. HaZle, R. KGrasselli, C. W. Tompson, Chemical bonding and the atomic structure of SixSe1-x glasses. Phys. Rev. B 1983,28,4608-4614.
    [39]S. Sachdev, D. R. Nelson, Order in metallic glasses and icosahedral crystals. Phys. Rev. B 1985,32,4592-4606.
    [40]M. L. Saboungi, R. Bioquist, K. J. Volin, D. L. Priee, Structure of liquid equiatomic potassium-lead alloy:A neutron diffraction experiment. J. Chem. Phys. 1987,87,2278-2281.
    [41]J. L. Robertson, S. C. Moss, K. G. Kreider, Comparison of amorphous and quasicrystalline films of sputtered Al0.72Mn0.22Si0.06.Phys. Rev. Lett.1988,60, 2062-2065.
    [42]E. Matsubara, K. Harada, Y. Waseda, H. S. Chen, A. Inoue, T. Masomoto, X-ray diffraction study of amorphous Al77.5Mn22.5 and Al56Si30Mn14 alloys. J. Mater. Sci. 1988,23,753-756.
    [43]J. Hafner, S. S. Jaswa, Interplay between atomic and electronic structure in metallic glasses:a first principles investigation. J. Phys. F:Met. Phys.1988,18, L1-L8.
    [44]T. Fukunaga, S. Urai, N. Watanabe, K. Suzuki, Partial structure of Ni-Ni correlation in Ni-42 at.%V amorphous alloy by neutron diffraction. J. Phys. F: Met. Phys.1988,18,99-104.
    [45]A. P. Tsai, K. Hiraga, A. Inoue, T. Masumoto, H. S. Chen, Annealing-induced icosahedral glass phase in melt-spun Al-Cu-V and Al-Si-Mn alloys. Phys. Rev. B 1994,49,3569-3572.
    [46]J. D. Bernal, A geometrical approach to the structure of liquid. Nature 1959,183, 141.
    [47]C. H. Bennett, Serially deposited amorphous aggregates of hard spheres. J. App. Phys 1972,43,2727.
    [48]V. P. Voloshin, Y. I. Naberukhin, On the origin of the splitting of the second maximum in the radial distribution function of amorphous solids J. Struct. Chem.1997,38,62.
    [49]S. P. Pan, J. Y. Qin, W. M. Wang, and T. K. Gu, Origin of splitting of the second peak of pair function for metallic glasses. Phys. Rev. B 2011,84,092201.
    [50]H. Li, F. Pederiva, Anomalies in liquid structure of Ni3Al alloys during a rapid cooling process. Phys. Rev. B 2003,68,054210.
    [51]H. Li, Shoulder-peak formation in the process of quenching. Phys. Rev. B 2003, 68,024210.
    [52]H. Li, G. H. Wang, X. F. Bian, F. Ding, Local cluster formation in cobalt melt during the cooling process. Phys. Rev. B 2002,65,035411.
    [53]H. Li, F.Pederiva, Variational Monte Carlo study of local order in liquid and solid 4He with shadow wave functions, Phys.Rev.B 2005,71,054513.
    [54]V. G. Prokoshkina, L. M. Kaputkina, Structure heredity, aging and stability of strengthening of Cr-Ni maraging steels. Mater. Sci. Eng A 2006,438-440(2), 222-227.
    [55]J. Z. Wang, J. G. Qi, H. L. Du, et al. Heredity of aluminum melt caused by electric pulse modification (Ⅰ). J. Iron Steel Res. Int.2007,14(4),75-78.
    [56]J. G. Qi, J. Z. Wang, H. L. Du, et al. Heredity of aluminum melt caused by electricpulse modification (Ⅱ). J. Iron Steel Res. Int.2007,14(5),76-78.
    [57]N. Palle, An adaptive mesh refinement scheme for solidification problems. Metall. Mater. Trans. A 1996,27,707.
    [58]N. Provatas, N. Goldenfeld, J. Dantzig, Efficient Computation of dendritic microstructures using adaptive mesh refinement. Phys. Rev. Lett.1998,80, 3308-3311.
    [59]P. Rudolph, N. Schafer, T. Fukuda, Crystal growth of ZnSe from the melt. Mater. Sci. Eng. R 1995,15,85-133.
    [60]J. F. Wang, A. Omino, M. Isshiki, Bridgman growth of twin-free ZnSe single crystals. Mater. Sci. Eng. B 2001,83,185-191.
    [61]C. M. Bao, U. Dahlborg, N. Adkins, M. Calvo-Dahlborg, Structural characterisation of Al-Ni powders produced by gas atomization. J. Alloys. Compd. 2009,481,199-206.
    [62]I. Ohnaka, I. Yamauchi, Formation of new phases by chemical leaching of rapidly solidified alloys. Mater. Sci. Eng A 1994,181-182(15),1190-1194.
    [63]Y. L. Tang, M. J. Kramer, K. W. Dennis, et al. On the control of microstructure in rapidly solidified Nd-Fe-B alloys through melt treatment. J. Magn. Mater.2003, 267,307-315.
    [64]V. Manov, P. Popel, E. Brook-Levinson, et al. Influence of the treatment of melt on the properties of amorphous materials:ribbons, bulks and glass coated microwires. Mater. Sci. Eng. A 2001,304-306,54-60.
    [65]M. Enisz, E. Kristof-Mako, D. Oravetz, Phase transformation in doped Y-Ba-Cu-O superconductors obtained by different melt processing techniques. J. Eur. Ceram. Soc.2007,27,1105-1111.
    [66]H. J. Koh, P. Rudolph, N. Schaefer et al. The effect of various thermal treatments on supercooling of PbTe melts. Mater. Sci. Eng. B 1995,34,199.
    [67]P. J. Li, V. I. Nikitin, E. G. Kandalova et al. Effect of melt overheating, cooling and solidification rates on Al-16 wt.% Si alloy structure. Mater. Sci. Eng. A 2002, 332,371.
    [68]V. Sidorov, P. Popel, M. Calvo-Dahlborg et al. Heat treatment of iron based melts before quenching. Mater. Sci. Eng. A 2001,304-306,480.
    [69]Z. Yang, C. G. Kang, P. K. Seo, Evolution of the rheocasting structure of A356 alloy investigated by large-scale crystal orientation observation. Scripta Mater. 2005,52,283-288.
    [70]J. Deng, Q. Y. Long, F. Ye et al. Fractal characteristics of the martensitic transformation in a Fe-29% Ni-0.16% C alloy. J. Phys. D 1996,29,2672.
    [71]J. Wang, S. X. He, B. D. Sun et al. Effects of melt thermal treatment on hypoeutectic Al-Si alloys. Mater. Sci. Eng. A 2002,338,101.
    [72]刘勇,李金山,胡锐,熔体过热对Ag2Cu合金生长取向的影响.特种铸造及有色合金2004,1,22-23.
    [73]何树先,孙宝德,王俊,熔体温度处理工艺对A319合金组织和性能的影响.中国有色金属学报2001,11,834.
    [74]边秀房,刘相法,马家骥,铸造金属遗传学.山东科学技术出版社济南,1999.
    [75]A. Levi, Heredity in cast iron. The Iron Age 1927,6,960.
    [76]W. Luzny, Kinetics of heterogeneous nucleation and the memory effect in liquid gallium. J. Phys-Condens. Mat.1990,2,10183.
    [77]H. Tanaka, Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids. J. Non-Cryst Solids 2005,351,678-690.
    [78]C. Fan, A. Inoue, Influence of the liquid states on crystallization process of nanocrystal-forming Zr-Cu-Pd-Al metallic glasses. Appl. Phys. Lett.1999,75, 3644.
    [79]V. Simonet, F. Hippert, M. Audier, R. Bellissent, Local order in liquids forming quasicrystals and approximant phases. Phys. Rev. B 2001,65,024203.
    [80]F. Q. Zu, Z. G. Zhu, L. J. Guo, W. J. Shan, Observation of an anomalous discontinuous liquid-structure change with temperature. Phys. Rev. Lett.2002,89, 125505.
    [81]D. Q. Yu, M. Chen, X. J. Han, Structure analysis methods for crystalline solids and supercooled liquids. Phys. Rev. E 2005,72,051202.
    [82]Q. P. Cao, J. F. Li, Y. H. Zhou, A. Horsewell, J. Z, Jiang, Free volume evolution and its temperature dependence during rolling of Cu60Zr20Ti20 bulk metallic glass. Appl. Phys. Lett.2005,87,101901.
    [83]J. Liu, J. Z. Zhao, Z. Q. Hu, Pressure effect on the formation and the thermal stability of glassy Cu. Comput. Mater. Sci.2006,37(3),234.
    [84]B. Wei, G. Yang, Y. Zhou, High undercooling and rapid solidification of Ni-32.5Sn eutectic alloy. Acta. Metall. Mater.1991,39,1249.
    [85]X. Q. Lv, X. F. Bian, T. Mao et al. Fragility and structure of Al-Cu alloy melts. Phys. B 2007,392,34-37.
    [86]Y. Y. Wu, X. F. Liu, X. F. Bian et al. Four-branched compounds coupled Si andiron-rich intermetallics in near eutectic Al-Si alloys. J. Alloy. Compd.2007, 437(8),80-83.
    [87]K. K. Song, X. F. Bian, J. Guo et al. Study of non-isothermal primary crystallizationkinetics of Al84Ni12Zr1Pr3 amorphous alloy. J. Alloy. Compd.2008, 465(3), L7-L13.
    [88]边秀房,王伟民,潘学民等,A1-TM合金溶体的中程有序结构及其演化规律.化学学报2002,60(7),1215-1219.
    [89]李喜珍,边秀房,李秀军等,Al-Ti-B合金中TiB2和AlB2(?)勺从头算研究.金属学报2001,37(3),235-238.
    [90]L. Yang, J. Z. Jiang, K. Saksl et al. Origin of the pre-peak in Zr70Cu29Pd1 metallic glass. J. Phys-Condens. Mat.2007,19,476217.
    [91]X. D. Wang, S. Yin, Q. P. Cao et al. Atomic structure of binary Cu64.5Zr35.5 bulk metallic glass. Appl. Phys. Lett.2008,92(1),011902.
    [92]李辉,边秀房,王伟民,纯铝熔体的微观动力学行为.原子与分子物理学报2000,17(1),123-128.
    [93]H. Li, Y. F. Li, K. M. Liew, J. Zhang, X. Liu, Spiral nucleation of silicon solidified on heterogeneous surface of carbon nanocones. Appl. Phys. Lett.2009, 95183101.
    [94]H. Li, Y. Li, K. M. Liew, J. Zhang, X. Liu, R. Fan, Theoretical study of hierarchical structures and heredity effect of silicon solidifying on carbon nanotube. Appl. Phys. Lett.2009,95 063106.
    [95]Y. F. Li, H. Yu, H. Li, K. M. Liew, X. Liu, Lamellar nanostructures of silicon heterogeneously solidified on graphite sheets. Appl. Phys. Lett.2010,96,163113.
    [96]H. L. Peng, M. Z. Li, W. H. Wang, C. Z. Wang, K. M. Ho, Effect of local structures and atomic packing on glass forming ability in CuxZr100-x metallic glasses. Appl. Phys. Lett.2010,96,021901.
    [97]H. L. Peng, M. Z. Li, W. H. Wang, Structural signature of plastic deformation in metallic glasses. Phys. Rev. Lett.2011,106,135503.
    [98]H. L. Peng, M. Z. Li, B. A. Sun and W. H. Wang, Characterization of mechanical heterogeneity in amorphous solids, J. Appl. Phys.2012,112,023516.
    [99]W. H. Wang, Properties inheritance in metallic glasses, J. Appl. Phys.2012,111, 123519.
    [100]王广厚,团簇物理的新进展(Ⅰ).物理学进展1994,14,15-65.
    [101]G. H. Wang, L. Dou, Z. G. Liu, T. N. Zhao, Y. H. Jiang, J. H. Yang, Isotopic effect in the formation of copper-ion clusters by neutral-argon-atom bombardment. Phys. Rev. B 1988,37,9093-9096.
    [102]J. M. Kosterlitz, D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C:Solid State Phys 1973,6,1181.
    [103]A. P. Young, Melting and the vector coulomb gas in two dimensions. Phys. Rev. B 1979,19,1855-1866.
    [104]D. R. Nelson, B. I. Halperin, Dislocation-mediated melting in two dimensions. Phys. Rev. B 1979,19,2457-2484.
    [105]D. R. Nelson, Defects and geometry in condensed matter Physics. Cambridge: Cambridge University Press,2002.
    [106]K. Chen, T. Kaplan, M. Mostoller, Melting in two-dimensional Lennard-Jones systems:observation of a metastable hexatic phase. Phys. Rev. Lett.1995,74, 4019-4022.
    [107]F. L. Somer, Jr, G. S. Canright, T. Kaplan, K. Chen, M. Mostoller, Inherent structures and two-stage melting in two dimensions. Phys. Rev. Lett.1997,79, 3431-3434.
    [108]A. Jaster, Computer simulations of the two-dimensional melting transition using hard disks. Phys. Rev. E 1999,59,2594-2602.
    [109]C. H. Mak, Large-scale simulations of the two-dimensional melting of hard disks. Phys. Rev. E 2006,73,065104(R).
    [110]S. Z. Lin, B. Zheng, S. Trimper, Computer simulations of two-dimensional melting with dipole-dipole interactions. Phys. Rev. E 2006,73,066106.
    [111]C. A. Murray, D. H. van Winkle, Experimental observation of two-stage melting in a classical two-dimensional screened coulomb system. Phys. Rev. Lett. 1987,58,1200-1203.
    [112]A. H. Marcus, S. A. Rice, Observations of first-order liquid-to-hexatic and hexatic-to-solid phase transitions in a confined colloid suspension. Phys. Rev. Lett. 1996,77,2577-2580.
    [113]R. E. Kusner, J. A. Mann, J. Kerins, A. J. Dahm, Two-stage melting of a two-dimensional colloidal lattice with dipole interactions. Phys. Rev. Lett.1994, 73,3113-3116.
    [114]R. E. Kusner, J. A. Mann, A. J. Dahm, Two-stage melting in two dimensions in a system with dipole interactions. Phys. Rev. B 1995,51,5746-5759.
    [115]K. Zahn, G. Maret, Dynamic criteria for melting in two dimensions. Phys. Rev. Lett.2000,85,3656-3659.
    [116]D. Raabe,计算材料学.化学工业出版社北京,2002.
    [117]陈舜麟,计算材料科学.化学工业出版社北京,2005.
    [118]Y. M. Wang, J. Li, A. V. Hamza, T. W. Barbee, Ductile crystalline-amorphous nanolaminates. Proc Natl Acad Sci USA 2007,104,11155-11160.
    [119]K. N. Pham, A. M. Puertas, J. Bergenholtz, S. U. Egelhaaf, A. Moussaid, P. N. Pusey, A. B. Schofield, M. E. Cates, M. Fuchs, W. C. K. Poon, Multiple glassy states in a simple model system. Science 2002,296,104-106.
    [120]R. Candelier, O. Dauchot, G. Biroli, Building blocks of dynamical heterogeneities in dense granular media. Phys. Rev. Lett.2009,102,088001.
    [121]J. P. Garrahan, D. Chandler, Geometrical explanation and scaling of dynamical heterogeneities in glass forming systems. Phys. Rev. Lett.2002,89,035704.
    [1]B. J. Alder, T. E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys.1957,27,1208-1209.
    [2]B. J. Alder, T. E. Wainwright, Studies in Molecular Dynamics. I. General Method. J. Chem. Phys.1959,31(2),459-466.
    [3]A. Rahman, Correlations in the motion of atoms in liquid Argon. Phys. Rev.1964, 136 (2A), A405-A411.
    [4]A. W. Lees, S. F. Edwards, The computer study of transport process under extreme condition. J. Phys. C:Solid State Phys 1972, V5 (15),1921-1928.
    [5]J. Schiotz, F. D. Di, Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes. Nature 1998,391,561-563.
    [6]S. R. Phillpot, D. Wolf, H. Gleiter, Molecular-dynamics study of the synthesis and characterization of a fully dense, three-dimensional nanocrystalline material. J. Appl. Phys.1995,78 (2),847-861.
    [7]A. Rahman, F. H. Stillinger, Molecular dynamics study of liquid water. J. Chem. Phys.1971,55,3336-3359.
    [8]H. C. Anderson, Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys.1980,72,2384-2393.
    [9]M. J. Gillan, M. Dixon, The calculation of thermal conductivities by perturbed molecular dynamics simulation. J. Phys. C 1983,16,869-878.
    [10]S. Nose, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys.1984,81,511-519.
    [11]R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett.1985,55,2471-2474.
    [12]T. Cagin, B. M. Pettitt, Molecular dynamics with a variable number of molecules. Mol. Phys.1991,72(1),169-175.
    [13]T. Cagin, B. M. Pettitt, Grand molecular dynamics:a method for open systems. Mol. Sim.1991,6(1-3),5-26.
    [14]T. Ozaki, Y. Iwasa, T. Mitani, Stiffness of single-walled carbon nanotubes under large strain. Phys. Rev. Lett.,2000,84,1712-1715.
    [15]M. S. Daw, M. I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett.1983,50,1285-1288.
    [16]M. S. Daw, M. I. Baskes, Embedded-atom method:Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 1984,29, 6443-6453.
    [17]M. W. Finnis, G. E. Sinclair, A simple empirical N-body potential for transition metals. Philos. Mag. A 1984,50,45.
    [18]A. Stukowski, B. Sadigh, P. Erhart, A. Caro, Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations. Model Simul. Mater. Sci.2009,7,075005.
    [19]G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han, A. V. Barashev, Development of an interatomic potential for phosphorus impurities in agr-iron. J. Phys-Condens. Mat.2004,16,52629.
    [20]M. I. Baskes, Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 1992,46,2727-2742.
    [21]B. Lee, M. I. Baskes, Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 2000,62,8564-8567.
    [22]B. Lee, M. I. Baskes, H. Kim, Y. K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 2001, 64,184102.
    [23]S. M. Valone, M. I. Baskes, R. L. Martin, Atomistic model of helium bubbles in gallium-stabilized plutonium alloys. Phys. Rev. B 2006,73,214209.
    [24]G. Wang, M. A. Van Hove, P. N. Ross, M. I. Baskes Monte carlo simulations of segregation in Pt-Re catalyst nanoparticles. J. Chem. Phys.2004,121,5410.
    [25]F. H. Stillinger, T. A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 1985,31,5262-5271.
    [26]S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.1995,117,1.
    [27]吴兴惠,项金钟,现代材料计算与设计教程.电子工业出版社北京,2002.
    [28]G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993,47,558-561.
    [29]G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996,6,15-50.
    [30]G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996,54,11169-11186.
    [31]廖沐真,吴国是,刘洪霖,量子化学从头计算方法.清华大学出版社北京,1984.
    [32]D. Ma, A. D. Stoica, X. L. Wang, Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat. Mater 2009,8,30.
    [33]C. H. Bennett, Serially deposited amorphous aggregates of hard Sspheres. J. Appl. Phys.1972,43,2727.
    [34]B. I. Halperin, D. R. Nelson, Theory of two-dimensional melting. Phys. Rev. Lett. 1978,41,121.
    [35]J. D. Honeycutt, H. C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem.1987,91,4950.
    [36]J. L. Finney, Random packings and the structure of simple liquids. The geometry of random close packing. Proc. R. Soc. Lond A 1970,319,479.
    [37]M. Z. Li, C. Z. Wang et al. Structural heterogeneity and medium-range order in ZrxCu100-x metallic glasses. Phys. Rev. B 2009,80,184201.
    [1]M. Li. W. L. Johnson, Instability of metastable solid solutions and the crystal to glass transition. Phys. Rev. Lett.1993,70,1120-1123.
    [2]B. Coluzzi, G. Parisi, P. Verrocchio, Thermo dynamical liquid-glass transition in a Lennard-Jones binary mixture. Phys. Rev. Lett.2000,84,306-309.
    [3]K. F. Kelton, Crystal nucleation in liquids and glasses. Solid State Phys.1991,45, 75-177.
    [4]F. Trudu, D. Donadio, M. Parrinello, Freezing of a Lennard-Jones fluid:from nucleation to spinodal Regime. Phys. Rev. Lett.2006,97,105701.
    [5]J. X. Yang, H. Gould, W. Klein, Molecular-dynamics investigation of deeply quenched liquids. Phys. Rev. Lett.1988,60,2665-2668.
    [6]F. Li, X. J. Liu, H. Y. Hou, G. Chen, G. L. Chen, Atomistic structural evolution with cooling rates during the solidification of liquid nickel. Intermetallics 2011,19, 630-635.
    [7]P. R. Wolde, M. J. Ruiz-Montero, D. Frenkel, Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett.1995,75, 2714-2717.
    [8]I. A. Ovidko, Deformation of nanostructures. Science 2002,295,2386.
    [9]P. Schall, I. Cohen, D. A. Weitz, F. Spaepen, Visualising dislocation nucleation by indenting colloidal crystals. Nature 2006,440,319-323.
    [10]Y. M. Wang, J. Li, A. V. Hamza, T. W. Barbee, Ductile crystalline-amorphous nanolaminates. Proc Natl Acad Sci USA 2007,104,11155-11160.
    [11]K. N. Pham, A. M. Puertas, J. Bergenholtz, S. U. Egelhaaf, A. Moussaid, P. N. Pusey, A. B. Schofield, M. E. Cates, M. Fuchs, W. C. K. Poon, Multiple glassy states in a simple model system. Science 2002,296,104-106.
    [12]G. L. Chen, X. J. Liu, X. D. Hui, H. Y. Hou, K. F. Yao, C. T. Liu, J. Wadsworth, Molecular dynamic simulations and atomic structures of amorphous materials. Appl. Phys. Lett.2006,88,203115.
    [13]Y. Q. Cheng, E. Ma, Indicators of internal structural states for metallic glasses: Local order, free volume, and configurational potential energy. Appl. Phys. Lett. 2008,93,051910.
    [14]X. D. Wang, J. Bednarcik, H. Franz et al. Local strain behavior of bulk metallic glasses under tension studied by in situ x-ray diffraction. Appl. Phys. Lett.2009, 94(1):011911.
    [15]U. Gasser, Crystallization in three-and two-dimensional colloidal suspensions. J. Phys-Condens Mat 2009,21,203101.
    [16]T. Kawasaki, H. Tanaka, Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation. J. Phys-Condens. Mat.2010,22,232102.
    [17]S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.1995,117,1.
    [18]C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, S. C. Glotzer, Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett.1998,80, 2338-2341.
    [19]Y. Gebremichael, M. Vogel, S. C. Glotzer, Particle dynamics and the development of string-like motion in a simulated monoatomic supercooled liquid. J. Chem. Phys.2004,120,4415.
    [20]R. Sharma, S. N. Chakraborty, C. Chakravarty, Entropy, diffusivity, and structural order in liquids with waterlike anomalies. J. Chem. Phys.2006,125, 204501.
    [21]T. S. Jain, J. J. de Pablo, Role of local structure on motions on the potential energy landscape for a model supercooled polymer. J. Chem. Phys.2005,122, 174515.
    [22]C. R. Berardi, K. Barros, J. F. Douglas, W. Losert, Direct observation of stringlike collective motion in a two-dimensional driven granular fluid. Phys. Rev. E 2010,81,041301.
    [23]Q. Wang, C. T. Liu, Y. Yang, Y. D. Dong, J. Lu, Atomic-scale structural evolution and stability of supercooled liquid of a Zr-Based bulk metallic glass. Phys. Rev. Lett.2011,106,215505.
    [25]T. Kawasaki, H. Tanaka, Formation of a crystal nucleus from liquid. Proc Natl Acad Sci USA 2010,107,14036-14041.
    [24]C. L. Cleveland, W. D. Luedtke, U. Landman, Melting of gold clusters: icosahedral precursors. Phys. Rev. Lett.1998,81,2036-2039.
    [25]H. Tsuzuki, P. S. Branicio, J. P. Rino Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun 2007,177,518-523.
    [26]R. Candelier, O. Dauchot, G. Biroli, Building blocks of dynamical heterogeneities in dense granular media. Phys. Rev. Lett.2009,102,088001.
    [27]J. P. Garrahan, D. Chandler, Geometrical explanation and scaling of dynamical heterogeneities in glass forming systems. Phys. Rev. Lett.2002,89,035704.
    [28]P. Sarangapani, J. Zhao, Y. X. Zhu, How does sensitivity to dynamical heterogeneity in supercooled colloidal liquids depend on tracer size? J. Chem Phys 2008,129,104514.
    [29]A. Widmer-Cooper, P. Harrowell, Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys. Rev. Lett.2006,96,185701.
    [30]H. Mizuno, R. Yamamoto, Lifetime of dynamical heterogeneity in a highly supercooled liquid. Phys. Rev. E 2010,82,030501(R).
    [31]H. J. Schope, G. Bryant, W. van Megen, Two-step crystallization kinetics in colloidal hard-sphere systems. Phys. Rev. Lett.2006,96,175701.
    [32]X. J. Liu, Y. Xu, X. Hui, Z. P. Lu, F. Li, G. L. Chen, J. Lu, C. T. Liu, Metallic liquids and glasses:atomic order and global packing. Phys. Rev. Lett.2010,105, 155501.
    [33]T. M. Truskett, S. Torquato, S. Sastry, P.o G. Debenedetti, F. H. Stillinger, Structural precursor to freezing in the hard-disk and hard-sphere systems. Phys. Rev. E 1998,58,3083-3088.
    [34]A. L. Greer, E. Ma, Bulk Metallic glasses:at the cutting edge of metals research. Mrs. Bull 2007,32,611-619.
    [35]Y. Q. Cheng, E. Ma, H. W. Sheng, Atomic level structure in multicomponent bulk metallic glass. Phys. Rev. Lett.2009,102,245501.
    [36]T. Fujita, K. Konno, W. Zhang, V. Kumar, M. Matsuura, A. Inoue, T. Sakurai, M. W. Chen, Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability. Phys. Rev. Lett.2009,103,075502.
    [37]X. J. Liu, G. L. Chen, X. Hui, T. Liu, Z. P. Lu, Ordered clusters and free volume in a Zr-Ni metallic glass. Appl. Phys. Lett.2008,93,011911.
    [38]J. D. Bernal, A geometrical approach to the structure of liquids. Nature 1959,183, 141.
    [39]P. H. Gaskel, A new structural model for transition metal-metalloid glasses. Nature 1978,276,484.
    [40]D. Levine, P. J. Steinhardt, Quasicrystals:a new class of ordered structures. Phys. Rev. Lett.1984,53,2477-2480.
    [41]D. B. Miracle, A structural model for metallic glasses. Nat. Mater.2004,3, 697-702.
    [42]H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, E. Ma, Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006,439,419-425.
    [43]X. J. Liu, G. L. Chen, X. Hui, T. Liu, Z. P. Lu, Ordered clusters and free volume in a Zr-Ni metallic glass. Appl. Phys. Lett.2008,93,011911.
    [44]D. Ma, A. D. Stoica, X. L. Wang, Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat. Mater 2009,8,30-34.
    [45]C. H. Bennett, Serially deposited amorphous aggregates of hard spheres. J. App. Phys 1972,43,2727-2734.
    [46]S. P. Pan, J. Y. Qin, W. M. Wang, T. K. Gu, Origin of splitting of the second peak in the pair-distribution function for metallic glasses. Phys. Rev. B 2011,84, 092201.
    [47]K. Watanabe, H. Tanaka, Direct observation of medium-range crystalline order in granular liquids near the glass transition. Phys. Rev. Lett.2008,100,158002.
    [48]Y. Q. Cheng, E. Ma, H. W. Sheng, Alloying strongly influences the structure, dynamics, and glass forming ability of metallic supercooled liquids. Appl. Phys. Lett.2008,93,111913.
    [49]M. M. J. Treacy, K. B. Borisenko, The local structure of amorphous silicon. Science 2012,335,950-953.
    [50]J. Hwang, Z. H. Melgarejo, Y. E. Kalay, I. Kalay, M. J. Kramer, D. S. Stone, P. M. Voyles, Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. Phys. Rev. Lett.2012,108,195505.
    [51]Y. Q. Cheng, E. Ma, Indicators of internal structural states for metallic glasses: local order, free volume, and configurational potential energy. Appl. Phys. Lett. 2008,93,051910.
    [52]K. Zhang, Y. Y. Jiang, H. Li, P. C. Si, Y. F. Li, H. Q. Yu, K. M. Liew, X. G. Song, Power-law scaling of dynamical and structural signatures in liquid metallic nano-film. Europhys. Lett.2011,96,14007.
    [53]S. J. Nose, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys.1984,81,511.
    [54]X. W. Zhou et al. Atomic scale structure of sputtered metal multilayers. Acta. Mater.2001,49,4005-4015.
    [55]J. Hwang, Z. H. Melgarejo, Y. E. Kalay, I. Kalay, M. J. Kramer, D. S. Stone and P. M. Voyles, Nanoscale structure and structural relaxation in Zr5oCu45Al5 bulk metallic glass, Phys. Rev. Lett.2012,108,195505.
    [1]P. Ganesh, M. Widom, Liquid-liquid transition in supercooled silicon determined by first-principles simulation. Phys. Rev. Lett.2009,102,075701.
    [2]N. Funamori, K. Tsuji, Pressure-induced structural change of liquid silicon. Phys. Rev. Lett.2002,88,255508.
    [3]T. H. Kim et al. Insitu high-energy X-Ray diffraction study of the local structure of supercooled liquid Si. Phys. Rev. Lett.2005,95,085501.
    [4]L. I. Aptekar, Phase transitions in noncrystalline germanium and silicon. Sov. Phys. Dokl.1979,24,993-995.
    [5]S. K. Deb, M. Wilding, M. Somayazulu, P. F. McMillan, Pressure-induced amorphization and an amorphous-amorphous transition in densified porous silicon. Nature 2001,414,528-530.
    [6]P. F. McMillan, Polyamorphic transformations in liquids and glasses. J. Mater. Chem.2004,14,1506-1512.
    [7]S. Sastry, C. A. Angell, Liquid-liquid phase transition in supercooled silicon. Nat. Mater.2003,2,739-743.
    [8]N. Jakse, A. Pasturel, Liquid-liquid phase transformation in silicon:evidence from first-principles molecular dynamics simulations. Phys. Rev. Lett.2007,99,205702.
    [9]V. V. Vasisht, S. Saw, S. Sastry, Liquid-liquid critical point in supercooled silicon. Nat. Phys.2011,7,549-553.
    [10]A. Hedler, S. L. Klaumunzer, W. Wesch, Amorphous silicon exhibits a glass transition. Nat. Mater.2004,3,804-809.
    [11]G. Makov, E. Yahel, Liquid-liquid phase transformations and the shape of the melting curve. J. Chem. Phys.2011,134,204507.
    [12]S. Harrington, R. Zhang, P. H. Poole, F. Sciortino, H. E. Stanley, Liquid-liquid phase transition:evidence from simulations. Phys. Rev. Lett.1997,78,2409-2412.
    [13]J. N. Glosli, F. H. Ree, Liquid-liquid phase transformation in carbon. Phys. Rev. Lett.1999,82,4659-4662.
    [14]G. Franzese, G. Malescio, A. Skibinsky, S. V. Buldyrev, H. E. Stanley, Generic mechanism for generating a liquid-liquid phase transition. Nature 2001,409,692-695.
    [15]M. Beye, F. Sorgenfrei, W. F. Schlotter, W. Wurth, A. Fohlisch, The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons. P. Natl Acad. Sci. USA 2010,107,16772-16776.
    [16]H. Tanaka, Simple view of waterlike anomalies of atomic liquids with directional bonding. Phys. Rev. B 2002,66,064202.
    [17]K. B. Borisenko et al. Medium-range order in amorphous silicon investigated by constrained structural relaxation of two-body and four-body electron diffraction data. Acta. Mater.2012,60,359-375.
    [18]M. M. J. Treacy, K. B. Borisenko, The local structure of amorphous silicon. Science 2012,335,950-953.
    [19]J. M. Gibson, M. M. J. Treacy, T. Sun, N. J. Zaluzec Substantial crystalline topology in amorphous silicon. Phys. Rev. Lett.2010,105,125504.
    [20]G. G. Guzman-Verri, L. C. Lew Yan Voon Electronic structure of silicon-based nanostructures. Phys. Rev. B 2007,76,075131.
    [21]P. Vogt et al. Silicene:compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett.2012,108,155501.
    [22]F. Ding, K. Jiao, M. Wu, B. I. Yakobson, Pseudoclimb and dislocation dynamics in superplastic nanotubes. Phys. Rev. Lett.2007,98,075503.
    [23]B. I. Yakobson, F. Ding, Observational geology of graphene, at the nanoscale. Acs Nano 2012,6,5735-5735.
    [24]J. D. Honeycutt, H. C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem.1987,91,4950.
    [25]Y. C. Lo, J. C. Huang, S. P. Ju, X. H. Du, Atomic structure evolution of Zr-Ni during severe deformation by HA pair analysis. Phys. Rev. B 2007,76,024103.
    [26]S. S. Ashwin, U. V. Waghmare, S. Sastry, Metal-to-semimetal transition in supercooled liquid silicon. Phys. Rev. Lett.2004,92,175701.
    [27]D. T. Limmer, D. Chandler, The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. J. Chem. Phys.2011,135,134503.
    [28]F. H. Stillinger, T. A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B1985,31,5262-5271.
    [29]S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.1995,117,1.
    [30]S. Nose, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys.1984,81,511.
    [31]P. Giannozzi et al. QUANTUM ESPRESSO:a modular and open-source software project for quantum simulations of materials. J Phys-Condens. Mat.2009,21, 395502.
    [32]J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett.1996,77,3865-3868.
    [33]J. C.Grossman, E. Schwegler, E. W. Draeger, F. Gygi, G. Galli, Towards an assessment of the accuracy of density functional theory for first principles simulations of water. J Chem. Phys.2004,120,300-311.
    [34]J. T. Okada et al. Persistence of covalent bonding in liquid silicon probed by inelastic X-Ray scattering. Phys. Rev. Lett.2012,108,067402.
    [35]W.G. Hoover, Canonical dynamics:equilibrium phase-space distributions. Phys. Rev. A 1985,31,1695.
    [36]Y. J. Lu, P. Entel, Impact of medium-range order on the glass transition in liquid Ni-Si alloys. Phys. Rev. B,2011,84,104203
    [37]J. Bai, H. Tanaka, X. C. Zeng, Graphene-like bilayer hexagonal silicon polymorph. Nano Res,2010,3,694-700.
    [38]S. Lebegue, O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B,200979,115409.
    [39]Stillinger and Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B,1985,31,5262-5271.
    [1]S. S. Nayak, M. Wollgarten, J. Banhart et al. Nanocomposites and an extremely hard nanocrystalline intermetallic of Al-Fe alloys prepared by mechanical alloying. Mater. Sci. Eng. A 2010,527(9),2370-2378.
    [2]F. H. Froes, O. N. Senkov, E. G. Baburaj, Synthesis of nanocrystalline materials-an overview. Mater. Sci. Eng. A 2001,301,44-53.
    [3]G. Riontino, A. Zanada, A precipitation study of two rapidly solidified Al-Fe alloys. Mater. Sci. Eng. A 1994,179-180,323-326.
    [4]T. T. Sasaki, T. Ohkubo, K. Hono, Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater 2009,57,3529.
    [5]D. B. Witkin, E. J. Lavernia, Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci.2006,51,1-60.
    [6]Y. Zou, S. Saji, K. Kusabiraki, Fast amorphization and crystallization in Al-Fe binary system by high-energy ball milling. MRS Res. Bull.2002,37,123-131.
    [7]F. Zhou, R. Luck, M. Scheffer, D. Lang, K. Lu, The crystallization process of amorphous Al80Fe20 alloy powders prepared by ball milling. J. Non-cryst. Solids 1999,250-252,704-708.
    [8]T. T. Sasaki, T. Mukai, K. Hono A high-strength bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Scripta Mater.2007, 57,189-192.
    [9]H. Jones The status of rapid solidification of alloys in research and application. J. Mater. Sci.1984,19,1043-1076.
    [10]S. K. Pabi, B. S. Murty Mechanism of mechanical alloying in Ni-Al and Cu-Zn systems. Mater. Sci. Eng. A 1996,214,146-152.
    [11]V. I. Fadeeva, A. V. Leonov, Amorphization and crystallization of Al-Fe alloys by mechanical alloying. Mater. Sci. Eng. A 1996,206,90-94.
    [12]C. E. Carlton, P. J. Ferreira, What is behind the inverse Hall-Petch effect in nanocrystalline materials? Acta Mater 2007,55,3749-3756.
    [13]F. A. Mohamed, Interpretation of nanoscale softening in terms of dislocation-accommodated boundary sliding. Metall. Mater. Trans. A 2007,38, 340-347.
    [14]C. S. Pande, K. P. Cooper, Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog. Mater. Sci.2009,54,689-706.
    [15]D. Srinivasan, K. Chattopadhyay, Hardness of high strength nanocomposite Al-X-Zr (X=Si,Cu,Ni) alloys. Mater. Sci. Eng. A 2004,375-377,1228-1234.
    [16]X. P. Niu, L. Froyen, L. Delaey, C. Peytour, Effect of Fe content on the mechanical alloying and mechanical properties of Al-Fe alloys. J. Mater. Sci. 1994,29,3724-3732.
    [17]M. Zawrah, L. Shaw, Microstructure and hardness of nanostructured Al-Fe-Cr-Ti alloys through mechanical alloying. Mater. Sci. Eng. A 2003,355,37-49.
    [18]J. W. M. Frenken, J. F. Van der Veen, Observation of surface melting. Phys. Rev. Lett.1985,54,134-137.
    [19]J. G. Dash, Between two and three dimensions. Phys. Today 1985,38,26.
    [20]X. Z. Wu et al. Surface tension measurements of surface freezing in liquid normal alkanes. Science 1993,261,1018.
    [21]Z. Dogic, Surface Freezing and a two-step pathway of the isotropic-smectic phase transition in colloidal rods. Phys. Rev. Lett.2003,91,165701.
    [22]A. V. Tkachenko, Y. Rabin, Fluctuation-stabilized surface freezing of chain molecules. Phys. Rev. Lett.1996,76,2527-2530.
    [23]B. Yang, D. Li, S. A. Rice, Two-dimensional freezing of T1 in the liquid-vapor interface of dilute T1 in a Ga alloy. Phys. Rev. B 2003,67,212103.
    [24]O. M. Magnussen et al. X-Ray reflectivity measurements of surface layering in liquid mercury. Phys. Rev. Lett.1995,74,4444-4447.
    [25]M. J. Regan et al. Surface layering in liquid gallium:an X-Ray reflectivity study. Phys. Rev. Lett.1995,75,2498-2501.
    [26]S. E. Donnelly et al. Ordering in a fluid inert gas confined by flat surfaces. Science 2002,296,507.
    [27]S. H. Oh, Y. Kauffmann, C. Scheu, W. D. Kaplan, M. Ruhle, Ordered liquid aluminum at the interface with sapphire. Science 2005,310,661-663.
    [28]W. J. Huisman et al. Layering of a liquid metal in contact with a hard wall. Nature 1997,390,379.
    [29]W. Jr. Klement, R. H. Willens, P. Duwez, Non-crystalline structure in solidified gold-silicon alloys. Nature 1960,187,869-810.
    [30]D. B. Miracle, A structural model for metallic glasses. Nat. Mater.2004,3, 697-702.
    [31]H. W. Shen, et al. Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006,439,419.
    [32]O. G. Shpyrko et al. Atomic-scale surface demixing in a eutectic liquid BiSn Alloy. Phys. Rev. Lett.2005,95,106103.
    [33]S. K. Sinha, E. B. Sirota, S. Garoff, H. B. Stanley, X-ray and neutron scattering from rough surfaces. Phys.Rev. B 1988,38,2297-2311.
    [34]A. K. Green, E. Bauer, Formation, structure, and orientation of gold silicide on gold surfaces. J. Appl. Phys.1976,47,1284.
    [35]H. S. Chen, D. Turnbull, Thermal properties of gold-silicon binary alloy near the eutectic composition. J. Appl. Phys.1967,38,3646.
    [36]S. L. Molodtsov, C. Laubschat, G. Kaindl, A. M. Shikin, V. K. Adamchuk, Formation and chemical structure of the Au/Si(111) interface. Phys. Rev. B 1991, 44,8850-8870.
    [37]J. B. Hannon, S. Kodambaka, F. M. Ross, R. M. Tromp, The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006,440, 69-71.
    [38]S. Ryu, W. Cai, A gold-silicon potential fitted to the binary phase diagram. J Phys-Condens Mat 2010,22(5),055401.
    [39]O. G. Shpyrko, R. Streitel, V. S. K. Balagurusamy et al. Surface crystallization in a liquid AuSi alloy. Science 2006,313(5783),77-80
    [40]N. Jakse, T. L. T. Nguyen, A. Pasturel, Ordering effects in disordered systems: the Au-Si system. J Phys-Condens Mat 2011,23(40),404205.
    [41]N. Jakse, T. L. T. Nguyen, A. Pasturel, Local order and dynamic properties of liquid AuxSi1-x alloys by molecular dynamics simulations. J Chem. Phys.2012, 137(20),204504.
    [42]C. A. Cruz, P. Chantrenne, A. V. R. Gomes et al. Modified embedded-atom method interatomic potential and interfacial thermal conductance of Si-Cu systems:A molecular dynamics study. J Appl. Phys.2013,113(2),023710.
    [43]S. Crawford, S. K. Lim, S.Gradecak, Fundamental insights into nanowire diameter modulation and the liquid/solid interface. Nano Lett.2013,13(1), 226-232.
    [44]M. I. Mendelev, D. J. Srolovitz, G. J. Ackland and S. Han, Effect of Fe segregation on the migration of a nonsymmetric sigma 5 tilt grain boundary in Al. J Mater. Res,2005,20,208-218.
    [1]A. L. Greer, Metallic glasses. Science 1995,267,1947.
    [2]Z. F. Zhang, J. Eckert, Unified tensile fracture criterion. Phys. Rev. Lett.2005,94, 094301.
    [3]C. C. Hays, C. P. Kim, W. L. Johnson, Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett.2000,84, 2901-2904.
    [4]G. He, J. Eckert, W. Loser, L. Schultz, Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater.2003,2,33.
    [5]Y. A. Wu, Y. H. Xiao, G. L. Chen, C. T. Liu, Z. P. Lu, Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater.2010,22,2770.
    [6]Q. Zheng, S. Cheng, J. H. Strader, E. Ma, J. Xu, Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system. Scripta Mater.2007,56,161-164.
    [7]A. Donohue, F. Spaepen, R. G. Hoagland, A. Misra, Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses. Appl. Phys. Lett.2007,91,241905.
    [8]H. Guo, P. F. Yan, Y. B. Wang, J. Tan, Z. F. Zhang, M. L. Sui, E. Ma, Tensile ductility and necking of metallic glass. Nat Mater 2007,6,735-739.
    [9]F. Delogu, Deformation processes in an amorphous nanometer-sized metallic particle. Phys. Rev. B 2008,77,174104.
    [10]C. A. Volkert, A. Donohue, F. Spaepen, Effect of sample size on deformation in amorphous metals. J. Appl. Phys.2008,103,083539.
    [11]Y. J. Wei, A. F. Bower, H. J. Gao, Analytical model and molecular dynamics simulations of the size dependence of flow stress in amorphous intermetallic nanowires at temperatures near the glass transition. Phys. Rev. B 2010,81, 125402.
    [12]Z. Han, W. F. Wu, Y. Li, Y. J. Wei, H. J. Gao, An instability index of shear band for plasticity in metallic glasses. Acta. Mater.2009,57,1367-1372.
    [13]D. C. Jang, J. R. Greer, Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater.2010, 9,215-219.
    [14]A. R. Yavari, K. Georgarakis, W. J. Botta, A. Inoue, G. Vaughan, Homogenization of plastic deformation in metallic glass foils less than one micrometer thick. Phys. Rev. B 2010,82,172202.
    [15]J. H. Luo, F. F. Wu, J. Y. Huang, J. Q. Wang, S. X. Mao, Superelongation and atomic chain formation in nanosized metallic glass. Phys. Rev. Lett.2010,104, 215503.
    [16]D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, W. L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 2008,451,1085-1089.
    [17]Y. F. Shi, M. L. Falk, Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta. Mater.2007,55, 4317-4324.
    [18]L. J. Lauhon, M. S. Gudiksen, C. L. Wang, C. M. Lieber, Epitaxial core-shell and core-multi-shell nanowire heterostructures. Nature 2002,420,57.
    [19]M. Backman, F. Djurabekova,O. H. Pakarinen, K. Nordlund, L. L. Araujo, M. C. Ridgway, Amorphization of Ge and Si nanocrystals embedded in amorphous SiO2 by ion irradiation. Phys. Rev. B 2009,80,144109.
    [20]R. Guerra, I. Marri, R. Magri, L. M. Samos, O. Pulci, E. Degoli, S. Ossicini, Silicon nanocrystallites in a SiO2 matrix:role of disorder and size. Phys. Rev. B 2009,79,155320.
    [21]J. Das, M. B. Tang, K. B. Kim, R. Theissmann, F. Baier, W. H. Wang, J. Eckert, "Work-hardenable" ductile bulk metallic glass. Phys. Rev. Lett.2005,94,205501.
    [23]M. I. Mendelev, D. K. Rehbein, R. T. Ott, M. J. Kramer, D. J. Sordelet, Computer simulation and experimental study of elastic properties of amorphous Cu-Zr alloys. J. Appl. Phys.2007,102,09351.
    [24]S. Plimpton, Fast Parallel algorithms for short-range Molecular dynamics. J. Comput. Phys.1995,117,1.
    [25]T. N. Todorov, A. P. Sutton, Force and conductance jumps in atomic-scale metallic contacts. Phys. Rev. B 1996,54, R14234-R14237.
    [26]H. S. Park, Stress-Induced Martensitic Phase Transformation in intermetallic Nickel Aluminum nanowires. Nano Lett.2006,6,958-962.
    [27]S. K. Deb, M. Wilding, M. Somayazulu, P. F. McMillan, Pressure-induced amorphization and an amorphous-amorphous transition in densified porous silicon. Nature 2001,414,528-530.
    [28]M. F. Daniscedilman, L. Casalis, G. Scoles, Supersonic molecular beam deposition of pentacene thin films on two Ag(111) surfaces with different step densities. Phys. Rev. B 2005,72,085404.
    [29]M. Backman, F. Djurabekova, O. H. Pakarinen, K. Nordlund, L. L. Araujo, M. C. Ridgway, Amorphization of Ge and Si nanocrystals embedded in amorphous SiO2 by ion irradiation. Phys. Rev. B 2009,80,144109.
    [30]J. D. Honeycutt, H. C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem 1987,91,4950-4963.
    [31]Y. C. Lo, J. C. Huang, S. P. Ju, X. H. Du, Atomic structure evolution of Zr-Ni during severe deformation by HA pair analysis. Phys. Rev. B 2007,76,024103.
    [32]J. R. Greer, W. D. Nix, Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 2006,73,245410.
    [33]J. Y. Kim, J. R. Greer, Size-dependent mechanical properties of molybdenum nanopillars. Appl. Phys. Lett.2008,93,101916.
    [34]K. Sieradzki, A. Rinaldi, C. Friesen, P. Peralta, Length scales in crystal plasticity. Acta. Mater.2006,54,4533-4538.
    [35]H.Q. Li, L. Li, C. Fan, H. Choo, P.K. Liaw, Nanocrystalline coating enhanced ductility in a Zr-based bulk metallic glass. J. Mater. Res.2007,22,508-513.
    [36]Y. C. Choi, S. I. Hong, Enhancement of plasticity in Zr-base bulk metallic glass by soft metal plating. Scripta Mater.2009,61,481-484.
    [37]M. C. Lju, J. C. Huang, H. S. Chou,Y. H. Lai,C. J. Lee, T. G. Nieh, A nanoscaled underlayer confinement approach for achieving extraordinarily plastic amorphous thin film. Scripta Mater.2009,61,840-843.
    [38]Y. M. Wang, J. Li, A. V. Hamza, T. W. Barbee, Ductile crystalline-amorphous nanolaminates. Proc. Nat. Acad. Sci.2007,104,11155-11160.
    [39]Y. M. Wang, A. V. Hamza, T. W. Barbee, Incipient plasticity in metallic glass modulated nanolaminates. Appl. Phys. Lett.2007,91,061924.
    [40]K. H. Kim, J. P. Ahn, J. H. Lee, J. C. Lee, High-strength Cu-Zr binary alloy with an ultrafine eutectic micro structure. J. Mater. Res.2008,23,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700