固载化金鸡纳手性催化剂不对称Michael加成和Aldol反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,不对称有机催化由于其原子经济性高的特点受到广泛关注,已经成为不对称催化最为活跃的领域之一。金鸡纳生物碱及其衍生物作为一类高效的有机小分子催化剂,因其分子结构含有多个手性中心且易于修饰,在不对称有机催化领域受到了广大化学工作者的青睐,已经被广泛用于催化不对称Michael加成、不对称Aldol等反应。然而,金鸡纳均相催化剂往往存在用量高、不易回收以及产物分离困难等缺点,很大程度上制约了其在工业上的应用。均相催化剂的固载化有望克服上述缺点,因而备受研究者的重视。目前固载化金鸡纳催化剂的应用范围主要集中在不对称双羟基化和不对称烷基化反应,在目前均相催化剂研究较为活跃的不对称Michael加成以及Aldol反应领域,相关的研究却较少。
     无机载体因其高的机械强度、较好的热稳定性等特点,成为固载均相催化剂的优良载体。为此,本文分别采用介孔氧化硅SBA-15和杂多酸作为载体实现了天然金鸡纳生物碱与金鸡纳手性胺的固载化,并将所得的催化剂用于催化不对称Michael加成与Aldol反应。考察了不同固载方法——后嫁接法与共缩聚法,以及不同载体——片状短孔道SBA-15与纤维状常规SBA-15分别对催化剂催化不对称Michael加成反应的影响。同时也研究了共价固载法与静电固载法对催化剂催化不对称Aldol反应的影响。
     本文首先采用简单的后嫁接法实现了天然金鸡纳生物碱奎宁在介孔材料SBA-15表面的成功固载。XRD、FT-IR、DR UV-Vis、TG-DTG、氮气吸附以及元素分析结果表明奎宁成功地被引入到了SBA-15表面,并且所得的催化剂依然保持了较好介孔结构以及规整的介孔孔道。以查耳酮类化合物的不对称Michael加成反应为模型反应,研究了不同溶剂对催化性能的影响,同时也考察了催化剂的循环使用性能。除了甲氧基查耳酮之外,该催化体系获得了中等水平的收率,但产物ee值相对较低。
     共缩聚法制备的催化剂相比后嫁接法,活性组分在载体表面分布得更为均匀,手性诱导作用可能进一步增强,从而促进对映选择性的提高。本文采用共缩聚法合成了巯丙基硅烷修饰的有机-无机杂化介孔SBA-15,并通过自由基加成反应首次引入了奎宁催化剂。XRD、FT-IR、DR UV-Vis、TG-DTG、氮气吸附以及元素分析结果表明,奎宁被成功地固载到了介孔材料的表面,在有机硅烷投料量不超过20mol%(占总硅烷物质的量分数)时,所制备的非均相催化剂依然保持了较好介孔结构以及相对规整的介孔孔道。以查耳酮类化合物的不对称Michael加成反应为模型反应,考察了不同合成条件对催化性能的影响,发现最佳的有机硅烷投料量为20mol%,最佳晶化温度为100℃,最佳晶化时间为24h。相比于后嫁接法,共缩聚法制备的催化剂对映选择性明显提高,但反应收率依然受到微米级长孔道的限制,无明显提高。
     短孔道的SBA-15与传统的SBA-15相比,更短的孔道有利于反应的传质,促进反应的活性的提高。本文首次采用共缩聚方法合成了巯丙基修饰的、同时具有片状形貌的短孔道SBA-15,并进一步将不同结构的金鸡纳生物碱固载到该材料的介孔孔道中。XRD、FT-IR、DR UV-Vis、TG-DTG、SEM、TEM、氮气吸附以及元素分析结果证明金鸡纳生物碱的成功固载,并且所有非均相催化剂都保持了较好的介孔结构。SEM和TEM证实了催化剂具有片状形貌,孔道长度约为280~480nm。以查耳酮类化合物的不对称Michael加成反应为模型反应,考察了有机硅烷投料量和金鸡纳生物碱结构对非均相催化剂的催化性能的影响,结果发现最佳的有机硅烷投料量为10mol%;各种金鸡纳结构的非均相催化剂中,奎宁催化剂表现出了最优的催化性能。与常规催化剂相比,短孔道催化剂的催化活性得到了大幅度的提高,且对映选择性也略有提高。元素分析和FT-IR表明催化剂强吸附原料丙二腈是其循环性能降低的主要原因。
     静电固载是手性催化剂固载化的重要手段之一。本文首次以杂多酸为载体,通过静电相互作用,实现了金鸡纳手性胺催化剂的非均相化。NMR、FT-IR以及元素分析结果表明金鸡纳手性胺被成功地固载在杂多酸上,以芳香醛的不对称Aldol反应为模型反应,考察了固载方式、杂多酸与溶剂类型、以及底物结构对催化反应的影响。结果发现,因共价固载的方式破坏了金鸡纳C-10位的双键结构,导致共价键联的催化剂无任何对映选择性;酸性最强的磷钨酸为最佳载体;丙酮最有利于非均相催化体系;底物空间因素对催化反应结果有较大的影响。催化剂的质量损失是循环反应结果降低的主要原因。
Recently, asymmetric organocatalysis, one of the most active researchfields of asymmetric catalysis, has been received much attention due toits high atom economy. Cinchona alkaloids and their derivatives as onekind of efficient organocatalysts have fascinated researchers. Owing totheir easily modified structure and multiple chiral centres, cinchonaorganocatalysts are widely used in asymmetric Michael addition andasymmetric Aldol reactions. However,the high dosage of the catalyst anddifficulties in separation and recovery restrict their use in industry. Theseproblems resulting from homogeneous process can be overcome by theimmobilization of cinchona catalysts on various supports, which havecalled great attentions from researchers. While heterogeneous cinchonacatalysis in asymmetric dihydroxylation and asymmetric alkylation is stilla major topic at present, the study for heterogeneous catalyst in asymmetric Michael addition and asymmetric Aldol reactions remainsrare.
     Inorganic materials are considered as ideal supports for chiralcatalysts,because of their high mechanical strength and thermal stability.In this paper, nature cinchona alkaloid and cinchona-derived chiral aminewere immobilized on mesoporous silica and polyoxometalates forasymmetric Michael addition and asymmetric Aldol reactions. Theeffects of different synthetic methods—post-synthesis grafting anddirect co-condensation method, and different supports—SBA-15withplatelet and fiber morphology on the catalytic performance ofheterogeneous catalysts were evaluated in the asymmetric Michaeladdition. The influence of different immobilization strategies, includingcovalent and electrostatic immobilization, on the catalytic performance inthe asymmetric Aldol reactions was also investigated.
     Quinine was firstly supported on the mesoporous silica SBA-15via post-synthesis grafting. The heterogeneous catalyst was characterized byXRD, FT-IR, DR UV-Vis, TG-DTG, N2sorption, elemental analysis andit was showed that quinine was successfully immobilized on SBA-15andthe prepared catalysts still maintained characteristic mesoporous structureand ordered mesochannels. The effect of different solvents on thecatalytic performance of heterogeneous catalyst was evaluated in theconjugate addition of malononitrile to chalcones. Catalyst recyclingstudies were also carried out. Except4-methoxychalcone, moderate yieldand unsatisfactory ee value were obtained by the heterogeneous catalyst.
     Compared with post-synthesis grafting, the co-condensation methodoften results in the heterogeneous catalyst with more homogeneouslydistributed active sites on the surface, which might enhance the chiralinduction and offer more suitable reaction microenvironment for thereaction. Herein, mercaptopropyl functionalized mesoporous SBA-15was prepared by co-condensation method and then quinine was incorporated onto the support surface by the free radical addition reaction.The results of XRD, FT-IR, DR UV-Vis, TG-DTG, N2sorption andelemental analysis disclose that quinine was successfully immobilized onthe surface of support. Furthermore, when the dosage of organosilanewas less than20mol%(the molar percentage of silicon atoms in theinitial mixture as organosilane), the heterogeneous catalyst couldmaintain the characteristic mesoporous structure and orderedmesochannels. The effects of different synthesis conditions on catalyticperformance were investigated and the optimal conditions were asfollows: the dosage of organosilane should be20mol%, thecrystallization temperature should be100℃and time should be24h.The heterogeneous catalyst was tested in the conjugate addition ofmalononitrile to chalcones. It was found that the enantioselectivity wassignificantly improved by the catalyst prepared via the co-condensationmethod. However, the yield was basically unchanged due to the long mesochannels in micrometer scale.
     Mesoporous SBA-15with short mesochannels is proved to be morefavorable for mass transfer than the conventional SBA-15, which alwaysleads to enhanced catalytic activity. In our study, mercaptopropylfunctionalized mesoporous SBA-15with platelet morphology and shortmesochannels was synthesized by co-condensation method and cinchonaalkaloids were then immobilized on such organic-inorganic mesoporoussilica materials. The heterogeneous catalysts were characterized by XRD,FT-IR, DR UV-Vis, TG-DTG, SEM, TEM, N2sorption and elementalanalysis. The characterization results indicated that cinchona alkaloidswere successfully incorporated onto the surfaces and thoese catalystsremain mesoporous structure. SEM and TEM showed that theheterogeneous catalysts have hexagonal platelet morphology and the porelength of the catalysts was about280nm~480nm. The influences of theorganosilane dosage and the structure of cinchona alkaloids on the catalytic performance of heterogeneous cinchona catalyst were alsostudied. It was found that the best dosage of organosilane was10mol%and the heterogeneous quinine catalyst was superior to other cinchonacatalysts. Not only enhanced catalytic activity but also improvedenantioselectivity were obtained by the heterogeneous catalyst with shortmesochannels. Element analysis and FT-IR confirmed that the active sitesbeing covered by the reactant (malononitrile) might be the main reasonfor the loss of activity and enantioselectivity during the recycle process.
     Electrostatic immobilization is one of the most importantimmobilzation strategies. In our work, cinchona-derived chiral amine wasfirstly supported on polyoxometalate acid by electrostatic interaction. Thecatalyst was characterized by NMR, FT-IR and elemental analysis. Theresults indicated that cinchona-derived chiral amine was successfullyimmobilized on the polyoxometalate acid. The influences of differentimmobilzation strategies, heteropoly acids, solvent and substrates on the catalytic performance of the heterogeneous catalysts were evaluated inthe asymmetric Aldol reaction of aromatic aldehydes. It was found thatcinchona-derived chiral amine covalently immobilized on SBA-15provided racemic product and C-10double bond being destroyed mightbe the main reason. Other influential factors on the catalytic performancewere also studied and the optimal conditions were as follows: theappropriate polyoxometalate acid was phosphotungstic acid whichpossesses the highest acid strength, and the best solvent was acetone. Theexperiments also showed that the space factor from substrate couldeffectively affect the catalytic result. The recycle study indicated that themain reason for the decrease of the catalytic activity was the mass loss ofcatalyst.
引文
[1]王积涛,张宝申,王永梅等,有机化学.第5版.天津:南开大学出版社,2003; p200.
    [2] Yeboah E. M. O., Yeboah S. O., Singh G. S. Recent applications ofcinchona alkaloids and their derivatives as catalysts in metal-freeasymmetric synthesis. Tetrahedron,2011,67(10):1725-1762.
    [3]陈惠.不对称有机催化反应:金鸡纳生物碱衍生物催化不对称“中断的”Feist-Benary反应:[博士毕业论文],西安:第四军医大学,2008.
    [4] Nutrition R. Tropical plants database.http://www.rain-tree.com/plants.htm.
    [5] Yang F., Hanon S., Lam P., et al. Quinidine revisited. Am J Med,2009,122(4):317-321.
    [6] Woodward R. B., Doering W. E. The Total synthesis of quinine. J AmChem Soc,1945,67(5):860-874.
    [7] Stork G., Niu D., Fujimoto A., et al. The First stereoselective totalsynthesis of quinine. J Am Chem Soc,2001,123(14):3239-3242.
    [8] Dijkstra G. D. H., Kellogg R. M., Wynberg H., et al. Conformationalstudy of cinchona alkaloids. A combined NMR, molecular mechanicsand x-ray approach. J Am Chem Soc,1989,111(21):8069-8076.
    [9] Bürgi T., Baiker A. Conformational behavior of cinchonidine indifferent Solvents: a combined NMR and ab initio investigation. JAm Chem Soc,1998,120(49):12920-12926.
    [10] Marcelli T., van Maarseveen J. H., Hiemstra H. Cupreines andcupreidines: an emerging class of bifunctional cinchonaorganocatalysts. Angew Chem Int Ed,2006,45(45):7496-7504.
    [11] G.Bredig, P.S.Fiske. Durch Katalysatoren bewirkte asymmetrischeSynthese. Biochem Z,1912,467-23.
    [12] Connon S. J. Organocatalysis mediated by (thio)urea derivatives.Chem Eur J,2006,12(21):5418-5427.
    [13] O'Donnell M. J. The Enantioselective synthesis of α-amino acids byphase-transfer catalysis with achiral schiff base esters. Acc Chem Res,2004,37(8):506-517.
    [14] Kolb H. C., VanNieuwenhze M. S., Sharpless K. B. Catalyticasymmetric dihydroxylation. Chem Rev,1994,94(8):2483-2547.
    [15] Hoffmann H. M. R., Frackenpohl J. Recent advances in cinchonaalkaloid chemistry. Eur J Org Chem,2004,(21):4293-4312.
    [16] Wang J., Li H., Duan W. H., et al. Organocatalytic asymmetricMichael addition of2,4-pentandione to nitroolefins. Org Lett,2005,7(21):4713-4716.
    [17] Bartoli G., Bosco M., Carlone A., et al. Organocatalytic asymmetricconjugate addition of1,3-dicarbonyl compounds to maleimides.Angew Chem Int Ed,2006,45(30):4966-4970.
    [18] Wang H.-F., Zheng C.-W., Yang Y.-Q., et al. An unexpected tandemenantioselective Michael addition/oxa-nucleophilic rearrangementreaction of beta,gamma-unsaturated alpha-keto esters catalyzed bycinchona alkaloids. Tetrahedron-Asymmetry,2008,19(22):2608-2615.
    [19] Shi J., Wang M., He L., et al. Enantioselective Michael addition ofmalononitrile to chalcones catalyzed by a simplequinine-Al((OPr)-Pr-i)(3) complex: a simple method for the synthesisof a chiral4H-pyran derivative. Chem Commun,2009,(31):4711-4713.
    [20] Rai V., Mobin S. M., Namboothiri I. N. N. Cinchonine catalyzeddiastereo-and enantioselective Michael addition of alpha-lithiatedphosphonates to nitroalkenes. Tetrahedron-Asymmetry,2007,18(22):2719-2726.
    [21] Li H. M., Wang Y., Tang L., et al. Highly enantioselective conjugateaddition of malonate and beta-ketoester to nitroalkenes: AsymmetricC-C bond formation with new bifunctional organic catalysts based oncinchona alkaloids. J Am Chem Soc,2004,126(32):9906-9907.
    [22] Li H., Song J., Liu X., et al. Catalytic enantioselective C C bondforming conjugate additions with vinyl sulfones. J Am Chem Soc,2005,127(25):8948-8949.
    [23] Li H., Wang Y., Tang L., et al. Stereocontrolled creation of adjacentquaternary and tertiary stereocenters by a catalytic conjugate addition.Angew Chem Int Ed,2005,44(1):105-108.
    [24] Wu F., Li H., Hong R., et al. Construction of quaternarystereocenters by efficient and practical conjugate additions toα,β-unsaturated ketones with a chiral organic catalyst. Angew ChemInt Ed,2006,45(6):947-950.
    [25] Shi M., Lei Z.-Y., Zhao M.-X., et al. A highly efficient asymmetricMichael addition of anthrone to nitroalkenes with cinchonaorganocatalysts. Tetrahedron Lett,2007,48(33):5743-5746.
    [26] Lu J., Zhou W.-J., Liu F., et al. Organocatalytic and enantioselectivedirect vinylogous Michael addition to maleimides. Adv Synth Catal,2008,350(11-12):1796-1800.
    [27] Li H., Zhang S., Yu C., et al. Organocatalytic asymmetric synthesisof chiral fluorinated quaternary carbon containing beta-ketoesters.Chem Commun,2009,(16):2136-2138.
    [28] Chen W.-B., Wu Z.-J., Pei Q.-L., et al. Highly enantioselectiveconstruction of spiro4H-pyran-3,3'-oxindoles through a dominoKnoevenagel/Michael/Cyclization sequence catalyzed by cupreine.Org Lett,2010,12(14):3132-3135.
    [29] Raimondi W., Lettieri G., Dulcere J.-P., et al. One-pot asymmetriccyclocarbohydroxylation sequence for the enantioselective synthesisof functionalised cyclopentanes. Chem Commun,2010,46(38):7247-7249.
    [30] Chauhan P., Chimni S. S. Facile construction of vicinal quaternaryand tertiary Stereocenters via regio-and stereoselectiveorganocatalytic Michael addition to nitrodienes. Adv Synth Catal,2011,353(17):3203-3212.
    [31] He P., Liu X., Shi J., et al. Organocatalytic sequential Michaelreactions: stereoselective synthesis of multifunctionalizedtetrahydroindan derivatives. Org Lett,2011,13(5):936-939.
    [32] Fringuelli F., Castrica L., Pizzo F., et al. Enantioselective Michaeladdition of dimethyl malonate to (E)-beta-nitrostyrenes catalyzed bycinchona alkaloids under solvent-free condition. Lett. Org. Chem.,2008,5(8):602-606.
    [33] Li F., Li Y. Z., Jia Z. S., et al. Biscinchona alkaloids as highlyefficient bifunctional organocatalysts for the asymmetric conjugateaddition of malonates to nitroalkenes at ambient temperature.Tetrahedron,2011,67(52):10186-10194.
    [34] Xie J.-W., Chen W., Li R., et al. Highly asymmetric Michaeladdition to alpha,beta-unsaturated ketones catalyzed by9-amino-9-deoxyepiquinine. Angew Chem Int Ed,2007,46(3):389-392.
    [35] Xie J.-W., Yue L., Chen W., et al. Highly enantioselective michaeladdition of cyclic1,3-dicarbonyl compounds toalpha,beta-unsaturated ketones. Org Lett,2007,9(3):413-415.
    [36] Paixao M. W., Holub N., Vila C., et al. Trends in organocatalyticconjugate addition to enones: an efficient approach to optically activealkynyl, alkenyl, and ketone products. Angew Chem Int Ed,2009,48(40):7338-7342.
    [37] Tan B., Zhang X., Chua P. J., et al. Recyclable organocatalysis:highly enantioselective Michael addition of1,3-diaryl-1,3-propanedione to nitroolefins. Chem Commun,2009,(7):779-781.
    [38] Moon H. W., Cho M. J., Kim D. Y. Enantioselective conjugateaddition of fluorobis(phenylsulfonyl)methane toalpha,beta-unsaturated ketones catalyzed by chiral bifunctionalorganocatalysts. Tetrahedron Lett,2009,50(34):4896-4898.
    [39] Li X. F., Cun L. F., Lian C. X., et al. Highly enantioselectiveMichael addition of malononitrile to alpha,beta-unsaturated ketones.Org Biomol Chem,2008,6(2):349-353.
    [40] McCooey S. H., Connon S. J. Readily accessible9-epi-aminocinchona alkaloid derivatives promote efficient, highlyenantioselective additions of aldehydes and ketones to nitroolefins.Org Lett,2007,9(4):599-602.
    [41] Zhang L., Lee M.-M., Lee S.-M., et al. NovelCinchona-aminobenzimidazole bifunctional organocatalysts. AdvSynth Catal,2009,351(18):3063-3066.
    [42] Moon H. W., Kim D. Y. Enantioselective organocatalytic conjugateaddition of alpha-nitroacetate to alpha,beta-unsaturated ketones inwater. Tetrahedron Lett,2010,51(21):2906-2908.
    [43] McCooey S. H., Connon S. J. Urea-and thiourea-substitutedcinchona alkaloid derivatives as highly efficient bifunctionalorganocatalysts for the asymmetric addition of malonate tonitroalkenes: Inversion of configuration at C9dramatically improvescatalyst performance. Angew Chem Int Ed,2005,44(39):6367-6370.
    [44] Vakulya B., Varga S., Csampai A., et al. Highly enantioselectiveconjugate addition of nitromethane to chalcones using bifunctionalcinchona organocatalysts. Org Lett,2005,7(10):1967-1969.
    [45] Gu C., Liu L., Sui Y., et al. Highly enantioselective Michaeladditions of alpha-cyanoacetate with chalcones catalyzed bybifunctional cinchona-derived thiourea organocatalyst.Tetrahedron-Asymmetry,2007,18(4):455-463.
    [46] Lubkoll J., Wennemers H. Mimicry of polyketide synthases-Enantioselective1,4-addition reactions of malonic acid half-thioestersto nitroolefins. Angew Chem Int Ed,2007,46(36):6841-6844.
    [47] Wang B., Wu F., Wang Y., et al. Control of diastereoselectivity intandem asymmetric reactions generating nonadjacent stereocenterswith bifunctional catalysis by cinchona alkaloids. J Am Chem Soc,2007,129(4):768-769.
    [48] Bassas O., Huuskonen J., Rissanen K., et al. A simpleorganocatalytic enantioselective synthesis of pregabalin. Eur J OrgChem,2009,(9):1340-1351.
    [49] Han X., Luo J., Liu C., et al. Asymmetric generation offluorine-containing quaternary carbons adjacent to tertiarystereocenters: uses of fluorinated methines as nucleophiles. ChemCommun,2009,(15):2044-2046.
    [50] Ding D., Zhao C.-G., Guo Q., et al. Enantioselective synthesis ofbicylco3.2.1octan-8-ones using a tandem Michael Henry reaction.Tetrahedron,2010,66(25):4423-4427.
    [51]Ding D., Zhao C.-G. Organocatalyzed synthesis of2-amino-8-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles.Tetrahedron Lett,2010,51(9):1322-1325.
    [52] Gu Q., You S.-L. Desymmetrization of cyclohexadienones viaasymmetric Michael reaction catalyzed by cinchonine-derived urea.Org Lett,2011,13(19):5192-5195.
    [53] Trost B. M., Brindle C. S. The direct catalytic asymmetric aldolreaction. Chem Soc Rev,2010,39(5):1600-1632.
    [54] Mettath S., Srikanth G. S. C., Dangerfield B. S., et al. Asymmetricsynthesis beta-hydroxy amino acids via aldol reactions catalyzed bychiral ammonium salts. J Org Chem,2004,69(19):6489-6492.
    [55] Ogawa S., Shibata N., Inagaki J., et al. Cinchona-alkaloid-catalyzedenantioselective direct aldol-type reaction of oxindoles with ethyltrifluoropyruvate. Angew Chem Int Ed,2007,46(45):8666-8669.
    [56] Zhou J., Wakchaure V., Kraft P., et al. Primary-amine-catalyzedenantioselective intramolecular aldolizations. Angew Chem Int Ed,2008,47(40):7656-7658.
    [57] Paradowska J., Rogozinska M., Mlynarski J. Direct asymmetricaldol reaction of hydroxyacetone promoted by chiral tertiary amines.Tetrahedron Lett,2009,50(14):1639-1641.
    [58] Czarnecki P., Plutecka A., Gawronski J., et al. Simple and practicaldirect asymmetric aldol reaction of hydroxyacetone catalyzed by9-amino Cinchona alkaloid tartrates. Green Chem,2011,13(5):1280-1287.
    [59] Allu S., Molleti N., Panem R., et al. Enantioselective organocatalyticaldol reaction of unactivated ketones with isatins. Tetrahedron Lett,2011,52(32):4080-4083.
    [60] Huang W. B., Liu Q. W., Zheng L. Y., et al. Novel Primary amineorganocatalysts derived from cinchona alkaloids for asymmetricdirect Aldol reactions in brine. Catal Lett,2011,141(1):191-197.
    [61] Fan Q. H., Li Y. M., Chan A. S. C. Recoverable catalysts forasymmetric organic synthesis. Chem Rev,2002,102(10):3385-3465.
    [62] Trindade A. F., Gois P. M. P., Afonso C. A. M. Recyclablestereoselective catalysts. Chem Rev,2009,109(2):418-514.
    [63] Moon Kim B., Sharpless K. B. Heterogeneous catalytic asymmetricdihydroxylation: Use of a polymer-bound alkaloid. Tetrahedron Lett,1990,31(21):3003-3006.
    [64] DeClue M. S., Siegel J. S. Polysiloxane-bound ligand acceleratedcatalysis: a modular approach to heterogeneous and homogeneousmacromolecular asymmetric dihydroxylation ligands. Org BiomolChem,2004,2(16):2287-2298.
    [65] Cheng S. K., Zhang S. Y., Wang P. A., et al. Homogeneous catalyticasymmetric dihydroxylation of olefins induced by an efficient andrecoverable polymer-bound ligand QN-AQN-OPEG-OMe. ApplOrganomet Chem,2005,19(8):975-979.
    [66] Mandoli A., Pini D., Fiori M., et al. Asymmetric dihydroxylationwith recoverable cinchona alkaloid derivatives: A warning note andan improved, insoluble polymer-bound ligand architecture. Eur J OrgChem,2005,(7):1271-1282.
    [67] Cha R.-T., Wang S.-Y., Chong S.-L. Polymeric cinchona alkaloidsfor the catalytic asymmetric dihydroxylation of olefins. J Appl PolymSci,2008,108(2):845-849.
    [68] Choudary B. M., Chowdari N. S., Jyothi K., et al. A newbifunctional catalyst for tandem Heck-asymmetric dihydroxylation ofolefins. Chem Commun,2002,(6):586-587.
    [69] Choudary B. M., Chowdari N. S., Jyothi K., et al. MCM-41anchored cinchona alkaloid for catalytic asymmetric dihydroxylationof olefins: a clean protocol for chiral diols using molecular oxygen.Catal Lett,2002,82(1-2):99-102.
    [70] Choudary B. M., Chowdari N. S., Jyothi K., et al. Silicagel-supported Cinchona alkaloid-OsO4complex for catalyticheterogeneous asymmetric dihydroxylation of olefins by H2O2usinga titanium silicalite-based coupled catalytic system. Adv Synth Catal,2002,344(5):503-506.
    [71] Lee D., Lee J., Lee H., et al. Filtration-free recyclable catalyticasymmetric dihydroxylation using a ligand immobilized on magneticmesocellular mesoporous silica. Adv Synth Catal,2006,348(1-2):41-46.
    [72] Danelli T., Annunziata R., Benaglia M., et al. Immobilization ofcatalysts derived from Cinchona alkaloids on modified poly(ethyleneglycol). Tetrahedron-Asymmetry,2003,14(4):461-467.
    [73] Thierry B., Plaquevent J. C., Cahard D. Poly(ethylene glycol)supported cinchona alkaloids as phase transfer catalysts: applicationto the enantioselective synthesis of alpha-amino acids.Tetrahedron-Asymmetry,2003,14(12):1671-1677.
    [74] Chinchilla R., Mazon P., Najera C. Polystyrene-anchored Cinchonaammonium salts: Easily recoverable phase-transfer catalysts for theasymmetric synthesis of alpha-amino acids. Adv Synth Catal,2004,346(9-10):1186-1194.
    [75] Wang X., Yin L., Yang T., et al. Synthesis of newdimeric-PEG-supported cinchona ammonium salts as chiral phasetransfer catalysts for the alkylation of Schiff bases with water as thesolvent. Tetrahedron-Asymmetry,2007,18(1):108-114.
    [76] Shi Q., Lee Y.-J., Kim M.-J., et al. Highly efficient polymersupported phase-transfer catalysts containing hydrogen bond inducingfunctional groups. Tetrahedron Lett,2008,49(8):1380-1383.
    [77] Kobayashi N., Iwai K. Functional Polymers.4. Asymmetric additionof dodecanethiol to isopropenyl methyl ketone catalyzed by cinchonaalkaloid-acrylonitrile copolymers. Macromolecules,1980,13(1):31-34.
    [78] Alvarez R., Hourdin M. A., Cave C., et al. New polymer-supportedcatalysts derived from Cinchona alkaloids: Their use in theasymmetric Michael reaction. Tetrahedron Lett,1999,40(39):7091-7094.
    [79] Corma A., Iborra S., Rodriguez I., et al. MCM-41heterogenizedchiral amines as base catalysts for enantio selective Michael reaction.Catal Lett,2002,82(3-4):237-242.
    [80] Onimura K., Matsuzaki K., Lee Y. K., et al. Facile synthesis ofpolymer-supported cinchona alkaloid catalysts for asymmetricMichael reaction. Polym J,2004,36(3):190-197.
    [81] Yu P., He J., Guo C.9-Thiourea Cinchona alkaloid supported onmesoporous silica as a highly enantioselective, recyclableheterogeneous asymmetric catalyst. Chem Commun,2008,(20):2355-2357.
    [82] Gleeson O., Davies G.-L., Peschiulli A., et al. The immobilisation ofchiral organocatalysts on magnetic nanoparticles: the support particlecannot always be considered inert. Org Biomol Chem,2011,9(22):7929-7940.
    [83] Qin Y., Yang G., Yang L., et al. Construction of adjacent quaternaryand tertiary stereocenters by conjugate addition usingpolymer-supported cinchona alkaloids as catalysts. Catal Lett,2011,141(3):481-488.
    [84]徐如人,庞如琴,于吉红等,分子筛与多孔材料化学.北京:科学出版社:2004.528-562
    [85] Corma A., Navarro M. T., Pariente J. P. Synthesis of an ultralargepore titanium silicate isomorphous to MCM-41and its application asa catalyst for selective oxidation of hydrocarbons. Chem Commun,1994,(2):147-148.
    [86] Reddy J. S., Sayari A. Room-temperature synthesis of a highlyactive vanadium-containing mesoporous molecular sieve, ChemCommun,1995,(21):2231-2232.
    [87] Sakthivel A., Selvam P. Mesoporous (Cr)MCM-41: A mild andefficient heterogeneous catalyst for selective oxidation ofcyclohexane. J Catal,2002,211(1):134-143.
    [88] Aguado J., Serrano D. P., Romero M. D., et al. Catalytic conversionof polyethylene into fuels over mesoporous MCM-41. ChemCommun,1996,(6):725-726.
    [89] Ramakrishna Prasad M., Kamalakar G., Kulkarni S. J., et al.Synthesis of binaphthols over mesoporous molecular sieves. J MolCatal A: Chem,2002,180(1–2):109-123.
    [90] Tuel A., Gontier S., Teissier R. Zirconium containing mesoporoussilicas: new catalysts for oxidation reactions in the liquid phase.Chem Commun,1996,(5):651-652.
    [91] Fukuoka A., Kimura J.-i., Oshio T., et al. Preferential oxidation ofcarbon monoxide catalyzed by platinum nanoparticles in mesoporoussilica. J Am Chem Soc,2007,129(33):10120-10125.
    [92] Kozhevnikov I. V., Sinnema A., Jansen R. J. J., et al. New acidcatalyst comprising heteropoly acid on a mesoporous molecular sieveMCM-41. Catal Lett,1994,30(1):241-252.
    [93] Wang X., Cheng S. Solvent-free synthesis of flavanones overaminopropyl-functionalized SBA-15. Catal Commun,2006,7(9):689-695.
    [94] Sutra P., Brunel D. Preparation of MCM-41type silica-boundmanganese(III) Schiff-base complexes. Chem Commun,1996,(21):2485-2486.
    [95] Shen Y. B., Chen Q., Lou L. L., et al. Asymmetric Transferhydrogenation of aromatic ketones catalyzed by SBA-15supportedIr(I) complex under mild conditions. Catal Lett,2010,137(1-2):104-109.
    [96]王恩波,胡长文,许林,多酸化学导论.北京:化学工业出版社:1998.
    [97]刘鼎.杂多酸和氮掺杂氧化钦光催化降解水中有机污染物的研究:[硕士学位论文].杭州:浙江大学,2008.
    [98] Pope M. T., Heteropoly and isopoly oxometalates. Springer-Verlag:New York,1983.
    [99]沈业兵.杂多酸催化的碳碳键和碳氮键形成研究:[博士学位论文].合肥:中国科学技术大学,2008.
    [100] Misono M., Nojiri N. Recent progress in catalytic technology injapan. Appl Catal,1990,64(0):1-30.
    [101] Izumi Y., Urabe K., Onaka M., Zeolite,and Heteropoly acid inorganic reactions. Kodansha/VCH: Tokyo,1992.
    [102] Leng Y., Wang J., Zhu D. R., et al. Heteropolyanion-Based ionicliquids: reaction-induced self-aeparation catalysts for esterification.Angew Chem Int Ed,2009,48(1):168-171.
    [103] Luo S., Chi Y., Sun L., et al. Single-step catalytic synthesis ofdiphenyl carbonate over transition-metal-substituted Keggin-typetungstophosphoric acid. Catal Commun,2008,9(15):2560-2564.
    [104] Micek-llnicka A., Lubańska A., Mucha D. The Effect of protonhydration in Wells-Dawson and Keggin type heteropolyacids on theircatalytic activity in gas phase ETBE Synthesis. Catal Lett,2009,127(3):285-290.
    [105] Firouzabadi H., Iranpoor N., Jafari A. A., et al. Tungstophosphoricacid supported on silica gel (H3PW12O40/SiO2) as an eco-friendly,reusable and heterogeneous catalyst for chemoselectiveoxathioacetalization of carbonyl compounds in solution or undersolvent-free conditions. J Mol Catal A: Chem,2006,247(1–2):14-18.
    [106] Ferreira P., Fonseca I. M., Ramos A. M., et al. Valorisation ofglycerol by condensation with acetone over silica-includedheteropolyacids. Appl Catal B: Environ,2010,98(1–2):94-99.
    [107] Fazaeli R., Tangestaninejad S., Aliyan H., et al. One-pot synthesisof dihydropyrimidinones using facile and reusable polyoxometalatecatalysts for the Biginelli reaction. Appl Catal A: Gen,2006,309(1):44-51.
    [108] Rafiee E., Shahbazi F. One-pot synthesis of dihydropyrimidonesusing silica-supported heteropoly acid as an efficient and reusablecatalyst: Improved protocol conditions for the Biginelli reaction. JMol Catal A: Chem,2006,250(1–2):57-61.
    [109] Okumura K., Ito S., Yonekawa M., et al. Enhancement of thecatalytic activity of a Dawson-type heteropoly acid induced by theloading on a silica support. Top Catal,2009,52(6):649-656.
    [110] Dias J. A., Rangel M. d. C., Dias S. C. L., et al. Benzenetransalkylation with C9+aromatics over supported12-tungstophosphoric acid on silica catalysts. Appl Catal A: Gen,2007,328(2):189-194.
    [111] Kamiya Y., Ooka Y., Obara C., et al. Alkylation–acylation ofp-xylene with γ-butyrolactone or vinylacetic acid catalyzed byheteropolyacid supported on silica. J Mol Catal A: Chem,2007,262(1–2):77-85.
    [112] Shiju N. R., Williams H. M., Brown D. R. Cs exchangedphosphotungstic acid as an efficient catalyst for liquid-phaseBeckmann rearrangement of oximes. Appl Catal B: Environ,2009,90(3–4):451-457.
    [113] Yadav G. D., Lande S. V. Ecofriendly Claisen Rearrangement ofAllyl-4-tert-butylphenyl Ether Using Heteropolyacid supported onhexagonal mesoporous silica. Org Process Res Dev,2005,9(5):547-554.
    [114] Yadav G. D., Lande S. V. Selective Claisen rearrangement ofallyl-2,4-di-tert-butylphenyl ether to6-allyl-2,4-di-tert-butylphenolcatalysed by heteropolyacid supported on hexagonal mesoporoussilica. J Mol Catal A: Chem,2006,243(1):31-39.
    [115] Costa V. V., da Silva Rocha K. A., Kozhevnikov I. V., et al.Isomerization of styrene oxide to phenylacetaldehyde over supportedphosphotungstic heteropoly acid. Appl Catal A: Gen,2010,383(1–2):217-220.
    [116] da Silva Rocha K. A., Kozhevnikov I. V., Gusevskaya E. V.Isomerisation of α-pinene oxide over silica supported heteropoly acidH3PW12O40. Appl Catal A: Gen,2005,294(1):106-110.
    [117] Liu Y., Murata K., Inaba M., et al. Direct epoxidation of propyleneby molecular oxygen overPd(OAc)2–[(C6H13)4N]3{PO4[W(O)(O2)2]4}–CH3OH catalytic system.Appl Catal B: Environ,2005,58(1–2):51-59.
    [118] Bonchio M., Carraro M., Farinazzo A., et al. Aerobic oxidation ofcis-cyclooctene by iron-substituted polyoxotungstates: Evidence for ametal initiated auto-oxidation mechanism. J Mol Catal A: Chem,2007,262(1–2):36-40.
    [119] Xi Z. W., Zhou N., Sun Y., et al. Reaction-controlled phase-transfercatalysis for propylene epoxidation tea propylene oxide. Science,2001,292(5519):1139-1141.
    [120] Shinachi S., Matsushita M., Yamaguchi K., et al. Oxidation ofadamantane with1atm molecular oxygen by vanadium-substitutedpolyoxometalates. J Catal,2005,233(1):81-89.
    [121] Kamata K., Yonehara K., Nakagawa Y., et al. Efficient stereo-andregioselective hydroxylation of alkanes catalysed by a bulkypolyoxometalate. Nature Chemistry,2010,2(6):478-483.
    [122] Khenkin A. M., Weiner L., Neumann R. Selective OrthoHydroxylation of nitrobenzene with molecular oxygen catalyzed bythe H5PV2Mo10O40polyoxometalate.J Am Chem Soc,2005,127(28):9988-9989.
    [123] Liu Y., Murata K., Inaba M. Liquid-phase oxidation of benzene tophenol by molecular oxygen over transition metal substitutedpolyoxometalate compounds. Catal Commun,2005,6(10):679-683.
    [124] Yu J., Yang P., Yang Y., et al. Hydroxylation of phenol withhydrogen peroxide over tungstovanadophosphates with Dawsonstructure. Catal Commun,2006,7(3):153-156.
    [125] Gao F., Hua R. Novel C–N bond cleavage and formation in thepolyoxometalates-catalyzed oxidation of nitroaromatics with30%aqueous H2O2: An unprecedented disproportionation ofnitroaromatics affording dinitroaromatics. Inorg Chim Acta,2005,358(13):4045-4048.
    [126] Deng Q., Jiang S., Cai T., et al. Selective oxidation of isobutaneover HxFe0.12Mo11VPAs0.3Oy heteropoly compound catalyst. J MolCatal A: Chem,2005,229(1–2):165-170.
    [127] Hayashi K., Kato C. N., Shinohara A., et al. Isolation,characterization, and reactivity of the reaction products of the dimeric,Ti–O–Ti bridged anhydride form of the1,2-di-titanium(IV)-substituted α-Keggin polyoxometalate withaqueous30%H2O2. J Mol Catal A: Chem,2007,262(1–2):30-35.
    [128] Maayan G., Ganchegui B., Leitner W., et al. Selective aerobicoxidation in supercritical carbon dioxide catalyzed by theH5PV2Mo10O40polyoxometalate. Chem Commun,2006,(21):2230-2232.
    [129] Zhao W., Zhang Y., Ma B., et al. Oxidation of alcohols withhydrogen peroxide in water catalyzed by recyclable keggin-typetungstoborate catalyst. Catal Commun,2010,11(6):527-531.
    [130] Bonchio M., Carraro M., Sartorel A., et al. Bio-inspired oxidationswith polyoxometalate catalysts. J Mol Catal A: Chem,2006,251(1–2):93-99.
    [131] Lu H., Gao J., Jiang Z., et al. Oxidative desulfurization ofdibenzothiophene with molecular oxygen using emulsion catalysis.Chem Commun,2007,(2):150-152.
    [132] Li C., Gao J., Jiang Z., et al. Selective Oxidations on recoverablecatalysts assembled in emulsions. Top Catal,2005,35(1):169-175.
    [133] Komintarachat C., Trakarnpruk W. Oxidative desulfurization usingpolyoxometalates. Ind Eng Chem Res,2006,45(6):1853-1856.
    [1] Dalko P. I., Moisan L. In the golden age of organocatalysis. AngewChem Int Ed,2004,43(39):5138-5175.
    [2] Taylor M. S., Jacobsen E. N. Asymmetric catalysis by chiralhydrogen-bond donors. Angew Chem Int Ed,2006,45(10):1520-1543.
    [3] Ballini R., Bosica G., Fiorini D., et al. Conjugate additions ofnitroalkanes to electron-poor alkenes: Recent results. Chem Rev,2005,105(3):933-971.
    [4] Palomo C., Oiarbide M., Lopez R. Asymmetric organocatalysis bychiral Bronsted bases: implications and applications. Chem Soc Rev,2009,38(2):632-653.
    [5] Seayad J., List B. Asymmetric organocatalysis. Org Biomol Chem,2005,3(5):719-724.
    [6] Chen Y. C., Xue D., Deng J. G., et al. Efficient asymmetric transferhydrogenation of activated olefins catalyzed by ruthenium amidocomplexes. Tetrahedron Lett,2004,45(7):1555-1558.
    [7] Taylor M. S., Zalatan D. N., Lerchner A. M., et al. Highlyenantioselective conjugate additions to alpha,beta-unsaturatedketones catalyzed by a (Salen)Al complex. J Am Chem Soc,2005,127(4):1313-1317.
    [8] Li X. F., Cun L. F., Lian C. X., et al. Highly enantioselective Michaeladdition of malononitrile to alpha,beta-unsaturated ketones. OrgBiomol Chem,2008,6(2):349-353.
    [9] Yue L., Du W., Liu Y. K., et al. Organocatalytic asymmetric directMichael addition of aromatic ketones to alkylidenemalononitriles.Tetrahedron Lett,2008,49(24):3881-3884.
    [10] Wang J., Li H., Zu L. S., et al. Organocatalytic enantioselectiveconjugate additions to enones. J Am Chem Soc,2006,128(39):12652-12653.
    [11] Russo A., Perfetto A., Lattanzi A. Back to Natural CinchonaAlkaloids: Highly enantioselective Michael addition of malononitrileto enones. Adv Synth Catal,2009,351(18):3067-3071.
    [12] Kalbasi R. J., Massah A. R., Zamani F., et al. Metal (Co,Mn)-amine-functionalized mesoporous silica SBA-15: synthesis,characterization and catalytic properties in hydroxylation of benzene.J Porous Mater,2011,18(4):475-482.
    [13] Sheng X. L., Zhou Y. M., Zhang Y. W., et al. Highly active and greenaminopropyl-immobilized phosphotungstic acid on MesoporousLaSBA-15for alkylation of oxylene with styrene. Catal Lett,2012,142(3):360-367.
    [14] Tang J. Y., Zu Y. H., Huo W. T., et al. Mesoporous SBA-15modifiedwith manganese pyrazolylpyridine complexes for the catalyticepoxidation of terminal alkenes. J Mol Catal A: Chem,2012,355201-209.
    [15] El Hankari S., El Kadib A., Finiels A., et al. SBA-15-typeorganosilica with4-mercapto-N,N-bis-(3-Si-propyl)butanamide forpalladium scavenging and cross-coupling catalysis. Chem Eur J,2011,17(32):8984-8994.
    [16] Zhao D. Y., Feng J. L., Huo Q. S., et al. Triblock copolymersyntheses of mesoporous silica with periodic50to300angstrompores. Science,1998,279(5350):548-552.
    [17] Yu P., He J., Guo C. X.9-Thiourea Cinchona alkaloid supported onmesoporous silica as a highly enantioselective, recyclableheterogeneous asymmetric catalyst. Chem Commun,2008,(20):2355-2357.
    [18] Isleyen A., Dogan O. Application of ferrocenyl substitutedaziridinylmethanols (FAM) as chiral ligands in enantioselectiveconjugate addition of diethylzinc to enones. Tetrahedron-Asymmetry,2007,18(5):679-684.
    [19] Kang T., Park Y., Yi J. Highly Selective Adsorption of Pt2+and Pd2+using thiol-functionalized mesoporous silica. Ind Eng Chem Res,2004,43(6):1478-1484.
    [20] Choudary B. M., Chowdari N. S., Jyothi K., et al. MCM-41anchored cinchona alkaloid for catalytic asymmetric dihydroxylationof olefins: a clean protocol for chiral diols using molecular oxygen.Catal Lett,2002,82(1-2):99-102.
    [21] Marion L., Ramsay D. A., Jones R. N. The Infrared absorptionspectra of alkaloids. J Am Chem Soc,1951,73(1):305-308.
    [22]袁奇学.奎宁及其衍生物催化合成手性α-氨基膦酸酯的实验和理论研究:[硕士学位论文],贵州:贵州大学,2008.
    [23]黄量,紫外光谱在有机化学中的应用:上册.北京:科学出版社,1988.
    [24] Margolese D., Melero J. A., Christiansen S. C., et al. Directsyntheses of ordered SBA-15mesoporous silica containing sulfonicacid groups. Chem Mater,2000,12(8):2448-2459.
    [25]喻鹏.9一硫脲表奎宁在介孔二氧化硅表面的组装及催化性能:
    [博士学位论文],北京:化工大学,2008.
    [1] Hoffmann F., Cornelius M., Morell J., et al. Silica-based mesoporousorganic-inorganic hybrid materials. Angew Chem Int Ed,2006,45(20):3216-3251.
    [2] Yoshitake H. Design of functionalization and structural analysis oforganically-modified siliceous oxides with periodic structures for thedevelopment of sorbents for hazardous substances. J Mater Chem,2010,20(22):4537-4550.
    [3] Aguado J., Arsuaga J. M., Arencibia A. Influence of synthesisconditions on mercury adsorption capacity of propylthiolfunctionalized SBA-15obtained by co-condensation. MicroporMesopor Mater,2008,109(1-3):513-524.
    [4] Wang X. G., Lin K. S. K., Chan J. C. C., et al. Direct synthesis andcatalytic applications of ordered large poreaminopropyl-functionalized SBA-15mesoporous materials. J PhysChem B,2005,109(5):1763-1769.
    [5] Margolese D., Melero J. A., Christiansen S. C., et al. Direct synthesesof ordered SBA-15mesoporous silica containing sulfonic acid groups.Chem Mater,2000,12(8):2448-2459.
    [6]喻鹏.9-硫脲表奎宁在介孔二氧化硅表面的组装及催化性能:[博士学位论文],北京:化工大学,2008
    [7] Zhao D. Y., Huo Q. S., Feng J. L., et al. Nonionic triblock and stardiblock copolymer and oligomeric surfactant syntheses of highlyordered, hydrothermally stable, mesoporous silica structures. J AmChem Soc,1998,120(24):6024-6036.
    [1] Sujandi, Park S. E., Han D. S., et al. Amino-functionalized SBA-15type mesoporous silica having nanostructured hexagonal plateletmorphology. Chem Commun,2006,(39):4131-4133.
    [2] Chen B. C., Lin H. P., Chao M. C., et al. Mesoporous silica plateletswith perpendicular nanochannels via a ternary surfactant system. AdvMater,2004,16(18):1657-1661.
    [3] Han Y., Ying J. Y. Generalized fluorocarbon-surfactant-mediatedsynthesis of nanoparticles with various mesoporous structures.Angew Chem Int Ed,2005,44(2):288-292.
    [4] Zhang H., Sun J., Ma D., et al. Unusual mesoporous SBA-15withparallel channels running along the short axis. J Am Chem Soc,2004,126(24):7440-7441.
    [5] Cheng S. F., Wang X. G., Chen S. Y. Applications ofamine-functionalized mesoporous silica in fine chemical synthesis.Top Catal,2009,52(6-7):681-687.
    [6] Sun J., Zhang H., Tian R., et al. Ultrafast enzyme immobilization overlarge-pore nanoscale mesoporous silica particles. Chem Commun,2006,(12):1322-1324.
    [7] Chen S-Y, Chen Y.-T, Lee J-J, et al. Tuning pore diameter of plateletSBA-15materials with short mesochannels. J Mater Chem,2011,21(15):5693.
    [8] Chen S. Y., Tang C. Y., Chuang W. T., et al. A facile route tosynthesizing functionalized mesoporous SBA-15materials withplatelet morphology and short mesochannels. Chem Mater,2008,20(12):3906-3916.
    [1] Mukherjee S., Yang J. W., Hoffmann S., et al. Asymmetric enaminecatalysis. Chem Rev,2007,107(12):5471-5569.
    [2] Trost B. M., Brindle C. S. The direct catalytic asymmetric aldolreaction. Chem Soc Rev,2010,39(5):1600-1632.
    [3] Luo S. Z., Xu H., Li J. Y., et al. A simple primary-tertiarydiamine-Bronsted acid catalyst for asymmetric direct Aldol reactionsof linear aliphatic ketones. J Am Chem Soc,2007,129(11):3074-3075.
    [4] Guillena G., Najera C., Ramon D. J. Enantioselective direct aldolreaction: the blossoming of modern organocatalysis.Tetrahedron-Asymmetry,2007,18(19):2249-2293.
    [5] Li J., Li X., Zhou P., et al. Chiral Primary amine-polyoxometalateacid hybrids as asymmetric recoverable iminium-based catalysts. EurJ Org Chem,2009,(26):4486-4493.
    [6] Luo S. H., Li J. Y., Xu H., et al. Chiral amine-polyoxometalatehybrids as highly efficient and recoverable asymmetric enaminecatalysts. Org Lett,2007,9(18):3675-3678.
    [7] Gao Q., Lu S.-M., Liu Y., et al. Recyclable chiraldiamine-polyoxometalate (POM) acids catalyzed asymmetric directaldol reaction of aromatic aldehydes with long-chain aliphaticketones. Tetrahedron Lett,2011,52(29):3779-3781.
    [8] Gao Q., Liu Y., Lu S. M., et al. Recyclable enamine catalysts forasymmetric direct cross-aldol reaction of aldehydes in emulsionmedia. Green Chem,2011,13(8):1983-198
    [9] Chen J. R., An X. L., Zhu X. Y., et al. Rational combination of twoprivileged chiral backbones: Highly efficient organocatalysts forasymmetric direct aldol reactions between aromatic aldehydes andacylic ketones. J Org Chem,2008,73(15):6006-6009.
    [1]王积涛,张宝申,王永梅等,有机化学.第5版.天津:南开大学出版社,2003; p200.
    [2] Yeboah E. M. O., Yeboah S. O., Singh G. S. Recent applications ofcinchona alkaloids and their derivatives as catalysts in metal-freeasymmetric synthesis. Tetrahedron,2011,67(10):1725-1762.
    [3]陈惠.不对称有机催化反应:金鸡纳生物碱衍生物催化不对称“中断的”Feist-Benary反应:[博士毕业论文],西安:第四军医大学,2008.
    [4] Nutrition R. Tropical plants database.http://www.rain-tree.com/plants.htm.
    [5] Yang F., Hanon S., Lam P., et al. Quinidine revisited. Am J Med,2009,122(4):317-321.
    [6] Woodward R. B., Doering W. E. The Total synthesis of quinine. J AmChem Soc,1945,67(5):860-874.
    [7] Stork G., Niu D., Fujimoto A., et al. The First stereoselective totalsynthesis of quinine. J Am Chem Soc,2001,123(14):3239-3242.
    [8] Dijkstra G. D. H., Kellogg R. M., Wynberg H., et al. Conformationalstudy of cinchona alkaloids. A combined NMR, molecular mechanicsand x-ray approach. J Am Chem Soc,1989,111(21):8069-8076.
    [9] Bürgi T., Baiker A. Conformational behavior of cinchonidine indifferent Solvents: a combined NMR and ab initio investigation. JAm Chem Soc,1998,120(49):12920-12926.
    [10] Marcelli T., van Maarseveen J. H., Hiemstra H. Cupreines andcupreidines: an emerging class of bifunctional cinchonaorganocatalysts. Angew Chem Int Ed,2006,45(45):7496-7504.
    [11] G.Bredig, P.S.Fiske. Durch Katalysatoren bewirkte asymmetrischeSynthese. Biochem Z,1912,467-23.
    [12] Connon S. J. Organocatalysis mediated by (thio)urea derivatives.Chem Eur J,2006,12(21):5418-5427.
    [13] O'Donnell M. J. The Enantioselective synthesis of α-amino acids byphase-transfer catalysis with achiral schiff base esters. Acc Chem Res,2004,37(8):506-517.
    [14] Kolb H. C., VanNieuwenhze M. S., Sharpless K. B. Catalyticasymmetric dihydroxylation. Chem Rev,1994,94(8):2483-2547.
    [15] Hoffmann H. M. R., Frackenpohl J. Recent advances in cinchonaalkaloid chemistry. Eur J Org Chem,2004,(21):4293-4312.
    [16] Wang J., Li H., Duan W. H., et al. Organocatalytic asymmetricMichael addition of2,4-pentandione to nitroolefins. Org Lett,2005,7(21):4713-4716.
    [17] Bartoli G., Bosco M., Carlone A., et al. Organocatalytic asymmetricconjugate addition of1,3-dicarbonyl compounds to maleimides.Angew Chem Int Ed,2006,45(30):4966-4970.
    [18] Wang H.-F., Zheng C.-W., Yang Y.-Q., et al. An unexpected tandemenantioselective Michael addition/oxa-nucleophilic rearrangementreaction of beta,gamma-unsaturated alpha-keto esters catalyzed bycinchona alkaloids. Tetrahedron-Asymmetry,2008,19(22):2608-2615.
    [19] Shi J., Wang M., He L., et al. Enantioselective Michael addition ofmalononitrile to chalcones catalyzed by a simplequinine-Al((OPr)-Pr-i)(3) complex: a simple method for the synthesisof a chiral4H-pyran derivative. Chem Commun,2009,(31):4711-4713.
    [20] Rai V., Mobin S. M., Namboothiri I. N. N. Cinchonine catalyzeddiastereo-and enantioselective Michael addition of alpha-lithiatedphosphonates to nitroalkenes. Tetrahedron-Asymmetry,2007,18(22):2719-2726.
    [21] Li H. M., Wang Y., Tang L., et al. Highly enantioselective conjugateaddition of malonate and beta-ketoester to nitroalkenes: AsymmetricC-C bond formation with new bifunctional organic catalysts based oncinchona alkaloids. J Am Chem Soc,2004,126(32):9906-9907.
    [22] Li H., Song J., Liu X., et al. Catalytic enantioselective C C bondforming conjugate additions with vinyl sulfones. J Am Chem Soc,2005,127(25):8948-8949.
    [23] Li H., Wang Y., Tang L., et al. Stereocontrolled creation of adjacentquaternary and tertiary stereocenters by a catalytic conjugate addition.Angew Chem Int Ed,2005,44(1):105-108.
    [24] Wu F., Li H., Hong R., et al. Construction of quaternarystereocenters by efficient and practical conjugate additions toα,β-unsaturated ketones with a chiral organic catalyst. Angew ChemInt Ed,2006,45(6):947-950.
    [25] Shi M., Lei Z.-Y., Zhao M.-X., et al. A highly efficient asymmetricMichael addition of anthrone to nitroalkenes with cinchonaorganocatalysts. Tetrahedron Lett,2007,48(33):5743-5746.
    [26] Lu J., Zhou W.-J., Liu F., et al. Organocatalytic and enantioselectivedirect vinylogous Michael addition to maleimides. Adv Synth Catal,2008,350(11-12):1796-1800.
    [27] Li H., Zhang S., Yu C., et al. Organocatalytic asymmetric synthesisof chiral fluorinated quaternary carbon containing beta-ketoesters.Chem Commun,2009,(16):2136-2138.
    [28] Chen W.-B., Wu Z.-J., Pei Q.-L., et al. Highly enantioselectiveconstruction of spiro4H-pyran-3,3'-oxindoles through a dominoKnoevenagel/Michael/Cyclization sequence catalyzed by cupreine.Org Lett,2010,12(14):3132-3135.
    [29] Raimondi W., Lettieri G., Dulcere J.-P., et al. One-pot asymmetriccyclocarbohydroxylation sequence for the enantioselective synthesisof functionalised cyclopentanes. Chem Commun,2010,46(38):7247-7249.
    [30] Chauhan P., Chimni S. S. Facile construction of vicinal quaternaryand tertiary Stereocenters via regio-and stereoselectiveorganocatalytic Michael addition to nitrodienes. Adv Synth Catal,2011,353(17):3203-3212.
    [31] He P., Liu X., Shi J., et al. Organocatalytic sequential Michaelreactions: stereoselective synthesis of multifunctionalizedtetrahydroindan derivatives. Org Lett,2011,13(5):936-939.
    [32] Fringuelli F., Castrica L., Pizzo F., et al. Enantioselective Michaeladdition of dimethyl malonate to (E)-beta-nitrostyrenes catalyzed bycinchona alkaloids under solvent-free condition. Lett. Org. Chem.,2008,5(8):602-606.
    [33] Li F., Li Y. Z., Jia Z. S., et al. Biscinchona alkaloids as highlyefficient bifunctional organocatalysts for the asymmetric conjugateaddition of malonates to nitroalkenes at ambient temperature.Tetrahedron,2011,67(52):10186-10194.
    [34] Xie J.-W., Chen W., Li R., et al. Highly asymmetric Michaeladdition to alpha,beta-unsaturated ketones catalyzed by9-amino-9-deoxyepiquinine. Angew Chem Int Ed,2007,46(3):389-392.
    [35] Xie J.-W., Yue L., Chen W., et al. Highly enantioselective michaeladdition of cyclic1,3-dicarbonyl compounds toalpha,beta-unsaturated ketones. Org Lett,2007,9(3):413-415.
    [36] Paixao M. W., Holub N., Vila C., et al. Trends in organocatalyticconjugate addition to enones: an efficient approach to optically activealkynyl, alkenyl, and ketone products. Angew Chem Int Ed,2009,48(40):7338-7342.
    [37] Tan B., Zhang X., Chua P. J., et al. Recyclable organocatalysis:highly enantioselective Michael addition of1,3-diaryl-1,3-propanedione to nitroolefins. Chem Commun,2009,(7):779-781.
    [38] Moon H. W., Cho M. J., Kim D. Y. Enantioselective conjugateaddition of fluorobis(phenylsulfonyl)methane toalpha,beta-unsaturated ketones catalyzed by chiral bifunctionalorganocatalysts. Tetrahedron Lett,2009,50(34):4896-4898.
    [39] Li X. F., Cun L. F., Lian C. X., et al. Highly enantioselectiveMichael addition of malononitrile to alpha,beta-unsaturated ketones.Org Biomol Chem,2008,6(2):349-353.
    [40] McCooey S. H., Connon S. J. Readily accessible9-epi-aminocinchona alkaloid derivatives promote efficient, highlyenantioselective additions of aldehydes and ketones to nitroolefins.Org Lett,2007,9(4):599-602.
    [41] Zhang L., Lee M.-M., Lee S.-M., et al. NovelCinchona-aminobenzimidazole bifunctional organocatalysts. AdvSynth Catal,2009,351(18):3063-3066.
    [42] Moon H. W., Kim D. Y. Enantioselective organocatalytic conjugateaddition of alpha-nitroacetate to alpha,beta-unsaturated ketones inwater. Tetrahedron Lett,2010,51(21):2906-2908.
    [43] McCooey S. H., Connon S. J. Urea-and thiourea-substitutedcinchona alkaloid derivatives as highly efficient bifunctionalorganocatalysts for the asymmetric addition of malonate tonitroalkenes: Inversion of configuration at C9dramatically improvescatalyst performance. Angew Chem Int Ed,2005,44(39):6367-6370.
    [44] Vakulya B., Varga S., Csampai A., et al. Highly enantioselectiveconjugate addition of nitromethane to chalcones using bifunctionalcinchona organocatalysts. Org Lett,2005,7(10):1967-1969.
    [45] Gu C., Liu L., Sui Y., et al. Highly enantioselective Michaeladditions of alpha-cyanoacetate with chalcones catalyzed bybifunctional cinchona-derived thiourea organocatalyst.Tetrahedron-Asymmetry,2007,18(4):455-463.
    [46] Lubkoll J., Wennemers H. Mimicry of polyketide synthases-Enantioselective1,4-addition reactions of malonic acid half-thioestersto nitroolefins. Angew Chem Int Ed,2007,46(36):6841-6844.
    [47] Wang B., Wu F., Wang Y., et al. Control of diastereoselectivity intandem asymmetric reactions generating nonadjacent stereocenterswith bifunctional catalysis by cinchona alkaloids. J Am Chem Soc,2007,129(4):768-769.
    [48] Bassas O., Huuskonen J., Rissanen K., et al. A simpleorganocatalytic enantioselective synthesis of pregabalin. Eur J OrgChem,2009,(9):1340-1351.
    [49] Han X., Luo J., Liu C., et al. Asymmetric generation offluorine-containing quaternary carbons adjacent to tertiarystereocenters: uses of fluorinated methines as nucleophiles. ChemCommun,2009,(15):2044-2046.
    [50] Ding D., Zhao C.-G., Guo Q., et al. Enantioselective synthesis ofbicylco3.2.1octan-8-ones using a tandem Michael Henry reaction.Tetrahedron,2010,66(25):4423-4427.
    [51]Ding D., Zhao C.-G. Organocatalyzed synthesis of2-amino-8-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles.Tetrahedron Lett,2010,51(9):1322-1325.
    [52] Gu Q., You S.-L. Desymmetrization of cyclohexadienones viaasymmetric Michael reaction catalyzed by cinchonine-derived urea.Org Lett,2011,13(19):5192-5195.
    [53] Trost B. M., Brindle C. S. The direct catalytic asymmetric aldolreaction. Chem Soc Rev,2010,39(5):1600-1632.
    [54] Mettath S., Srikanth G. S. C., Dangerfield B. S., et al. Asymmetricsynthesis beta-hydroxy amino acids via aldol reactions catalyzed bychiral ammonium salts. J Org Chem,2004,69(19):6489-6492.
    [55] Ogawa S., Shibata N., Inagaki J., et al. Cinchona-alkaloid-catalyzedenantioselective direct aldol-type reaction of oxindoles with ethyltrifluoropyruvate. Angew Chem Int Ed,2007,46(45):8666-8669.
    [56] Zhou J., Wakchaure V., Kraft P., et al. Primary-amine-catalyzedenantioselective intramolecular aldolizations. Angew Chem Int Ed,2008,47(40):7656-7658.
    [57] Paradowska J., Rogozinska M., Mlynarski J. Direct asymmetricaldol reaction of hydroxyacetone promoted by chiral tertiary amines.Tetrahedron Lett,2009,50(14):1639-1641.
    [58] Czarnecki P., Plutecka A., Gawronski J., et al. Simple and practicaldirect asymmetric aldol reaction of hydroxyacetone catalyzed by9-amino Cinchona alkaloid tartrates. Green Chem,2011,13(5):1280-1287.
    [59] Allu S., Molleti N., Panem R., et al. Enantioselective organocatalyticaldol reaction of unactivated ketones with isatins. Tetrahedron Lett,2011,52(32):4080-4083.
    [60] Huang W. B., Liu Q. W., Zheng L. Y., et al. Novel Primary amineorganocatalysts derived from cinchona alkaloids for asymmetricdirect Aldol reactions in brine. Catal Lett,2011,141(1):191-197.
    [61] Fan Q. H., Li Y. M., Chan A. S. C. Recoverable catalysts forasymmetric organic synthesis. Chem Rev,2002,102(10):3385-3465.
    [62] Trindade A. F., Gois P. M. P., Afonso C. A. M. Recyclablestereoselective catalysts. Chem Rev,2009,109(2):418-514.
    [63] Moon Kim B., Sharpless K. B. Heterogeneous catalytic asymmetricdihydroxylation: Use of a polymer-bound alkaloid. Tetrahedron Lett,1990,31(21):3003-3006.
    [64] DeClue M. S., Siegel J. S. Polysiloxane-bound ligand acceleratedcatalysis: a modular approach to heterogeneous and homogeneousmacromolecular asymmetric dihydroxylation ligands. Org BiomolChem,2004,2(16):2287-2298.
    [65] Cheng S. K., Zhang S. Y., Wang P. A., et al. Homogeneous catalyticasymmetric dihydroxylation of olefins induced by an efficient andrecoverable polymer-bound ligand QN-AQN-OPEG-OMe. ApplOrganomet Chem,2005,19(8):975-979.
    [66] Mandoli A., Pini D., Fiori M., et al. Asymmetric dihydroxylationwith recoverable cinchona alkaloid derivatives: A warning note andan improved, insoluble polymer-bound ligand architecture. Eur J OrgChem,2005,(7):1271-1282.
    [67] Cha R.-T., Wang S.-Y., Chong S.-L. Polymeric cinchona alkaloidsfor the catalytic asymmetric dihydroxylation of olefins. J Appl PolymSci,2008,108(2):845-849.
    [68] Choudary B. M., Chowdari N. S., Jyothi K., et al. A newbifunctional catalyst for tandem Heck-asymmetric dihydroxylation ofolefins. Chem Commun,2002,(6):586-587.
    [69] Choudary B. M., Chowdari N. S., Jyothi K., et al. MCM-41anchored cinchona alkaloid for catalytic asymmetric dihydroxylationof olefins: a clean protocol for chiral diols using molecular oxygen.Catal Lett,2002,82(1-2):99-102.
    [70] Choudary B. M., Chowdari N. S., Jyothi K., et al. Silicagel-supported Cinchona alkaloid-OsO4complex for catalyticheterogeneous asymmetric dihydroxylation of olefins by H2O2usinga titanium silicalite-based coupled catalytic system. Adv Synth Catal,2002,344(5):503-506.
    [71] Lee D., Lee J., Lee H., et al. Filtration-free recyclable catalyticasymmetric dihydroxylation using a ligand immobilized on magneticmesocellular mesoporous silica. Adv Synth Catal,2006,348(1-2):41-46.
    [72] Danelli T., Annunziata R., Benaglia M., et al. Immobilization ofcatalysts derived from Cinchona alkaloids on modified poly(ethyleneglycol). Tetrahedron-Asymmetry,2003,14(4):461-467.
    [73] Thierry B., Plaquevent J. C., Cahard D. Poly(ethylene glycol)supported cinchona alkaloids as phase transfer catalysts: applicationto the enantioselective synthesis of alpha-amino acids.Tetrahedron-Asymmetry,2003,14(12):1671-1677.
    [74] Chinchilla R., Mazon P., Najera C. Polystyrene-anchored Cinchonaammonium salts: Easily recoverable phase-transfer catalysts for theasymmetric synthesis of alpha-amino acids. Adv Synth Catal,2004,346(9-10):1186-1194.
    [75] Wang X., Yin L., Yang T., et al. Synthesis of newdimeric-PEG-supported cinchona ammonium salts as chiral phasetransfer catalysts for the alkylation of Schiff bases with water as thesolvent. Tetrahedron-Asymmetry,2007,18(1):108-114.
    [76] Shi Q., Lee Y.-J., Kim M.-J., et al. Highly efficient polymersupported phase-transfer catalysts containing hydrogen bond inducingfunctional groups. Tetrahedron Lett,2008,49(8):1380-1383.
    [77] Kobayashi N., Iwai K. Functional Polymers.4. Asymmetric additionof dodecanethiol to isopropenyl methyl ketone catalyzed by cinchonaalkaloid-acrylonitrile copolymers. Macromolecules,1980,13(1):31-34.
    [78] Alvarez R., Hourdin M. A., Cave C., et al. New polymer-supportedcatalysts derived from Cinchona alkaloids: Their use in theasymmetric Michael reaction. Tetrahedron Lett,1999,40(39):7091-7094.
    [79] Corma A., Iborra S., Rodriguez I., et al. MCM-41heterogenizedchiral amines as base catalysts for enantio selective Michael reaction.Catal Lett,2002,82(3-4):237-242.
    [80] Onimura K., Matsuzaki K., Lee Y. K., et al. Facile synthesis ofpolymer-supported cinchona alkaloid catalysts for asymmetricMichael reaction. Polym J,2004,36(3):190-197.
    [81] Yu P., He J., Guo C.9-Thiourea Cinchona alkaloid supported onmesoporous silica as a highly enantioselective, recyclableheterogeneous asymmetric catalyst. Chem Commun,2008,(20):2355-2357.
    [82] Gleeson O., Davies G.-L., Peschiulli A., et al. The immobilisation ofchiral organocatalysts on magnetic nanoparticles: the support particlecannot always be considered inert. Org Biomol Chem,2011,9(22):7929-7940.
    [83] Qin Y., Yang G., Yang L., et al. Construction of adjacent quaternaryand tertiary stereocenters by conjugate addition usingpolymer-supported cinchona alkaloids as catalysts. Catal Lett,2011,141(3):481-488.
    [84]徐如人,庞如琴,于吉红等,分子筛与多孔材料化学.北京:科学出版社:2004.528-562
    [85] Corma A., Navarro M. T., Pariente J. P. Synthesis of an ultralargepore titanium silicate isomorphous to MCM-41and its application asa catalyst for selective oxidation of hydrocarbons. Chem Commun,1994,(2):147-148.
    [86] Reddy J. S., Sayari A. Room-temperature synthesis of a highlyactive vanadium-containing mesoporous molecular sieve, ChemCommun,1995,(21):2231-2232.
    [87] Sakthivel A., Selvam P. Mesoporous (Cr)MCM-41: A mild andefficient heterogeneous catalyst for selective oxidation ofcyclohexane. J Catal,2002,211(1):134-143.
    [88] Aguado J., Serrano D. P., Romero M. D., et al. Catalytic conversionof polyethylene into fuels over mesoporous MCM-41. ChemCommun,1996,(6):725-726.
    [89] Ramakrishna Prasad M., Kamalakar G., Kulkarni S. J., et al.Synthesis of binaphthols over mesoporous molecular sieves. J MolCatal A: Chem,2002,180(1–2):109-123.
    [90] Tuel A., Gontier S., Teissier R. Zirconium containing mesoporoussilicas: new catalysts for oxidation reactions in the liquid phase.Chem Commun,1996,(5):651-652.
    [91] Fukuoka A., Kimura J.-i., Oshio T., et al. Preferential oxidation ofcarbon monoxide catalyzed by platinum nanoparticles in mesoporoussilica. J Am Chem Soc,2007,129(33):10120-10125.
    [92] Kozhevnikov I. V., Sinnema A., Jansen R. J. J., et al. New acidcatalyst comprising heteropoly acid on a mesoporous molecular sieveMCM-41. Catal Lett,1994,30(1):241-252.
    [93] Wang X., Cheng S. Solvent-free synthesis of flavanones overaminopropyl-functionalized SBA-15. Catal Commun,2006,7(9):689-695.
    [94] Sutra P., Brunel D. Preparation of MCM-41type silica-boundmanganese(III) Schiff-base complexes. Chem Commun,1996,(21):2485-2486.
    [95] Shen Y. B., Chen Q., Lou L. L., et al. Asymmetric Transferhydrogenation of aromatic ketones catalyzed by SBA-15supportedIr(I) complex under mild conditions. Catal Lett,2010,137(1-2):104-109.
    [96]王恩波,胡长文,许林,多酸化学导论.北京:化学工业出版社:1998.
    [97]刘鼎.杂多酸和氮掺杂氧化钦光催化降解水中有机污染物的研究:[硕士学位论文].杭州:浙江大学,2008.
    [98] Pope M. T., Heteropoly and isopoly oxometalates. Springer-Verlag:New York,1983.
    [99]沈业兵.杂多酸催化的碳碳键和碳氮键形成研究:[博士学位论文].合肥:中国科学技术大学,2008.
    [100] Misono M., Nojiri N. Recent progress in catalytic technology injapan. Appl Catal,1990,64(0):1-30.
    [101] Izumi Y., Urabe K., Onaka M., Zeolite,and Heteropoly acid inorganic reactions. Kodansha/VCH: Tokyo,1992.
    [102] Leng Y., Wang J., Zhu D. R., et al. Heteropolyanion-Based ionicliquids: reaction-induced self-aeparation catalysts for esterification.Angew Chem Int Ed,2009,48(1):168-171.
    [103] Luo S., Chi Y., Sun L., et al. Single-step catalytic synthesis ofdiphenyl carbonate over transition-metal-substituted Keggin-typetungstophosphoric acid. Catal Commun,2008,9(15):2560-2564.
    [104] Micek-llnicka A., Lubańska A., Mucha D. The Effect of protonhydration in Wells-Dawson and Keggin type heteropolyacids on theircatalytic activity in gas phase ETBE Synthesis. Catal Lett,2009,127(3):285-290.
    [105] Firouzabadi H., Iranpoor N., Jafari A. A., et al. Tungstophosphoricacid supported on silica gel (H3PW12O40/SiO2) as an eco-friendly,reusable and heterogeneous catalyst for chemoselectiveoxathioacetalization of carbonyl compounds in solution or undersolvent-free conditions. J Mol Catal A: Chem,2006,247(1–2):14-18.
    [106] Ferreira P., Fonseca I. M., Ramos A. M., et al. Valorisation ofglycerol by condensation with acetone over silica-includedheteropolyacids. Appl Catal B: Environ,2010,98(1–2):94-99.
    [107] Fazaeli R., Tangestaninejad S., Aliyan H., et al. One-pot synthesisof dihydropyrimidinones using facile and reusable polyoxometalatecatalysts for the Biginelli reaction. Appl Catal A: Gen,2006,309(1):44-51.
    [108] Rafiee E., Shahbazi F. One-pot synthesis of dihydropyrimidonesusing silica-supported heteropoly acid as an efficient and reusablecatalyst: Improved protocol conditions for the Biginelli reaction. JMol Catal A: Chem,2006,250(1–2):57-61.
    [109] Okumura K., Ito S., Yonekawa M., et al. Enhancement of thecatalytic activity of a Dawson-type heteropoly acid induced by theloading on a silica support. Top Catal,2009,52(6):649-656.
    [110] Dias J. A., Rangel M. d. C., Dias S. C. L., et al. Benzenetransalkylation with C9+aromatics over supported12-tungstophosphoric acid on silica catalysts. Appl Catal A: Gen,2007,328(2):189-194.
    [111] Kamiya Y., Ooka Y., Obara C., et al. Alkylation–acylation ofp-xylene with γ-butyrolactone or vinylacetic acid catalyzed byheteropolyacid supported on silica. J Mol Catal A: Chem,2007,262(1–2):77-85.
    [112] Shiju N. R., Williams H. M., Brown D. R. Cs exchangedphosphotungstic acid as an efficient catalyst for liquid-phaseBeckmann rearrangement of oximes. Appl Catal B: Environ,2009,90(3–4):451-457.
    [113] Yadav G. D., Lande S. V. Ecofriendly Claisen Rearrangement ofAllyl-4-tert-butylphenyl Ether Using Heteropolyacid supported onhexagonal mesoporous silica. Org Process Res Dev,2005,9(5):547-554.
    [114] Yadav G. D., Lande S. V. Selective Claisen rearrangement ofallyl-2,4-di-tert-butylphenyl ether to6-allyl-2,4-di-tert-butylphenolcatalysed by heteropolyacid supported on hexagonal mesoporoussilica. J Mol Catal A: Chem,2006,243(1):31-39.
    [115] Costa V. V., da Silva Rocha K. A., Kozhevnikov I. V., et al.Isomerization of styrene oxide to phenylacetaldehyde over supportedphosphotungstic heteropoly acid. Appl Catal A: Gen,2010,383(1–2):217-220.
    [116] da Silva Rocha K. A., Kozhevnikov I. V., Gusevskaya E. V.Isomerisation of α-pinene oxide over silica supported heteropoly acidH3PW12O40. Appl Catal A: Gen,2005,294(1):106-110.
    [117] Liu Y., Murata K., Inaba M., et al. Direct epoxidation of propyleneby molecular oxygen overPd(OAc)2–[(C6H13)4N]3{PO4[W(O)(O2)2]4}–CH3OH catalytic system.Appl Catal B: Environ,2005,58(1–2):51-59.
    [118] Bonchio M., Carraro M., Farinazzo A., et al. Aerobic oxidation ofcis-cyclooctene by iron-substituted polyoxotungstates: Evidence for ametal initiated auto-oxidation mechanism. J Mol Catal A: Chem,2007,262(1–2):36-40.
    [119] Xi Z. W., Zhou N., Sun Y., et al. Reaction-controlled phase-transfercatalysis for propylene epoxidation tea propylene oxide. Science,2001,292(5519):1139-1141.
    [120] Shinachi S., Matsushita M., Yamaguchi K., et al. Oxidation ofadamantane with1atm molecular oxygen by vanadium-substitutedpolyoxometalates. J Catal,2005,233(1):81-89.
    [121] Kamata K., Yonehara K., Nakagawa Y., et al. Efficient stereo-andregioselective hydroxylation of alkanes catalysed by a bulkypolyoxometalate. Nature Chemistry,2010,2(6):478-483.
    [122] Khenkin A. M., Weiner L., Neumann R. Selective OrthoHydroxylation of nitrobenzene with molecular oxygen catalyzed bythe H5PV2Mo10O40polyoxometalate.J Am Chem Soc,2005,127(28):9988-9989.
    [123] Liu Y., Murata K., Inaba M. Liquid-phase oxidation of benzene tophenol by molecular oxygen over transition metal substitutedpolyoxometalate compounds. Catal Commun,2005,6(10):679-683.
    [124] Yu J., Yang P., Yang Y., et al. Hydroxylation of phenol withhydrogen peroxide over tungstovanadophosphates with Dawsonstructure. Catal Commun,2006,7(3):153-156.
    [125] Gao F., Hua R. Novel C–N bond cleavage and formation in thepolyoxometalates-catalyzed oxidation of nitroaromatics with30%aqueous H2O2: An unprecedented disproportionation ofnitroaromatics affording dinitroaromatics. Inorg Chim Acta,2005,358(13):4045-4048.
    [126] Deng Q., Jiang S., Cai T., et al. Selective oxidation of isobutaneover HxFe0.12Mo11VPAs0.3Oy heteropoly compound catalyst. J MolCatal A: Chem,2005,229(1–2):165-170.
    [127] Hayashi K., Kato C. N., Shinohara A., et al. Isolation,characterization, and reactivity of the reaction products of the dimeric,Ti–O–Ti bridged anhydride form of the1,2-di-titanium(IV)-substituted α-Keggin polyoxometalate withaqueous30%H2O2. J Mol Catal A: Chem,2007,262(1–2):30-35.
    [128] Maayan G., Ganchegui B., Leitner W., et al. Selective aerobicoxidation in supercritical carbon dioxide catalyzed by theH5PV2Mo10O40polyoxometalate. Chem Commun,2006,(21):2230-2232.
    [129] Zhao W., Zhang Y., Ma B., et al. Oxidation of alcohols withhydrogen peroxide in water catalyzed by recyclable keggin-typetungstoborate catalyst. Catal Commun,2010,11(6):527-531.
    [130] Bonchio M., Carraro M., Sartorel A., et al. Bio-inspired oxidationswith polyoxometalate catalysts. J Mol Catal A: Chem,2006,251(1–2):93-99.
    [131] Lu H., Gao J., Jiang Z., et al. Oxidative desulfurization ofdibenzothiophene with molecular oxygen using emulsion catalysis.Chem Commun,2007,(2):150-152.
    [132] Li C., Gao J., Jiang Z., et al. Selective Oxidations on recoverablecatalysts assembled in emulsions. Top Catal,2005,35(1):169-175.
    [133] Komintarachat C., Trakarnpruk W. Oxidative desulfurization usingpolyoxometalates. Ind Eng Chem Res,2006,45(6):1853-1856
    [134] Dalko P. I., Moisan L. In the golden age of organocatalysis. AngewChem Int Ed,2004,43(39):5138-5175.
    [135] Taylor M. S., Jacobsen E. N. Asymmetric catalysis by chiralhydrogen-bond donors. Angew Chem Int Ed,2006,45(10):1520-1543.
    [136] Ballini R., Bosica G., Fiorini D., et al. Conjugate additions ofnitroalkanes to electron-poor alkenes: Recent results. Chem Rev,2005,105(3):933-971.
    [137] Palomo C., Oiarbide M., Lopez R. Asymmetric organocatalysis bychiral Bronsted bases: implications and applications. Chem Soc Rev,2009,38(2):632-653.
    [138] Seayad J., List B. Asymmetric organocatalysis. Org Biomol Chem,2005,3(5):719-724.
    [139] Chen Y. C., Xue D., Deng J. G., et al. Efficient asymmetric transferhydrogenation of activated olefins catalyzed by ruthenium amidocomplexes. Tetrahedron Lett,2004,45(7):1555-1558.
    [140] Taylor M. S., Zalatan D. N., Lerchner A. M., et al. Highlyenantioselective conjugate additions to alpha,beta-unsaturatedketones catalyzed by a (Salen)Al complex. J Am Chem Soc,2005,127(4):1313-1317.
    [141] Li X. F., Cun L. F., Lian C. X., et al. Highly enantioselectiveMichael addition of malononitrile to alpha,beta-unsaturated ketones.Org Biomol Chem,2008,6(2):349-353.
    [142] Yue L., Du W., Liu Y. K., et al. Organocatalytic asymmetric directMichael addition of aromatic ketones to alkylidenemalononitriles.Tetrahedron Lett,2008,49(24):3881-3884.
    [143] Wang J., Li H., Zu L. S., et al. Organocatalytic enantioselectiveconjugate additions to enones. J Am Chem Soc,2006,128(39):12652-12653.
    [144] Russo A., Perfetto A., Lattanzi A. Back to Natural CinchonaAlkaloids: Highly enantioselective Michael addition of malononitrileto enones. Adv Synth Catal,2009,351(18):3067-3071.
    [145] Kalbasi R. J., Massah A. R., Zamani F., et al. Metal (Co,Mn)-amine-functionalized mesoporous silica SBA-15: synthesis,characterization and catalytic properties in hydroxylation of benzene.J Porous Mater,2011,18(4):475-482.
    [146] Sheng X. L., Zhou Y. M., Zhang Y. W., et al. Highly active andgreen aminopropyl-immobilized phosphotungstic acid onMesoporous LaSBA-15for alkylation of oxylene with styrene. CatalLett,2012,142(3):360-367.
    [147] Tang J. Y., Zu Y. H., Huo W. T., et al. Mesoporous SBA-15modified with manganese pyrazolylpyridine complexes for thecatalytic epoxidation of terminal alkenes. J Mol Catal A: Chem,2012,355201-209.
    [148] El Hankari S., El Kadib A., Finiels A., et al. SBA-15-typeorganosilica with4-mercapto-N,N-bis-(3-Si-propyl)butanamide forpalladium scavenging and cross-coupling catalysis. Chem Eur J,2011,17(32):8984-8994.
    [149] Zhao D. Y., Feng J. L., Huo Q. S., et al. Triblock copolymersyntheses of mesoporous silica with periodic50to300angstrompores. Science,1998,279(5350):548-552.
    [150] Yu P., He J., Guo C. X.9-Thiourea Cinchona alkaloid supported onmesoporous silica as a highly enantioselective, recyclableheterogeneous asymmetric catalyst. Chem Commun,2008,(20):2355-2357.
    [151] Isleyen A., Dogan O. Application of ferrocenyl substitutedaziridinylmethanols (FAM) as chiral ligands in enantioselectiveconjugate addition of diethylzinc to enones. Tetrahedron-Asymmetry,2007,18(5):679-684.
    [152] Kang T., Park Y., Yi J. Highly Selective Adsorption of Pt2+and Pd2+using thiol-functionalized mesoporous silica. Ind Eng Chem Res,2004,43(6):1478-1484.
    [153] Choudary B. M., Chowdari N. S., Jyothi K., et al. MCM-41anchored cinchona alkaloid for catalytic asymmetric dihydroxylationof olefins: a clean protocol for chiral diols using molecular oxygen.Catal Lett,2002,82(1-2):99-102.
    [154] Marion L., Ramsay D. A., Jones R. N. The Infrared absorptionspectra of alkaloids. J Am Chem Soc,1951,73(1):305-308.
    [155]袁奇学.奎宁及其衍生物催化合成手性α-氨基膦酸酯的实验和理论研究:[硕士学位论文],贵州:贵州大学,2008.
    [156]黄量,紫外光谱在有机化学中的应用:上册.北京:科学出版社,1988.
    [157] Margolese D., Melero J. A., Christiansen S. C., et al. Directsyntheses of ordered SBA-15mesoporous silica containing sulfonicacid groups. Chem Mater,2000,12(8):2448-2459.
    [158]喻鹏.9一硫脲表奎宁在介孔二氧化硅表面的组装及催化性能:[博士学位论文],北京:化工大学,2008.
    [159] Hoffmann F., Cornelius M., Morell J., et al. Silica-basedmesoporous organic-inorganic hybrid materials. Angew Chem Int Ed,2006,45(20):3216-3251.
    [160] Yoshitake H. Design of functionalization and structural analysis oforganically-modified siliceous oxides with periodic structures for thedevelopment of sorbents for hazardous substances. J Mater Chem,2010,20(22):4537-4550.
    [161] Aguado J., Arsuaga J. M., Arencibia A. Influence of synthesisconditions on mercury adsorption capacity of propylthiolfunctionalized SBA-15obtained by co-condensation. MicroporMesopor Mater,2008,109(1-3):513-524.
    [162] Wang X. G., Lin K. S. K., Chan J. C. C., et al. Direct synthesis andcatalytic applications of ordered large poreaminopropyl-functionalized SBA-15mesoporous materials. J PhysChem B,2005,109(5):1763-1769.
    [163] Margolese D., Melero J. A., Christiansen S. C., et al. Directsyntheses of ordered SBA-15mesoporous silica containing sulfonicacid groups. Chem Mater,2000,12(8):2448-2459.
    [164]喻鹏.9-硫脲表奎宁在介孔二氧化硅表面的组装及催化性能:
    [博士学位论文],北京:化工大学,2008
    [165] Zhao D. Y., Huo Q. S., Feng J. L., et al. Nonionic triblock and stardiblock copolymer and oligomeric surfactant syntheses of highlyordered, hydrothermally stable, mesoporous silica structures. J AmChem Soc,1998,120(24):6024-6036.
    [166] Sujandi, Park S. E., Han D. S., et al. Amino-functionalized SBA-15type mesoporous silica having nanostructured hexagonal plateletmorphology. Chem Commun,2006,(39):4131-4133.
    [167] Chen B. C., Lin H. P., Chao M. C., et al. Mesoporous silicaplatelets with perpendicular nanochannels via a ternary surfactantsystem. Adv Mater,2004,16(18):1657-1661.
    [168] Han Y., Ying J. Y. Generalized fluorocarbon-surfactant-mediatedsynthesis of nanoparticles with various mesoporous structures.Angew Chem Int Ed,2005,44(2):288-292.
    [169] Zhang H., Sun J., Ma D., et al. Unusual mesoporous SBA-15withparallel channels running along the short axis. J Am Chem Soc,2004,126(24):7440-7441.
    [170] Cheng S. F., Wang X. G., Chen S. Y. Applications ofamine-functionalized mesoporous silica in fine chemical synthesis.Top Catal,2009,52(6-7):681-687.
    [171] Sun J., Zhang H., Tian R., et al. Ultrafast enzyme immobilizationover large-pore nanoscale mesoporous silica particles. ChemCommun,2006,(12):1322-1324.
    [172] Chen S-Y, Chen Y.-T, Lee J-J, et al. Tuning pore diameter ofplatelet SBA-15materials with short mesochannels. J Mater Chem,2011,21(15):5693.
    [173] Chen S. Y., Tang C. Y., Chuang W. T., et al. A facile route tosynthesizing functionalized mesoporous SBA-15materials withplatelet morphology and short mesochannels. Chem Mater,2008,20(12):3906-3916.
    [174] Mukherjee S., Yang J. W., Hoffmann S., et al. Asymmetric enaminecatalysis. Chem Rev,2007,107(12):5471-5569.
    [175] Trost B. M., Brindle C. S. The direct catalytic asymmetric aldolreaction. Chem Soc Rev,2010,39(5):1600-1632.
    [176] Luo S. Z., Xu H., Li J. Y., et al. A simple primary-tertiarydiamine-Bronsted acid catalyst for asymmetric direct Aldol reactionsof linear aliphatic ketones. J Am Chem Soc,2007,129(11):3074-3075.
    [177] Guillena G., Najera C., Ramon D. J. Enantioselective direct aldolreaction: the blossoming of modern organocatalysis.Tetrahedron-Asymmetry,2007,18(19):2249-2293.
    [178] Li J., Li X., Zhou P., et al. Chiral Primary amine-polyoxometalateacid hybrids as asymmetric recoverable iminium-based catalysts. EurJ Org Chem,2009,(26):4486-4493.
    [179] Luo S. H., Li J. Y., Xu H., et al. Chiral amine-polyoxometalatehybrids as highly efficient and recoverable asymmetric enaminecatalysts. Org Lett,2007,9(18):3675-3678.
    [180] Gao Q., Lu S.-M., Liu Y., et al. Recyclable chiraldiamine-polyoxometalate (POM) acids catalyzed asymmetric directaldol reaction of aromatic aldehydes with long-chain aliphaticketones. Tetrahedron Lett,2011,52(29):3779-3781.
    [181] Gao Q., Liu Y., Lu S. M., et al. Recyclable enamine catalysts forasymmetric direct cross-aldol reaction of aldehydes in emulsionmedia. Green Chem,2011,13(8):1983-198
    [182] Chen J. R., An X. L., Zhu X. Y., et al. Rational combination of twoprivileged chiral backbones: Highly efficient organocatalysts forasymmetric direct aldol reactions between aromatic aldehydes andacylic ketones. J Org Chem,2008,73(15):6006-6009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700