咪唑功能化有机—无机杂化材料固载磷钼杂多化合物催化剂的制备及烯烃环氧化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧化合物是一类重要的有机合成中间体和化工原料,广泛应用于石油化工、精细化工、高分子材料及电子工业等领域。烯烃催化环氧化反应是合成环氧化合物的主要途径,相关领域的研究一直倍受关注。作为一类重要的烯烃环氧化催化剂体系,多金属氧酸盐(也称多酸或多金属氧簇,简称POMs)包含多个具有高氧化态的配位金属原子,可以作为优良的多电子受体,且具备良好的电子和质子的传输能力,因此对多种类型烯烃(包括空间位阻较大的缺电子烯烃)环氧化表现出非常优异的催化性能。传统的多金属氧酸盐催化剂大多数是均相的,虽然其催化活性好、效率高,但这类催化剂具有回收困难、成本高等缺点,从而成为阻碍其发展和实际应用的主要因素。相比之下,多相催化剂体系在回收、分离等方面具有显著优势,更加环境友好,是目前研究和开发的重点。近年来,科研工作者们已经开展了大量的关于多金属氧酸盐基多相催化剂的研究工作,并且取得了显著进展。主要的研究思路可以概括为以下四个方面:一是将POMs固载到合适的载体上制备出负载型多相催化剂;二是通过溶胶-凝胶技术,将POMs引入到氧化硅/金属氧化物的骨架中;三是将POMs包裹到金属有机骨架(MOF)中;再就是直接利用多酸与合适的有机组分构筑出具有特定空间(孔)结构的超分子组装体。一般来说,高效、稳定的多金属氧酸盐基多相催化剂体系通常具有以下特点:首先是多金属氧酸盐与载体(有机组分)之间存在适当的相互作用(如:共价键、静电力、氢键等);其次就是载体材料应该具有较高的比表面积,较大的孔容、孔径以及合适的表面性质(极性和酸碱性)。由此可见,载体(有机组分)的选择会极大影响负载型POMs催化剂的催化性能。
     基于上述情况,本论文主要以不同方法制备的各种咪唑功能化有机-无机杂化材料为载体,通过静电相互作用,将不同种类的磷钼杂多化合物引入到载体的孔道及表面上,构筑出一系列负载型POMs催化剂体系。考察了这些催化剂在烯烃环氧化反应中的催化性能。结合各种表征手段和反应结果,研究了载体的结构、表面性质(酸碱性和极性)、多酸活性组分和载体之间的相互作用以及多酸的种类对催化剂环氧化性能的影响。同时,针对性能优异的多相催化剂体系考察了烯烃种类、氧化剂类型、溶剂等因素对其催化活性和稳定性的影响。此外,还探讨了催化活性中心性质及催化作用机制等问题。主要研究内容及结果概述如下:
     一.咪唑功能化介孔材料固载磷钼酸催化剂的制备及环氧化性能研究
     采用离子交换法,将磷钼酸(PMA)锚定到咪唑类离子液体(IL)功能化的介孔材料上,制备了一系列磷钼酸基杂化材料。介孔载体材料包括纯硅分子筛(SBA-15)、介孔磷酸铝材料(AlPxO, x=0.9,1.0,1.1)和介孔炭(NC-2)。所制备的杂化催化剂在以叔丁基过氧化氢(TBHP)为氧源的环辛烯环氧化反应中,均表现出良好的反应活性和对主产物接近100%的选择性。其中,以介孔磷酸铝(AlP1.0O和AlP1.1O)为载体制备出的催化剂PMA@IL/AlP1.0O和PMA@IL/AlP1.1O的催化活性、稳定性明显优于其它催化剂。各种表征结果证实,相较于AlP0.9O,AlP1.0O和AlP1.1O具有相对较高的比表面积、较大的孔径和孔容、表面存在大量的P–OH,这些因素有利于提高多酸活性组分的固载量、稳定性以及在表面的分散度。此外,这类AlPxO载体骨架中存在的P、Al物种,在稳定活性中心以及辅助活化氧化剂方面能够起到积极作用。
     另外,还考察了这类催化剂在烯醇环氧化反应中的催化性能。结果表明,催化剂PMA@IL/NC-2能够有效地催化以TBHP为氧源、甲醇为溶剂的几种烯醇(3-甲基-2-丁烯-1-醇、反式-2-己烯-1-醇、香叶醇)的环氧化反应。在极性质子溶剂(甲醇)中,炭载体表面丰富存在的含氧基团,有助于烯醇和催化活性中心有效地接触,同时也有利于环氧化产物从催化剂的表面脱附,从而使催化剂表现出较高的催化活性。
     二.咪唑基介孔有机硅固载磷钼酸催化剂的制备及烯烃环氧化性能
     以含有不同量咪唑阳离子(10%和15%)的介孔有机硅(PMO-ILs,分别为a和b)为载体,制备了一类固载化磷钼酸(PMA)多相催化材料(PMA@PMO-ILs,2a和2b)。采用一系列表征技术研究了材料的结构及物理化学性质。结果表明,磷钼酸阴离子通过静电作用被成功固载到PMO-ILs载体的表面和孔道中,且在制备过程中磷钼酸及载体的基本结构均未发生变化。
     这类PMA@PMO-ILs材料在以TBHP为氧化剂的环辛烯环氧化反应中表现出良好的催化活性和很高的选择性。中断实验结果显示,催化剂的主要活性中心在反应过程中未发生明显流失,且催化剂经多次循环使用后活性及选择性基本保持不变。通过与磷钼酸功能化的SBA-15材料(2c)的催化性能进行对比分析,可以认为PMO-ILs载体上大量存在的咪唑阳离子能有效稳定磷钼酸阴离子,使该类催化剂表现出良好的稳定性。另外,进一步对PMO-IL(a)载体的表面进行了后修饰,即先采用后嫁接法使氨丙基硅烷偶联剂与PMO-IL材料中表面存在的硅羟基发生缩合反应,之后再引入磷钼酸物种制备出表面氨功能化的催化剂(2d)。研究结果表明,氨丙基的引入导致载体的比表面、孔径及孔容均有所降低,并且氨丙基柔性链的存在还在一定程度上阻碍了磷钼酸活性组分与载体表面咪唑阳离子的接触,从而导致2d催化剂的活性和稳定性有所降低。这些结果进一步说明活性组分和载体之间存在合适的相互作用以及载体具有适当的结构是影响负载型POMs催化剂性能的重要因素。
     三.咪唑基介孔有机硅固载第四周期过渡金属取代的磷钼杂多化合物催化剂的制备及烯烃环氧化性能
     以咪唑基介孔有机硅PMO-IL(a)为载体,通过静电作用力引入几种过渡金属取代的磷钼杂多化合物,制备了PCoMo11@PMO-IL (3a)、PMnMo11@PMO-IL(4a)、PNiMo11@PMO-IL(5a)和PCuMo11@PMO-IL(6a)等负载型催化剂。ICP-AES、N2吸附-脱附、XRD、FT-IR、UV-Vis及XPS等表征结果证实了杂多阴离子被成功固载到PMO-IL载体上,且在制备过程中杂多阴离子及载体的结构均未发生明显变化。通过以分子氧为氧化剂,异丁醛为共还原剂的烯烃环氧化反应,考察了催化剂的催化性能。结果表明,这些固载化催化材料对多种烯烃(环辛烯、1-辛烯、苯乙烯、环己烯)的环氧化都表现出良好的催化活性。其中,催化剂3a表现出最高的反应活性、环氧化合物的选择性以及循环性。
     此外,针对3a在不同的催化反应条件下,包括不同反应温度和时间、不同的异丁醛和烯烃摩尔比以及不同氧化剂体系(分子氧和叔丁基过氧化氢)中表现出的催化活性及选择性差异,结合相关文献,推测出这类负载型催化剂在分子氧为氧化剂、异丁醛为共还原剂的条件下,催化烯烃环氧化反应的机理。首先,异丁醛在催化剂中过渡金属物种的引发下转化为酰基自由基;然后,酰基自由基与分子氧结合生成酰基过氧自由基,该酰基过氧自由基会按照不同的历程完成烯烃的选择性氧化。由此可见,这类负载型催化剂结构中含有的过渡金属的种类、价态会直接影响自由基的生成,进而影响烯烃的反应速率以及产物分布。3a结构中存在具有相对较高正电性的CoⅡ,应该是该催化剂表现出相对高活性和高环氧化物选择性的主要原因。
Epoxide compounds are useful intermediates and chemical raw materials inorganic synthesis, and widely used for petrochemicals, fine chemicals, polymers andelectronic industry. Epoxidation of olefins is the most important reactions toapproach epoxides. Polyoxometalates (POMs) are a class of early‐transition‐metaloxides, which contain a number of coordinated metal atoms at high oxidation state.They could serve as excellent multi-electron acceptors, possess a good transmissioncapacity of electrons and protons, and exhibit excellent oxidation resistance.Therefore, POMs have shown attractive catalytic performance in the selectiveoxidation of olefins. However, almost all sophisticated POMs or POM-basedepoxidation catalysts are homogenous in essence. Much recent effort has beenfocused on achieving the heterogenization of homogeneous POM catalysts in orderto overcome their drawbacks, separation and recycling problems. Differentpreparation strategies have been developed to obtain heterogeneous POM‐basedcatalyst systems. These include immobilizing POMs on porous support surfaces,incorporating POMs in silica or metal oxide matrices via sol‐gel techniques,encapsulating POMs within nanocages of metal‐organic frameworks, andself‐assembling POMs with organic compounds to form supramolecular structures.To obtain highly efficient and stable POM‐based heterogeneous catalysts, anappropriate interaction between POMs and the support (or host) is usually necessary.This may include covalent bonds, electrostatic binding, hydrogen bonds, and/orother interactions. The support should possess a sufficiently high surface area, a large pore size, and a suitable surface polarity, as these parameters influence thedistribution and accessibility of catalytically active species.
     Based on the above, in this thesis, the supported POM-based catalysts wereachieved by the electrostatic immobilization of different kinds ofphosphomolybdates on the imidazolium functionalized organic-inorganic hybridmaterials. Their catalytic performances were investigated for the liquid-phaseepoxidation of olefins. Combined with different characterizations and experimentalresults, the effect of structures and surface properties of the supports on the catalyticproperties of POM-based catalysts was studied, and the essence of interactionbetween POM units and supports was also discussed for clarifying the nature ofactive sites and understanding the catalytic reaction mechanism. The main resultsand conclusions are as follows:
     1. Immobilization of phosphomolybdic acid on imidazolium functionalizedmesoporous materials for catalytic epoxidation reactions
     A series of phosphomolybdic acid-based hybrid materials were prepared by ionexchange method, which referred to immobilize phosphomolybdic acid (PMA) onthe imidazolium ionic liquid functionalized supports. These supports includedmesoporous silica materials (SBA-15), mesoporous aluminum phosphate (AlPxO, x=0.9,1.0,1.1) and mesoporous carbon (NC-2). All the resulting hybrid materialsexhibited relatively high catalytic activity and nearly100%selectivity to cycloocteneepoxide in the cyclooctene epoxidation with TBHP as the oxidant. Among them,PMA@IL/AlP1.0O and PMA@IL/AlP1.1O were more active and stable than the otherthree kinds of hybrid materials. Combined with different characterizations, therelatively high catalytic performance of these two catalysts should be mainlyattributed to the characteristics of the AlPxO (x=1.0,1.1) supports, such as suitablestructures, compositions and surface properties.
     In addition, the catalytic activity of these PMA-based catalysts also beeninvestigated in the epoxidation of a wide range of allylic alcohols(3-methyl-2-butene-1-ol, trans-2-butylethylene-1-ol and geraniol). It was found that PMA@IL/NC-2acted as an efficient catalyst under TBHP and methanol system.This could be ascribed to the presence of the oxygen groups on the surface of NC-2support, which have improved the accessibility between allylic alcohols and PMAactive sites in protic solvent (methanol).
     2. Immobilization of phosphomolybdic acid on imidazolium-basedmesoporous organosilicas for catalytic olefin epoxidation
     The periodic mesoporous organosilicas containing different imidazoliumcations contents (PMO-ILs, a and b) were chosen as supports for the electrostaticimmobilization of12-phosphomolybdic acid (PMA). The resulting hybrid materials(PMA@PMO-ILs,2a and2b) were characterized by a variety of techniques. Theresults illustrated that PMA was successfully anchored on the surface and in thechannels of the PMO-ILs via electrostatic interaction and the structure of both thePMO-IL supports and the PMA were retained during the preparation processes.
     The catalytic properties of these materials (2a and2b) were investigated for theliquid-phase epoxidation of cyclooctene, and found that they were active with nearly100%selectivity to cyclooctene epoxide using TBHP as the oxidant. Furthermore,these hybrid catalysts could be reused several times without obvious loss of activityor selectivity under identical reaction conditions. Through comparative studies witha PMA-functionalized SBA-15material (2c), it suggested that the presence of theimidazolium cations in the framework of PMO-ILs should play key role instabilizing the catalytic active units against leaching during the reaction process. Therole of imidazolium cations could be further confirmed by studying anotherPMA-based catalyst (2d), which was obtained by anchoring PMA species on aminofunctionalized PMO-IL support. The catalytic activity and stability of2d decreasedslightly owning to the introduction of amino groups, which might prevent the PMAanions from interacting with the imidazolium cations in PMO-IL support. Based onthe above results, it can be conclude that an appropriate interaction between thePOM units and the supports should be established, and the supports should possess arationally high specific surface area and large pore size in order to fabricate highly efficient and stable POM-based heterogeneous catalysts.
     3. Immobilization of transition-metal-substituted phosphomolybdate onimidazolium-based mesoporous organosilica for catalytic olefin epoxidation
     Through the electrostatic immobilization of transition-metal-substitutedphosphomolybdate (TMSP) onto PMO-IL (a), a series of suppored catalysts wereobtained. The resulting hybrid materials, including PCoMo11@PMO-IL (3a),PMnMo11@PMO-IL (4a), PNiMo11@PMO-IL (5), PCuMo11@PMO-IL (6a) werecharacterized by means of ICP-AES, N2adsorption-desorption, powder XRD, FT-IR,UV-Vis, and XPS. Characterizations indicated that TMSP were successfullyimmobilized on the surface and in the channels of PMO-IL and the structuralintegrity of PMO-IL and TMSP was remained throughout the preparation processes.The catalytic properties of these catalysts were evaluated for the epoxidation ofolefins using molecular oxygen as oxidant in combination with a co-reductantisobutyraldehyde. It was found that these functionalized materials showed goodactivity in the epoxidation of a wide range of olefins (including terminal ones).Under test conditions,3a exhibited the highest activity and selectivity to epoxides.
     In addition, the influence of different reaction parameters (such as temperature,time, the molar ratio of isobutyraldehyde to olefin, and oxidants) on the catalyticproperty of3a has also been studied. Based on the related publications andexperimental results, a possible reaction mechanism for the epoxidation of olefinswith molecular oxygen in the presence of isobutyraldehyde over these TMSPfunctionalized catalysts was proposed. The first stage is the generation of an acylradical through the reaction between the aldehyde and the transition metal site of theTMSP. The acyl radical in turn react with dioxygen to produce acyl peroxy radical,which have several pathways to achieve the selective oxidation of olefins. In short,the types and valence states of transition metal species in the supported catalystscould impact the oxidation rate and selectivity towards epoxides. The relatively high catalytic activity and selectivity of3a might be assigned to the presence of CoIIwithrelatively high electropositivity.
引文
[1] YUDIN A K. Aziridines and epoxides in organic synthesis [M]. Wiley-VCH,Weinheim,2006.
    [2] LANE B S, BURGESS B S. Metal-catalyzed epoxidations of alkenes withhydrogen peroxide [J]. Chem Rev,2003,103:2457-2473.
    [3] KATSUKI T. Catalytic asymmetric oxidations using optically active(salen)manganese(III) complexes as catalysts [J]. Coord Chem Rev,1995,140:189-214.
    [4] XIA Q H, GE H Q, YE C P, et al. Advances in homogeneous and heterogeneouscatalytic asymmetric epoxidation [J]. Chem Rev,2005,105:1603-1662.
    [5] GRIGOROPOULOU G, CLARK J H, ELINGS J A. Recent developments on theepoxidation of alkenes using hydrogen peroxide as an oxidant [J]. Green Chem,2003,5:1-7.
    [6] DE VOS D E, SELS B F, JACOBS P A. Practical heterogeneous catalysts forepoxide production [J]. Adv Synth Catal,2003,345:457-473.
    [7] BIANCHINI C, BARBARO P. Recent aspects of asymmetric catalysis byimmobilized chiral [J]. Top Catal,2002,19:17-32.
    [8] LACSON J. Ethylene oxide, in: Chemical economics handbook [M]. SRIInternational, Menlo Park, CA, Oct.2003.
    [9] TRENT D L. Propylene oxide, in: Kirk othmer encyclopedia of chemicaltechnology, on-line edition [N]. John Wiley&Sons, New York,2001.
    [10] Chemical market reporter [N]. Aug.8,2006(currently ICIS Chemical BusinessAmericas, www. icis. com).
    [11] Hazardous substance data bank, Online database produced by the nationallibrary of medicine,1,2-Propylene oxide profile last updated [N]. October10,2001.
    [12] ANSMANN A, KAWA R, NEUSS M. Cosmetic composition containinghydroxyethers, US Patent.7,083,780B2[P].2006-08-01. To CognisDeutschland, Gmbh&Co. KG.
    [13] KIM I, KIM S M, HA C S, PARK D W. Synthesis and cyclohexeneoxide/carbon dioxide copolymerizations of zinc acetate complexes bearingbidentate pyridine-alkoxide ligands [J]. Macromol Rapid Commun,2004,25:888-893.
    [14] ANAYA DE PARRODI C, JUARISTI E. Chiral1,2-amino alcohols and1,2-diamines derived from cyclohexene oxide: Recent applications inasymmetric synthesis [J]. Synlett,2006,2699-2715.
    [15] SZMANT H H. Organic building blocks of the chemical industry [M]. Wiley,New York,1989,736.
    [16] TOSHIMITSU A, ABE H, HIROSAWA C, TANIMOTO S. Preparation of chiralaziridines from chiral oxiranes with retention of configuration [J]. J Chem SocChem Commun,1992,284-285.
    [17] NIIBO Y, NAKATA T, OTERA J, NOZAKI H. Stereospecific ring opening atthe benzylic carbon of phenyloxirane derivatives by alcohols [J]. Synlett,1991,97-98.
    [18] CHINI M, CROTTI P, MACCHIA F. Regioalternating selectivity in the metalsalt catalyzed aminolysis of styrene oxide [J]. J Org Chem,1991,56:5939-5942.
    [19] MEINWALD J, LABANA S S, CHADHA M S. Peracid reactions. III. Theoxidation of bicyclo [2.2.1] heptadiene [J]. J Am Chem Soc,1963,85:582-585.
    [20] MIYAMOTO K, OKURO K, OHTA H. Substrate specificity and reactionmechanism of recombinant styrene oxide isomerase from Pseudomonas putida[J]. Tetrahedron Lett,2007,48:3255-3257.
    [21] ZATORSKI L W, WIERZCHOWSKI P T. Zeolite-catalyzed synthesis of4-phenyl-1,3-dioxolanes from styrene oxide [J]. Catal Lett,1991,10:211-213.
    [22] SERVAIS M, CROCHET R. Stabilised composition of1,1,1,-trichloroethane,European Patent EP62,952[P].1982-10-20, To Solvay (BE).
    [23] GUO Q X, NAKAJIMA K, TAKAHASHI T. Formation of8-membered ringcompounds by the reaction of styrene oxide with MoCl5[J]. Chem Lett,2003,32:1044-1045.
    [24] JUNG M E, SUN D. Stereoselective production of b-amino alcohols andb-thioacyl alcohols via an application of the non-aldol aldol process [J].Tetrahedron Lett,1999,40:8343-8346.
    [25] JUNG M E, VAN DEN HEUVEL A. Diastereoselectivity in non-aldol aldolreactions: Silyl triflatepromoted Payne rearrangements [J]. Tetrahedron Lett,2002,43:8169-8172.
    [26] HODGSON D M, WISEDALE R. Enantioselective rearrangement ofexo-norbornene oxide to nortricyclanol [J]. Tetrahedron Asymm,1996,7:1275-1276.
    [27] WU H H, WANG L L, ZHANG H J, et al. Highly efficient and clean synthesisof3,4-epoxytetrahydrofuran over a novel titanosilicate catalyst, Ti-MWW [J].Green Chem,2006,8:78-81.
    [28] SLITT A L, CHERRINGTON N J, DIETER M Z, et al. Trans-stilbene oxideinduces expression of genes involved in metabolism and transport in mouseliver via CAR and Nrf2transcription factors [J]. Mol Pharmacol,2006,69:1554-1563.
    [29] SLITT A L, CHERRINGTON N J, FISHER C D, et al. Induction of genes formetabolism and transport by trans-stilbene oxide in livers of Sprague-Dawleyand Wistar-Kyoto rats [J]. Drug Metab Dispos,2006,34:1190-1197.
    [30] SELL C S. Terpenoids, in: Kirk-othmer encyclopedia of chemical technology,John Wiley&Sons, New York,2001(on-line edition updated Sept.2006).
    [31] BRUNKE E J, KLEIN E. Polysubstituted cyclopentene derivatives, GermanPatent DE2,827,957[P].1980-01-10,1980, To Dragoco Gerberding, Co.GBMH.
    [32] MüHLST DT M, DOLLASE W, HERRMANN M, FEUSTEL G. Riechstoffeund riechstoffkompositionen, German Patent DE1,922,391[P].1970-08-27, ToChem Fab Miltitz Veb.
    [33] MAC LEOD T C O, BARROS V P, FARIA A L, et al. Jacobsen catalyst as aP450biomimetic model for the oxidation of an antiepileptic drug [J]. J MolCatal A,2007,273:259-264.
    [34] PAGE P C B, BUCKLEY B R, HEANEY H, BLACKER A J. Asymmetricepoxidation of cis-alkenes mediated by iminium salts: Highly enantioselectivesynthesis of levcromakalim [J]. Org Lett,2005,7:375-377.
    [35]唐建远.含过渡金属配合物有机-无机杂化材料的制备及催化环氧化反应性能[D].长春:吉林大学化学学院,2011.
    [36] SWERN D (Ed.), Organic peroxides [M]. J Wiley&Sons, Inc,1970, vol.1, p.654.
    [37]吕绍洁,徐成华,邱发礼.溴醇法合成环氧苯乙烷的研究[J].合成化学,2000,8(1):71-74.
    [38]舒火明,谷淑珍.细胞色素P-450模拟体系的活性中间体-氧配位铬(V)四苯基卟啉配合物的分离、表征和氧化反应[J].化学学报,1994,52:468-473.
    [39] KOLLAR J. Epoxidation process, US Patent3,351,635[P].1967-11-07, ToHalcon International, Inc.
    [40] EVANS W E, CHIPMAN P I. Process for operating the epoxidation of ethylene,US Patent6,717,001B2[P].2004-04-06. To Shell Oil Company.
    [41] HAYASHI T, TANAKA K, HARUTA M. Selective vapor-phase epoxidation ofpropylene over Au/TiO2catalysts in the presence of oxygen and hydrogen [J]. JCatal,1998,178:566-575.
    [42] CLERICI M G, BELLUSSI G, ROMANO U. Synthesis of propylene oxide frompropylene and hydrogen peroxide catalyzed by titanium silicalite [J]. J Catal,1991,129:159-167.
    [43] CLERICI M G, INGALLINA P. Epoxidation of lower olefins with hydrogeneroxide and titanium silicalite [J]. J Catal,1993,140:71-83.
    [44] THIELE G. Process for the preparation of epoxides from olefins. US Patent6,372,924B2[P].2002-04-16. To Degussa-Huls AG.
    [45] MONNIER J R. The direct epoxidation of higher olefins using molecularoxygen [J]. Appl Catal A,2001,221:73-91.
    [46] SHARPLESS K B, TOWNSEND J M, WILLIAMS D R. Mechanism ofepoxidation of olefins by covalent peroxides of molybdenum(VI)[J]. J AmChem Soc,1972,94:295-296.
    [47] KAMATA K, YONEHARA K, SUMIDA Y, et al. Efficient epoxidation ofolefins with99%selectivity and use of hydrogen peroxide [J]. Science,2003,300:964-966.
    [48] SHYLESH S, JIA M J, THIEL W R. Recent progress in the heterogenization ofcomplexes for single-site expoxidation catalysis [J]. Eur J Inorg Chem,2010,2010:4395-4410.
    [49] RAYATI S, ZAKAVI S, KOLIAEI M, et al. Electron-rich salen-type Schiff basecomplexes of Cu(II) as catalysts for oxidation of cyclooetene and styrene withtert-butylhydroperoxide: A comparison with electron-deficient ones [J]. InorgChem Commun,2010,13:203-207.
    [50] MORLANéS N, NOTESTEIN J M. Grafted Ta-calixarenes: Tunable, selectivecatalysts for direct olefin epoxidation with aqueous hydrogen peroxide [J]. JCatal,2010,275:191-201.
    [51] VENTURELLO C, ALNERI E, RICCI M. A New, Effective catalytic system forepoxidation of olefins by hydrogen peroxide under phase-transfer conditions [J].J Org Chem,1983,48:3831-3833.
    [52] KOZHEVNIKOV I V. Catalysis by heteropoly acids and multicomponentpolyoxometalates in liquid-phase reactions [J]. Chem Rev,1998,98:171-198.
    [53] OKUHARA T, MIZUNO N, MISONO M. Catalysis by heteropolycompounds-recent developments [J]. Appl Catal A,2001,222:63-77.
    [54] XI Z W, ZHOU N, SUN Y, LI K. Reaction controlled phase transfer catalysisfor propylene epoxidation to propylene epoxide [J]. Science,2001,292:1139-1141.
    [55] LAHA S C, KUMAR R. Highly selective epoxidation of olefinic compoundsover TS-1and TS-2redox molecular sieves using anhydrous urea hydrogenperoxide as oxidizing agent [J]. J Catal,2002,208:339-344.
    [56] RODE C V, NEHETE U N, DONGARE M K. Alkali promoted selectiveepoxidation of styrene to styrene oxide using TS-1catalyst [J]. Catal Commun,2003,4:365-369.
    [57] CORMA A. From microporous to mesoporous molecular sieve materials andtheir use in catalysis [J]. Chem Rev,1997,97:2373-2420.
    [58] FERREIRA P, GON ALVES I S, KüHN F E, et al. Mesoporous silicasmodified with dioxomolybdenum(VI) complexes: Synthesis and catalysis [J].Eur J Inorg Chem,2000,2000:2263-2270.
    [59] MASCHMEYER T, REY F, SANKAR G. THOMAS J M. Heterogeneouscatalysts obtained by grafting metallocene complexes onto mesoporous silica[J]. Nature,1995,378:159-162.
    [60] THOMAS J M, RAJA R, LEWIS D W. Single-site heterogeneous catalysts [J].Angew Chem Int Ed,2005,44:6456-6482.
    [61] YANG Q, COPéRET C, LI C, BASSET J M. Molybdenum containing surfacecomplex for olefin epoxidation [J]. New J Chem,2003,27:319-323.
    [62] JIA M J, THIEL W R. Oxodiperoxo molybdenum modified mesoporousMCM-41materials for the catalytic epoxidation of cyclooctene [J]. ChemCommun,2002,2392-2393.
    [63] JIA M J, SEIFERT A, THIEL W R. Mesoporous MCM-41materials modifiedwith oxodiperoxo molybdenum complexes: Efficient catalysts for theepoxidation of cyclooctene [J]. Chem Mater,2003,15:2174-2180.
    [64] NUNES C D, VALENTE A A, PILLINGER M, et al. Molecular structure-activity relationships for the oxidation of organic compounds usingmesoporous silica catalysts derivatised withbis(halogeno)dioxomolybdenum(VI) complexes [J]. Chem Eur J,2003,9:4380-4390.
    [65] MONTEIRO B, BALULA S S. Comparison of liquid-phase olefin epoxidationcatalysed by dichlorobis-(dimethylformamide)dioxomolybdenum(VI) inhomogeneous phase and grafted onto MCM-41[J]. J Mol Catal A,2009,297:110-117.
    [66] NUNES C D, VALENTE A A, PILLINGER M, et al. MCM-41functionalizedwith bipyridyl groups and its use as a support for oxomolybdenum(VI) catalysts[J]. J Mater Chem,2002,12:1735-1742.
    [67] MASTERI-FARAHANI M. Investigation of catalytic activities of newheterogeneous molybdenum catalysts in epoxidation of olefins [J]. J Mol CatalA,2010,316:45-51.
    [68] ABRANTES M, GAGO S, VALENTE A A, et al. Incorporation of a(cyclopentadienyl)molybdenum oxo complex in MCM-41and its use as acatalyst for olefin epoxidation [J]. Eur J Inorg Chem,2004,4914-4920.
    [69] SAKTHIVEL A, ZHAO J, HANZLIK M, et al. Heterogenization oforganometallic molybdenum complexes with siloxane functional groups andtheir catalytic application [J]. Adv Synth Catal,2005,347:473-483.
    [70] YAMAGUCHI K, YOSHIDA C, UCHIDA S, MIZUNO N. Peroxotungstateimmobilized on ionic liquid-modified silica as a heterogeneous epoxidationcatalyst with hydrogen peroxide [J]. J Am Chem Soc,2005,127:530-531.
    [71] TANG J Y, JIA M J, THIEL W R, et al. Mesoporous SBA-15materials modifiedwith oxodiperoxo tungsten complexes as efficient catalysts for the epoxidationof olefins with hydrogen peroxide [J]. J Mol Catal A,2009,313:31-37.
    [72] HOEGAERTS D, SELS B F, DE VOS D E, et al. Heterogeneous tungsten-basedcatalysts for the epoxidation of bulky olefins [J]. Catal Today,2000,60:209-218.
    [73] KOO D H, KIM M, CHANG S. WO3nanoparticles on MCM-48as a highlyselective and versatile heterogeneous catalyst for the oxidation of olefins,sulfides, and cyclic Ketones [J]. Org lett,2005,7:5015-5018.
    [74] RAHIMAN A K, RAJESH K, BHARATHI K S, et al. Catalytic oxidation ofalkenes by manganese(III) porphyrin-encapsulated Al, V, Si-mesoporousmolecular sieves [J]. Inorg Chim Acta,2009,362:1491-1500.
    [75] JACOBSEN E N, ZHANG W, MUCI A R, et al. Highly enantioselectiveepoxidation catalysts derived from1,2-diaminocyclohexane [J]. J Am ChemSoc,1991,113:7063-7064.
    [76] CHANG S, GALVIN J M, JACOBSEN E N. Effect of chiral quaternaryammonium salts on (salen)Mn-catalyzed epoxidation of cis-olefins: A highlyenantioselective, Catalytic route to trans epoxides [J]. J Am Chem Soc,1994,116:6937-6938.
    [77] BRANDES B D, JACOBSEN E N. Highly enantioselective, Catalyticepoxidation of trisubstituted olefins [J]. J Org Chem,1994,59:4378-4380.
    [78] SONG C E, ROH E J, YU B M, et al. Heterogeneous asymmetric epoxidationof alkenes catalysed by a polymer-bound (pyrrolidine salen)manganese(III)complex [J]. Chem Commun,2000,615-616.
    [79] KURESHY R I, AHMAD I, KHAN N-U H, et al. Encapsulation of a chiralMnIII(salen) complex in ordered mesoporous silicas: an approach towardsheterogenizing asymmetric epoxidation catalysts for non-functionalizedalkenes [J]. Tetrahedron Asymm,2005,16:3562-3569.
    [80] POPE M T, MüLLER A. Polyoxometalate chemistry: From topology viaself-assembly to applications [M]. Dordrecht: Kluwer,2001.
    [81] POPE M T, MüLLER A. Polyoxometalate chemistry: An old field with newdimensions in several disciplines [J]. Angew. Chem. Int, Ed. Engl.,1991,30:34-48.
    [82] HILL C L. Polyoxometalates in catalysis [M]. J Mol Catal,1996,114:1-371.
    [83] HILL C L. Polyoxometalates [M]. Chem Rev,1998,98:1-387.
    [84] E. B. Wang, C. W. Hu, L. Xu, Concise of polyoxometalate Chemistry, ChemicalIndustrial Publishing Company, Beijing,1998,4.
    [85]杨国昱.氧基簇合物化学[M].北京:科学出版社,2012.
    [86]陈维林,王恩波.多酸化学[M].北京:科学出版社,2013.
    [87]王恩波,胡长文,许林.多酸化学导论[M].北京:北京化学工业出版社,1997.
    [88] SADAKANE M, STECKHAN E. Investigation of the manganese-substitutedα-Keggin-heteropolyanion K6SiW11O39Mn(H2O) by cyclic voltammetry and itsapplication as oxidation catalyst [J]. J Mol Catal A,1996,114:221-228.
    [89] SHIKATA S, OKUHARA T, MISONO M. Catalysis by hetropoly compounds.Part XXVI1. Gas phase synthesis of methyl tert-butyl ether overheteropolyacids [J]. J Mol Catal A,1995,100:49-59.
    [90] SADAKANE M, STECKHAN E. Electrochemical properties ofpolyoxometalates as electrocatalysts [J]. Chem Rev,1998,98:219-237.
    [91] MIZUNO N, MISONO M. Heterogeneous Catalysis [J]. Chem Rev,1998,98:199-217
    [92] IZUMI Y, ONO M, KITAGAWA M, et al. Silica-included heteropolycompounds as solid acid catalysts [J]. Microporous Mater,1995,5:255-262.
    [93] ISHII Y, YAMAWAKI K, URA T, et al. Hydrogen peroxide oxidation catalyzedby heteropoly acids combined with cetylpyridinium chloride: epoxidation ofolefins and allylic alcohols, ketonization of alcohols and diols, and oxidativecleavage of1,2-diols and olefins [J]. J Org Chem,1988,53:3587-3593.
    [94] MIZUNO N, KATAMURA K, YONEDA Y, et al. Catalysis by heteropolycompounds: V. The reduction mechanism of H3PMo12O40[J]. J Catal,1983,83:384-392.
    [95] KONISHI Y, SAKATA K, MISONO M, et al. Catalysis by heteropolycompounds: IV. Oxidation of methacrolein to methacrylic acid over12-molybdophosphoric acid [J]. J Catal,1982,77:169-179.
    [96] SALLES L, PIQUEMAL J Y, THOUVENOT R, et al. Catalytic epoxidation byheteropolyoxoperoxo complexes: From novel precursors or catalysts to amechanistic approach [J]. J Mol Catal A,1995,117:375-387.
    [97] HILL C L, PROSSER-MCCARTHA C M. Homogeneous catalysis by transitionmetal oxygen anion clusters [J]. Coord Chem Rev,1995,143:407-455.
    [98] SATO K, AOKI M, OGAWA M, et al. A practical method for epoxidation ofterminal olefins with30%hydrogen peroxide under halide-free conditions [J]. JOrg Chem,1996,61:8310-8311.
    [99] ALTENAU J J. POPE M T, PRADOS R A, et al. Models for heteropoly blues.Degrees of valence trapping in vanadium(IV)-and molybdenum(V)-substituted Keggin Anions [J]. Inorg Chem,1975,2:417-421.
    [100] KATSOLIS P E, POPE M T. New chemistry for heteropolyanions inanhydrous nonpolar solvents. Coordinative unsaturation of surface atoms.Polyanion oxygen carriers [J].J Am Chem Soc,1984,106:2737-2738.
    [101]迟洪盘,吴通好,李玉燕.杂多酸类催化剂的研究进展(一)[J].齐鲁石油化工,1994,2:149-166.
    [102]迟洪盘,吴通好,李玉燕.杂多酸类催化剂的研究进展(续一)[J].齐鲁石油化工,1994,3:222-229.
    [103]迟洪盘,吴通好,李玉燕.杂多酸类催化剂的研究进展(续一)[J].齐鲁石油化工,1994,4:317-322.
    [104] KNOTH W H, HARLOW R L. New tungstophosphates: Cs6W5P2O23,Cs7W10PO36, and Cs7Na2W10PO37[J]. J Am Chem Soc,1981,103:1865-1867.
    [105] XIN F B, POPE M T. Polyoxometalate derivatives with multiple organicgroups.3. Synthesis and structure of bis(phenyltin) bis(decatungstosilicate),
    [(PhSnOH2)2(γ-SiW10O36)2]10-[J]. Inorg Chem,1996,35:5693-5695.
    [106] MAZEAUD A, DROMZEE Y, THOUVENOT R. Organic-inorganic hybridsbased on polyoxometalates.6.1Syntheses, structure, and reactivity of thebis(tert-butylsilyl)decatungstophosphate [(γ-PW10O36)(t-BuSiOH)2]3-[J]. InorgChem,2000,39:4735-4740.
    [107] YAMAGUCHI S, KIKUKAWA Y, TSUCHIDA K, et al. Synthesis andstructural characterization of a γ-Keggin-type dimeric silicotungstate with abis(μ-hydroxo) dizirconium core [(γ-SiW10O36)2Zr2(μ-OH)2]10-[J]. InorgChem,2007,46:8502-8504.
    [108] KIKUKAWA Y, YAMAGUCHI S, TSUCHIDA K, et al. Synthesis andcatalysis of di-and tetranuclear metal sandwich-type silicotungstates[(γ-SiW10O36)2M2(μ-OH)2]10-and [(γ-SiW10O36)2M4(μ4-O)(μ-OH)6]8-(M) Zror Hf)[J] J Am Chem Soc,2008,130:5472-5478.
    [109] MIZUNO N, NOZAKI C, KIYOTO I, MISONO M. Highly efficientutilization of hydrogen peroxide for selective oxygenation of alkanescatalyzed by diiron-substituted polyoxometalate precursor [J]. J Am ChemSoc,1998,120:9267-9272.
    [110] POPE M T, MüLLER A. Polyoxometalate chemistry: An old field with newdimensions in several disciplines [J].Angew Chem Int Ed Engl,1991,30:34-38.
    [111] POPE M T. Heteropoly and isopolyoxometalates [M]. New York: SpringerVerlag,1983.
    [112]刘春光.过渡金属取代Keggin型多酸及类似化合物电子结构和非线性光学性质的理论研究[D].长春,东北师范大学化学学院,2010.
    [113] WEAKLEY T J R, MALIK S A. Heteropolyanions containing two differentheteroatoms-I [J]. J Inorg Nucl Chem,1967,29:2935-2944.
    [114] TOURNé C M, TOURNé G F. Triheteropolyanions containing copper(Ⅱ),manganese(Ⅱ), or manganese(Ⅲ)[J]. J Inorg Nucl Chem,1970,32:3875-3890.
    [115]秦笃捷,王国甲,李梅,吴越.第四周期过渡金属钥磷三元杂多化合物的合成及表征[J].无机化学学报,1992,8:124-129.
    [116] MISONO M. Heterogeneous catalysis by heteropoly compounds ofmolybdenum and tungsten [J]. Catal Rev Sci Eng,1987,29:269-321.
    [117] MISONO M. Catalysis reviews: Science and engineering [J]. Catal Rev SciEng,1988,30:339-340.
    [118] MISONO M. Proc,10th Inter. Conge. Catal [C]. Akademiai Kaido, Budapest,1993,69.
    [119] MISONO M. Hetergeneous catalysis by heteropoly compounds ofmolybdenum and tungsten [J]. Catal Rev,1987,29,269-321.
    [120] MIZUNO N, YAMAGUCHI K, KAMATA K. Epoxidation of olefins withhydrogen peroxide catalyzed by polyoxometalates [J]. Coord Chem Rev,2005,249:1944-1956.
    [121] DOLBECQ A, DUMAS E, MAYER C R, MIALANE P. Hybridorganic-inorganic polyoxometalate compounds: from structural diversity toapplications [J]. Chem Rev,2010,110:6009-6048.
    [122] LONG D L, TSUNASHIMA R, CRONIN L. Polyoxometalates: buildingblocks for functional nanoscale systems [J]. Angew Chem Int Ed,2010,49:1736-1758.
    [123] KHOLDEEVA O A, MAKSIMCHUK N V, MAKSIMOV G M.Polyoxometalate-based heterogeneous catalysts for liquid phase selectiveoxidations: Comparison of different strategies [J]. Cataly Today,2010,157:107-113.
    [124] LIU P, WANG C H, LI C. Epoxidation of allylic alcohols on self-assembledpolyoxometalates hosted in layered double hydroxides with aqueous H2O2asoxidant [J]. J Catal,2009,262:159-168.
    [125] LIU P, WANG H, LI C, et al. Direct immobilization of self-assembledpolyoxometalate catalyst in layered double hydroxide for heterogeneousepoxidation of olefins [J]. J Catal,2008,256:345-348.
    [126] SHRINGARPURE P A, PATEL A. Liquid phase oxidation of styrene overzirconia supported undecatungstophosphate using different oxidants: acomparative study [J]. Dalton Trans,2010,39:2615-2621.
    [127] SHRINGARPURE P, PATEL A. Zirconia supported undecatungstophosphate:synthesis and characterization of a bifunctional catalyst [J]. Dalton Trans,2008,3953-3955.
    [128] SHRINGARPURE P, PATEL A. Cobalt (Ⅱ) exchanged supported12-tungstophosphoric acid: Synthesis, characterization and non-solventliquid phase aerobic oxidation of alkenes [J]. J Mol Catal A,2010,321:22-26.
    [129] PATHAN S, PATEL A. Novel heterogeneous catalyst, supportedundecamolybdophosphate: Synthesis, physico-chemical characterization andsolvent-free oxidation of styrene [J]. Dalton Trans,2011,40:348-355.
    [130] KASAI J, NAKAGAWA Y, UCHIDA S, YAMAGUCHI K, MIZUNO N.[γ-1,2-H2SiV2W10O40] immobilized on surface-modified SiO2as aheterogeneous catalyst for liquid-phase oxidation with H2O2[J]. Chem Eur J,200612:4176-4184.
    [131] MIZUNO N, KAMATA K, YAMAGUCHI K. Green oxidation reactions bypolyoxometalate-based catalysts: From molecular to solid catalysts [J]. TopCatal,2010,53:876-893.
    [132] JOHNSON B J, STEIN A. Surface modification of mesoporous, macroporous,and amorphous silica with catalytically active polyoxometalate clusters [J].Inorg Chem,2001,40:801-808.
    [133] BORDOLOI A, FEFEBVRE F, HALLIGUDI S B. Selective oxidation ofanthracene using inorganic-organic hybrid materials based onmolybdovanadophosphoric acids [J]. J Catal,2007,247:166-175.
    [134] KARIMI Z, MAHJOUB A R, DAVARI AGHDAM F. SBA immobilizedphosphomolybdic acid: Efficient hybrid mesostructured heterogeneouscatalysts [J]. Inorg Chim Acta,2009,362:3725-3730.
    [135] KARIMI Z, MAHJOUB A R, HARATI S M. Polyoxometalate-based hybridmesostructured catalysts for green epoxidation of olefins [J]. Inorg Chim Acta,2011,376:1-9.
    [136] BIGI F, CORRADINI A, QUARANTELLI C, SARTORI G. Silica-bounddecatungstates as heterogeneous catalysts for H2O2activation in selectivesulfide oxidation [J]. J Catal,2007,250:222-230.
    [137] SOFIA L T A, KRISHNAN A, SANKAR M, et al. Immobilization ofphosphotungstic acid (PTA) on imidazole functionalized silica: Evidence forthe nature of PTA binding by solid state NMR and reaction studies [J]. J PhysChem C,2009,113:21114-21122.
    [138] LEE B, IM H-J, LUO H M, et al. Synthesis and characterization of periodicmesoporous organosilicas as anion exchange resins for perrhenate adsorption[J]. Langmuir,2005,21:5372-5376.
    [139] CAZIN C S J, VEITH M, BRAUNSTEIN P, BEDFORD R B. Versatilemethods for the snthesis of Si(OR)3-functionalised imidazolium salts,Potential precursors for heterogeneous NHC catalysts and composite materials[J]. Synthesis,2005,4:622-626.
    [140] NGUYEN T P, HESEMANN P, GAVEAU P, MOREAU J J E. Periodicmesoporous organosilica containing ionic bis-aryl-imidazolium entities:Heterogeneous precursors for silica-hybrid-supported NHC complexes [J]. JMater Chem,2009,19:4164-4171.
    [141] NGUYEN T P, HESEMANN P, MOREAU J J E. i-Silica: Nanostructuredsilica hybrid materials containing imidazolium groups byhydrolysis-polycondensation of disilylated bis-N,N′-alkyl-imidazolium halides[J]. Microporous Mesoporous Mater,2011,142:292-300.
    [142] KARIMI B, ELHAMIFAR D, CLARK J H, HUNT A J. Ordered mesoporousorganosilica with ionic-liquid framework: An efficient and reusable supportfor the palladium-catalyzed Suzuki-Miyaura coupling reaction in water [J].Chem Eur J,2010,16:8047-8053.
    [143] KARIMI B, GHOLINEJAD M, KHORASANI M. Highly efficientthree-component coupling reaction catalyzed by gold nanoparticles supportedon periodic mesoporous organosilica with ionic liquid framework [J]. ChemCommun,2012,48:8961-8963.
    [144] KARIMI B, ELHAMIFAR D, CLARK J H, HUNT A J. Palladium containingperiodic mesoporous organosilica with imidazolium framework(Pd@PMO-IL): an efficient and recyclable catalyst for the aerobic oxidationof alcohols [J]. Org Biomol Chem,2011,9:7420-7426.
    [145] KARIMI B, ELHAMIFAR D, YARI O, et al. Synthesis and characterization ofalkyl-imidazolium-based periodic mesoporous organosilicas: A versatile hostfor the immobilization of perruthenate (RuO4-) in the aerobic oxidation ofalcohols [J]. Chem Eur J,2012,18:13520-13530.
    [146] WANG L, SHYLESH S, DEHE D, THIEL W R, et al. Covalentimmobilization of imidazolium cations inside a silica support:Palladium-catalyzed olefin hydrogenation [J]. ChemCatChem,2012,4:395-400.
    [147] ZHAO H H, ZENG L X, LI Y L, YU N Y, et al. Polyoxometalate-based ioniccomplexes immobilized in mesoporous silicas prepared via a one-potprocedure: Efficient and reusable catalysts for H2O2-mediated alcoholoxidations in aqueous media [J]. Microporous Mesoporous Mater,2013,172:67-76.
    [148] ARMATAS G S, BILIS G, LOULOUDI M. Highly ordered mesoporouszirconia-polyoxometalate nanocomposite materials for catalytic oxidation ofalkenes [J]. J Mater Chem,2011,21:2997-3005.
    [149] ARMATAS G S, KATSOULIDIS A P, PETRAKIS D E, POMONIS P J.Synthesis and acidic catalytic properties of ordered mesoporousalumina–tungstophosphoric acid composites [J]. J Mater Chem,2010,20:8631-8638.
    [150] QI W, WANG Y Z, LI W, WU L X. Surfactant-encapsulated polyoxometalatesas immobilized supramolecular catalysts for highly efficient and selectiveoxidation reactions [J]. Chem Eur J,2010,16:1068-1078.
    [151] YU X D, XU L L, YANG X, et al. Preparation of periodic mesoporoussilica-included divacant Keggin units for the catalytic oxidation of styrene tosynthesize styrene oxide [J]. Appl Surf Sci.,2008,254:4444-4451.
    [152] FéREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromiumterephthalate-based solid with unusually large pore volumes and surface area[J]. Science,2005,309:2040-2042.
    [153] EI-SHALL M S, ABDELSAYED V, KHDER A E R S, et al. Metallic andbimetallic nanocatalysts incorporated into highly porous coordination polymerMIL-101[J]. J Mater Chem,2009,19:7625-7631.
    [154] HWANG Y K, HONG D Y, CHANG J S, et al. Amine grafting oncoordinatively unsaturated metal centers of MOFs: Consequences forcatalysis and metal encapsulation [J]. Angew Chem Int Ed,2008,47:4144-4148.
    [155] PAN Y, YUAN B Z, LI Y W, et al. Multifunctional catalysis by Pd@MIL-101:one-step synthesis of methyl isobutyl ketone over palladium nanoparticlesdeposited on a metal–organic framework [J]. Chem Commun,2010,46:2280-2282.
    [156] MAKSIMCHUK N V, TIMOFEEVA M N, KHOLDEEVA O A, et al.Heterogeneous selective oxidation catalysts based on coordination polymerMIL-101and transition metal-substituted polyoxometalates [J]. J Catal,2008,257:315-323.
    [157] MAKSIMCHUK N V, KOVALENKO K A, KHOLDEEVA O A, et al. Hybridpolyoxotungstate/MIL-101materials: Synthesis, characterization, andcatalysis of H2O2-based alkene epoxidation [J]. Inorg Chem,2010,49:2920-2930.
    [158] LONG D L, BURKHOLDER E, CRONIN L. Polyoxometalate clusters,nanostructures and materials: From self assembly to designer materials anddevices [J]. Chem Soc Rev,2007,36:105-121.
    [159] CHEN L, JIANG F L, LIN Z Z, et al. A basket tetradecavanadate cluster withblue luminescence [J]. J Am Chem Soc,2005,127:8588-8589.
    [160] PRADEEP C P, MISDRAHI M F, LI F Y, et al. Synthesis of modular"inorganic-organic-inorganic" polyoxometalates and their assembly intovesicles [J]. Angew Chem Int Ed,2009,48:8309-8313.
    [161] ZHANG Z X, ZHAO W, MA B C, DING Y. The epoxidation of olefinscatalyzed by a new heterogeneous polyoxometalate-based catalyst withhydrogen peroxide [J]. Catal Commun,2010,12:318-322.
    [162] ABRANTES M, AMARANTE T R, ANTUNES M M, et al. Synthesis,structure and catalytic performance in cyclooctene epoxidation of amolybdenum oxide/bipyridine hybrid material:{[MoO3(bipy)][MoO3(H2O)]}n[J]. Inorg Chem,2010,49:6865-6873.
    [163] DU J, YU J H, TANG J Y, et al. Supramolecular assemblies directed byhydrogen bonds and π–π interactions and based onN-heterocyclic-ligand-modified β-octamolybdate-structure and catalyticapplication in olefin epoxidation [J]. Eur J Inorg Chem,2011,2011:2361-2365.
    [1] KAMATA K, YONEHARA K, SUMIDA Y, et al. Efficient epoxidation of olefinswith99%selectivity and use of hydrogen peroxide [J]. Science,2003,300:964-966.
    [2] SHARPLESS K B, TOWNSEND J M, WILLIAMS D R. Mechanism ofepoxidation of olefins by covalent peroxides of molybdenum(VI)[J]. J AmChem Soc,1972,94:295-296.
    [3] XI Z W, ZHOU N, SUN Y, LI K. Reaction controlled phase transfer catalysis forpropylene epoxidation to propylene epoxide [J]. Science,2001,292:1139-1141.
    [4] KHOLDEEVA O A, MAKSIMCHUK N V, MAKSIMOV G M.Polyoxometalate-based heterogeneous catalysts for liquid phase selectiveoxidations: Comparison of different strategies [J]. Cataly Today,2010,157:107-113.
    [5] KASAI J, NAKAGAWA Y, UCHIDA S, YAMAGUCHI K, MIZUNO N.
    [γ-1,2-H2SiV2W10O40] immobilized on surface-modified SiO2as aheterogeneous catalyst for liquid-phase oxidation with H2O2[J]. Chem Eur J,200612:4176-4184.
    [6] BORDOLOI A, FEFEBVRE F, HALLIGUDI S B. Selective oxidation ofanthracene using inorganic-organic hybrid materials based onmolybdovanadophosphoric acids [J]. J Catal,2007,247:166-175.
    [7] KARIMI Z, MAHJOUB A R, DAVARI AGHDAM F. SBA immobilizedphosphomolybdic acid: Efficient hybrid mesostructured heterogeneous catalysts[J]. Inorg Chim Acta,2009,362:3725-3730.
    [8] KARIMI Z, MAHJOUB A R, HARATI S M. Polyoxometalate-based hybridmesostructured catalysts for green epoxidation of olefins [J]. Inorg Chim Acta,2011,376:1-9.
    [9] ARMATAS G S, BILIS G, LOULOUDI M. Highly ordered mesoporouszirconia-polyoxometalate nanocomposite materials for catalytic oxidation ofalkenes [J]. J Mater Chem,2011,21:2997-3005.
    [10] SCHRODEN R C, BLANFORD C F, MELDE B J, et al. Direct synthesis ofordered macroporous silica materials functionalized with polyoxometalateclusters [J]. Chem Mater,2001,13:1074-1081.
    [11] MAKSIMCHUK N V, TIMOFEEVA M N, KHOLDEEVA O A, et al.Heterogeneous selective oxidation catalysts based on coordination polymerMIL-101and transition metal-substituted polyoxometalates [J]. J Catal,2008,257:315-323.
    [12] MAKSIMCHUK N V, KOVALENKO K A, KHOLDEEVA O A, et al. Hybridpolyoxotungstate/MIL-101materials: Synthesis, characterization, and catalysisof H2O2-based alkene epoxidation [J]. Inorg Chem,2010,49:2920-2930.
    [13] MAKSIMCHUK N V, KHOLDEEVA O A, KOVALENKO K A, FEDIN V P.MIL-101supported polyoxometalates: Synthesis, characterization, and catalyticapplications in selective liquid-phase oxidation [J]. Isr J Chem,2010,50:1-9.
    [14] DU J, YU J H, TANG J Y, et al. Supramolecular assemblies directed byhydrogen bonds and π–π interactions and based onN-heterocyclic-ligand-modified β-octamolybdate-structure and catalyticapplication in olefin epoxidation [J]. Eur J Inorg Chem,2011,2011:2361-2365.
    [15] ABRANTES M, AMARANTE T R, ANTUNES M M, et al. Synthesis, structureand catalytic performance in cyclooctene epoxidation of a molybdenumoxide/bipyridine hybrid material:{[MoO3(bipy)][MoO3(H2O)]}n[J]. InorgChem,2010,49:6865-6873.
    [16] ZHANG Z X, ZAHO W, MA B C, DING Y. The epoxidation of olefinscatalyzed by a new heterogeneous polyoxometalate-based catalyst withhydrogen peroxide [J]. Catal Commun,2010,12:318-322.
    [17] ZHAO D Y, HUO Q S, FENG J L, et al. Nonionic triblock and star diblockcopolymer and oligomeric surfactant syntheses of highly ordered,hydrothermally stable, Mesoporous silica structures [J]. J Am Chem Soc,1998,120:6024-6036.
    [18] LIU G, JIA M J, ZHOU Z, et al. Synthesis of amorphous mesoporousaluminophosphate materials with high thermal stability using a citric acid route[J]. Chem Commun,2004,21:1660-1661.
    [19] LIU G, WANG Z L, JIA M J, et al. Thermally stable amorphous mesoporousaluminophosphates with controllable P/Al ratio: Synthesis, characterization,and catalytic performance for selective o-methylation of catechol [J]. J PhysChem B,2006,110:16953-16960.
    [20] LIU G, JIA M J, ZHOU Z, et al. Synthesis and pore formation study ofamorphous mesoporous aluminophosphates in the presence of citric acid [J]. JColloid Interface Sci,2006,302:278-286.
    [21] LIU G, LIU Y, WANG Z L, et al. Direct synthesis of porous carbon viacarbonizing precursors of aluminum phosphate containing citric acid [J].Microprous Mesoporous Mater,2008,116:439-444.
    [22] WANG L, DEHE D, PHILIPPI T, et al. Electrostatic grafting of aTriphenylphosphine Sulphonate on SBA-15: Application in PalladiumCatalyzed Hydrogenation [J]. Catal Sci Technol,2012,2:1188-1195.
    [23] JIA M J, SEIFERT A, THIEL W R. Mesoporous MCM-41materials modifiedwith oxodiperoxo molybdenum complexes: Efficient catalysts for theepoxidation of cyclooctene [J]. Chem Mater,2003,15:2174-2180.
    [24] KIM H, JUNG J C, PARK D R, et al. Immobilization of H3PMo12O40catalyst onthe nitrogen-containing mesoporous carbon and its application to thevapor-phase2-propanol conversion reaction [J]. Korean J Chem Eng,2008,25:231-235.
    [25] KIM H, KIM P, LEE K Y, et al. Preparation and characterization ofheteropolyacid/mesoporous carbon catalyst for the vapor-phase2-propanolconversion reaction [J]. Catal Today,2006,111:361-365.
    [26] GREGG S J, SING K S W. Adsorption, Surface Area and Porosity [M],2nd ed.;Academic Press: London,1982.
    [27] CARATI A, FERRARIS G, GUIDOTTI M. Preparation and characterisation ofmesoporous silica-alumina and silica-titania with a narrow pore sizedistribution [J]. Catal Today,2003,77:315-323.
    [28] WANG X G, LIN K S K, CHAN J C C, CHENG S. Direct synthesis andcatalytic applications of ordered large pore aminopropyl-functionalized SBA-15mesoporous materials [J]. J Phys Chem B,2005,109:1763-1769.
    [29] ZHANG L, LIU J, YANG J, et al. Direct synthesis of highly orderedamine-functionalized mesoporous ethane-silicas [J]. Microprous MesoporousMater,2008,109:172-183.
    [30] BAE J A, SONG K C, JEON J K, et al. Effect of pore structure ofamine-functionalized mesoporous silica-supported rhodium catalysts on1-octene hydroformylation [J]. Microporous Mesoporous Mater,2009,123:289-297.
    [31] JOVANOVSKI V, OREL B, JESE R, et al. Novel polysilsesquioxane I-/I3-inicelectrolyte for dye-sensitized photoelectrochemical Cells [J]. J Phys Chem B,2005,109:14387-14395.
    [32] ESSAYEM N, HOLMQVIST A, GAYRAUD P Y, et al. In Situ FTIR studies ofthe protonic sites of H3PW12O40and its acidic cesium salts MxH3-xPW12O40[J].J Catal,2001,197:273-280.
    [33] CAMPELO J M, JARABA M, LUNA D, et al. Effect of phosphate precursorand organic additives on the structural and catalytic properties of amorphousmesoporous AlPO4materials [J]. Chem Mater,2003,15:3352-3364.
    [34] DUNCAN D C, CHAMBERS R C, HECHT E, HILL C L. Mechanism anddynamics in the H3[PW12O40]-catalyzed selective epoxidation of terminalolefins by H2O2. Formation, reactivity, and stability of {PO4[WO(O2)2]4}3-[J]. JAm Chem Soc,1995,117:681-691.
    [35] THIEL W R, EPPINGER J. Molybdenum-catalyzed olefin epoxidation: Ligandeffects [J]. Chem Eur J,1997,3:696-705.
    [36] CHANDRA P, PANDHARE S L, UMBARKAR S B, et al. Mechanistic studieson the roles of the oxidant and hydrogen bonding in determining the selectivityin alkene oxidation in the presence of molybdenum catalysts [J]. Chem Eur J.2013,19:2030-2040.
    
    [37] SELVAM P, MOHAPATRA S K. Synthesis and characterization of divalentcobalt-substituted mesoporous aluminophosphate molecular sieves and theirapplication as novel heterogeneous catalysts for the oxidation of cycloalkanes[J]. J Catal,2005,233:276-287.
    [38] SELVAM P, MOHAPATRA S K. Thermally stable trivalent iron-substitutedhexagonal mesoporous aluminophosphate (FeHMA) molecular sieves:Synthesis, characterization, and catalytic properties [J] J Catal,2006,238:88-99.
    [39] SHRINGARPURE P, PATEL A. Cobalt (II) exchanged supported12-tungstophosphoric acid: Synthesis, characterization and non-solvent liquidphase aerobic oxidation of alkenes [J]. J Mol Catal A,2010,321:22-26.
    [40] JIMTAISONG A, LUCK R L. Synthesis and catalytic epoxidation activity withTBHP and H2O2of dioxo-, oxoperoxo-, and oxodiperoxo molybdenum(VI) andtungsten(VI) compounds containing monodentate or bidentate phosphine oxideligands: crystal structures of WCl2(O)2(OPMePh2)2,WCl2(O)(O2)(OPMePh2)2, MoCl2(O)2dppmO2.C4H10O, WCl2(O)2dppmO2,Mo(O)(O2)2dppmO2, and W(O)(O2)2dppmO2[J]. Inorg Chem,2006,45:10391-10402.
    [1] ASEFA T, MACLACHLAN M J, COOMBS N, OZIN G A. Periodic mesoporousorganosilicas with organic groups inside the channel walls [J]. Nature,1999,402:867-871.
    [2] INAGAKI S, GUAN S Y, OHSUNA T, TERASAKI O. An ordered mesoporousorganosilica hybrid material with a crystal-like wall structure [J]. Nature,2002,416:304-307.
    [3] HUNKS W J, OZIN G A. Challenges and advances in the chemistry of periodicmesoporous organosilicas (PMOs)[J]. J Mater Chem,2005,15:3716-3724.
    [4] HOFFMANN F, CORNELIUS M, MORELL J, FR BA M. Silica-basedmesoporous organic-inorganic hybrid materials [J]. Angew Chem Int Ed,2006,45:3216-3251.
    [5] FUJITA S, INAGAKI S. Self-organization of organosilica solids withmolecular-scale and mesoscale periodicities [J]. Chem Mater,2008,20:891-908.
    [6] HOFFMANN F, FR BA M. Vitalising porous inorganic silica networks withorganic functions-PMOs and related hybrid materials [J]. Chem Soc Rev,2011,40:608-620.
    [7] LEE B, IM H-J, LUO H M, et al. Synthesis and characterization of periodicmesoporous organosilicas as anion exchange resins for perrhenate adsorption [J].Langmuir,2005,21:5372-5376.
    [8] CAZIN C S J, VEITH M, BRAUNSTEIN P, BEDFORD R B. Versatile methodsfor the snthesis of Si(OR)3-functionalised imidazolium salts, Potential precursorsfor heterogeneous NHC catalysts and composite materials [J]. Synthesis,2005,4:622-626.
    [9] NGUYEN T P, HESEMANN P, GAVEAU P, MOREAU J J E. Periodicmesoporous organosilica containing ionic bis-aryl-imidazolium entities:Heterogeneous precursors for silica-hybrid-supported NHC complexes [J]. JMater Chem,2009,19:4164-4171.
    [10] NGUYEN T P, HESEMANN P, MOREAU J J E. i-Silica: Nanostructured silicahybrid materials containing imidazolium groups byhydrolysis-polycondensation of disilylated bis-N,N′-alkyl-imidazolium halides[J]. Microporous Mesoporous Mater,2011,142:292-300.
    [11] KARIMI B, ELHAMIFAR D, CLARK J H, HUNT A J. Ordered mesoporousorganosilica with ionic-liquid framework: An efficient and reusable support forthe palladium-catalyzed Suzuki-Miyaura coupling reaction in water [J]. ChemEur J,2010,16:8047-8053.
    [12] KARIMI B, GHOLINEJAD M, KHORASANI M. Highly efficientthree-component coupling reaction catalyzed by gold nanoparticles supportedon periodic mesoporous organosilica with ionic liquid framework [J]. ChemCommun,2012,48:8961-8963.
    [13] KARIMI B, ELHAMIFAR D, CLARK J H, HUNT A J. Palladium containingperiodic mesoporous organosilica with imidazolium framework (Pd@PMO-IL):an efficient and recyclable catalyst for the aerobic oxidation of alcohols [J]. OrgBiomol Chem,2011,9:7420-7426.
    [14] KARIMI B, ELHAMIFAR D, YARI O, et al. Synthesis and characterization ofalkyl-imidazolium-based periodic mesoporous organosilicas: A versatile hostfor the immobilization of perruthenate (RuO4-) in the aerobic oxidation ofalcohols [J]. Chem Eur J,2012,18:13520-13530.
    [15] WANG L, SHYLESH S, DEHE D, THIEL W R, et al. Covalent immobilizationof imidazolium cations inside a silica support: Palladium-catalyzed olefinhydrogenation [J]. ChemCatChem,2012,4:395-400.
    [16] ZHAO H H, ZENG L X, LI Y L, YU N Y, et al. Polyoxometalate-based ioniccomplexes immobilized in mesoporous silicas prepared via a one-pot procedure:Efficient and reusable catalysts for H2O2-mediated alcohol oxidations inaqueous media [J]. Microporous Mesoporous Mater,2013,172:67-76.
    [17] KARIMI Z, MAHJOUB A R, DAVARI AGHDAM F. SBA immobilizedphosphomolybdic acid: Efficient hybrid mesostructured heterogeneous catalysts[J]. Inorg Chim Acta,2009,362:3725-3730.
    [18] KARIMI Z, MAHJOUB A R, HARATI S M. Polyoxometalate-based hybridmesostructured catalysts for green epoxidation of olefins [J]. Inorg Chim Acta,2011,376:1-9.
    [19] LIU G, WANG Z L, JIA M J, et al. Thermally stable amorphous mesoporousaluminophosphates with controllable P/Al ratio: Synthesis, characterization,and catalytic performance for selective o-methylation of catechol [J]. J PhysChem B,2006,110:16953-16960.
    [20] JIA M J, SEIFERT A, THIEL W R. Mesoporous MCM-41materials modifiedwith oxodiperoxo molybdenum complexes: Efficient catalysts for theepoxidation of cyclooctene [J]. Chem Mater,2003,15:2174-2180.
    [21] KIM H, JUNG J C, PARK D R, et al. Immobilization of H3PMo12O40catalyst onthe nitrogen-containing mesoporous carbon and its application to thevapor-phase2-propanol conversion reaction [J]. Korean J Chem Eng,2008,25:231-235.
    [22] KIM H, KIM P, LEE K Y, et al. Preparation and characterization ofheteropolyacid/mesoporous carbon catalyst for the vapor-phase2-propanolconversion reaction [J]. Catal Today,2006,111:361-365.
    [23] GREGG S J, SING K S W. Adsorption, Surface Area and Porosity [M],2nd ed.;Academic Press: London,1982.
    [24] JIN Y, WANG P J, YIN D H, et al. Gold nanoparticles stabilized in a novelperiodic mesoporous organosilica of SBA-15for styrene epoxidation [J].Microporous Mesoporous Mater,2008,111:569-576.
    [25] BORDOLOI A, SAHOO S, LEFEBVRE F, HALLIGUDI S B. Heteropolyacid-based supported ionic liquid-phase catalyst for the selective oxidation ofalcohols [J]. J Catal,2008,259:232-239.
    [26] PATHAN S, PATEL A. Novel heterogeneous catalyst, supportedundecamolybdophosphate: synthesis, physico-chemical characterization andsolvent-free oxidation of styrene [J]. Dalton Trans,2011,40:348-355.
    [27] ABRANTES M, GAGO S, VALENTE A A, et al. Incorporation of a(cyclopentadienyl)molybdenum oxo complex in MCM-41and its use as acatalyst for olefin epoxidatio [J]. Eur J Inorg Chem,2004,2004:4914-4920.
    [28] ARMATAS G S, BILIS G, LOULOUDI M. Highly ordered mesoporouszirconia-polyoxometalate nanocomposite materials for catalytic oxidation ofalkenes [J]. J Mater Chem,2011,21:2997-3005.
    [29] BORDOLOI A, FEFEBVRE F, HALLIGUDI S B. Selective oxidation ofanthracene using inorganic-organic hybrid materials based onmolybdovanadophosphoric acids [J]. J Catal,2007,247:166-175.
    [30] JIA M J, SEIFERT A, BERGER M, et al. Hybrid mesoporous materials with auniform ligand distribution: Synthesis, characterization, and application inepoxidation catalysis [J]. Chem Mater,2004,16:877-882.
    [31] QI W, WANG Y Z, LI W, WU L X. Surfactant-encapsulated polyoxometalatesas immobilized supramolecular catalysts for highly efficient and selectiveoxidation reactions [J]. Chem Eur J,2010,16:1068-1078.
    [32] JIA M J, SEIFERT A, THIEL W R. Sol-gel synthesis of oxodiperoxomolybdenum-modified organic–inorganic materials for the catalyticepoxidation of cyclooctene [J]. J Catal,2004,221:319-324.
    [1] MONNIER J R. The direct epoxidation of higher olefins using molecular oxygen[J]. Appl Catal A,2001,221:73-91.
    [2] PIERA J, B CKVALL J E. Catalytic oxidation of organic substrates bymolecular oxygen and hydrogen peroxide by multistep electron transfer-Abiomimetic approach [J]. Angew Chem Int Ed Engl,2008,47:3506-3523.
    [3] TADA M, MURATSUGU S, KINOSHITA M, et al. Alternative selectiveoxidation pathways for aldehyde oxidation and alkene epoxidation on aSiO2-supported Ru-monomer complex catalyst [J]. J Am Chem Soc,2010,132:713-724.
    [4] MIZUNO N, KAMATA K, YAMAGUCHI K. Green oxidation reactions bypolyoxometalate-based catalysts: From molecular to solid catalysts [J]. TopCatal,2010,53:876-893.
    [5] SEBASTIAN J, JINKA K M, JASRA R V. Effect of alkali and alkaline earthmetal ions on the catalytic epoxidation of styrene with molecular oxygen usingcobalt(Ⅱ)-exchanged zeolite X [J]. J Catal,2006,244:208-218.
    [6] CUI H T, ZHANG Y, QIU Z G, et al. Synthesis and characterization ofcobalt-substituted SBA-15and its high activity in epoxidation of styrene withmolecular oxygen [J]. Appl Catal B,2010,101:45-53.
    [7] TYAGI B, SHAIK B, BAJAJ H C. Epoxidation of styrene with molecular O2over sulfated Y-ZrO2based solid catalysts [J]. Appl Catal A,2010,383:161-168.
    [8] TANG B, LU X H, ZHOU D, et al. Highly efficient epoxidation of styrene andα-pinene with air over Co2+-exchanged ZSM-5and Beta zeolites [J]. CatalCommun,2012,21:68-71.
    [9] CHIMENT O R J, KIRM I, MEDINA F, et al. Sensitivity of styrene oxidationreaction to the catalyst structure of silver nanoparticles [J]. Appl Surf Sci,2005,252:793-800.
    [10] WILLIAMS F J, BIRD D P C, SYKES E C H, et al. Molecular conformation ofstyrene on Ag (100): Relevance to an understanding of the catalytic epoxidationof terminal alkenes [J]. J Phys Chem B,2003,107:3824-3828.
    [11] TEBANDEKE E, COMAN C, GUILLOIS K, et al. Epoxidation of olefins withmolecular oxygen as the oxidant using gold catalysts supported onpolyoxometalates [J]. Green Chem,2014,16:1586-1593.
    [12]刘俊华,王芳,刘艳侠.改性VPO催化剂催化温和条件下苯乙烯液相选择性氧化[J].催化学报,2007,28:1003-1008.
    [13] ZSIGMOND á, HORVáTH A, NOTHEISZ F. Effect of substituents on theMn(Ⅲ)Salen catalyzed oxidation of styrene [J]. J Mol Catal A,2001,171:95-102.
    [14] HABER J, KLOSOWSKI M, POLTOWICZ J. Co-oxidation of styrene andiso-butyraldehyde in the presence of polyaniline-supported metalloporphyrins[J]. J Mol Catal A,2003,201:167-178.
    [15] YANG G, CHEN X, WANG X L, et al. Nickel(Ⅱ) complex anchored onMCM‐41for the epoxidation of styrene by oxygen [J]. Chin J Catal,2013,34:1326-1332.
    [16] SHARMA S, SINHA S, CHAND S. Polymer anchored catalysts for oxidationof styrene using TBHP and molecular oxygen [J]. Ind Eng Chem Res,2012,51:8806-8814.
    [17] SHRINGARPURE P A, PATEL A. Liquid phase oxidation of styrene overzirconia supported undecatungstophosphate using different oxidants: acomparative study [J]. Dalton Trans,2010,39:2615-2621.
    [18] SHRINGARPURE P, PATEL A. Cobalt (Ⅱ) exchanged supported12-tungstophosphoric acid: Synthesis, characterization and non-solvent liquidphase aerobic oxidation of alkenes [J]. J Mol Catal A,2010,321:22-26.
    [19] POPE M T, MüLLER A. Polyoxometalate chemistry: An old field with newdimensions in several disciplines [J]. Angew Chem Int Ed Engl,1991,30:34-38.
    [20] POPE M T. Heteropoly and isopoly oxometalates [M]. New York: SpringerVerlag,1983.
    [21]刘春光.过渡金属取代Keggin型多酸及类似化合物电子结构和非线性光学性质的理论研究[D].长春,东北师范大学化学学院,2010.
    [22] JOHNSON B J S, STEIN A. Surface modification of mesoporous, macroporous,and amorphous silica with catalytically active polyoxometalate clusters [J].Inorg Chem,2001,40:801-808.
    [23] MAKSIMCHUK N V, TIMOFEEVA M N, MELGUNOV M S, et al.Heterogeneous selective oxidation catalysts based on coordination polymerMIL-101and transition metal-substituted polyoxometalates [J]. J Catal,2008,257:315-323.
    [24] WEAKLEY T J R, MALIK S A. Heteropolyanions containing two differentheteroatoms-I [J]. J Inorg Nucl Chem,1967,29:2935-2944.
    [25] TOURNé C M, TOURNé G F. Triheteropolyanions containing copper(Ⅱ),manganese(Ⅱ), or manganese(Ⅲ)[J]. J Inorg Nucl Chem,1970,32:3875-3890.
    [26]秦笃捷,王国甲,李梅,吴越.第四周期过渡金属钥磷三元杂多化合物的合成及表征[J].无机化学学报,1992,8:124-129.
    [27] ALI T T, AL-THABAITI S A, ALYOUBI A O, MOKHTAR M. Coppersubstituted heteropolyacid catalysts for the selective dehydration of ethanol [J].J Alloys Compd,2010,496:553-559.
    [28] TSIGDINOS G A. Preparation and characterization of12-molybdophosphoricand12-molybdosilicic acids and their metal salts [J]. Ind Eng Chem Prod ResDevelop,1974,13:267-274.
    [29] CHOI J H, KIM J K, PARK D R, et al. Redox properties and oxidation catalysisof transition metal-substituted α-K5PW11O39(M·OH2)(M=MnⅡ, CoⅡ, NiⅡ, andZnⅡ) Keggin heteropolyacid catalysts for liquid-phase oxidation of2-propanol[J]. J Mol Catal A,2013,371:111-117.
    [30] KIM H, JUNG J C, PARK D R, et al. Immobilization of H3PMo12O40catalyst onthe nitrogen-containing mesoporous carbon and its application to thevapor-phase2-propanol conversion reaction [J]. Korean J Chem Eng,2008,25:231-235.
    [31] KIM H, KIM P, LEE K Y, et al. Preparation and characterization ofheteropolyacid/mesoporous carbon catalyst for the vapor-phase2-propanolconversion reaction [J]. Catal Today,2006,111:361-365.
    [32] KARIMI B, ELHAMIFAR D, CLARK J H, HUNT A J. Ordered mesoporousorganosilica with ionic-liquid framework: An efficient and reusable support forthe palladium-catalyzed Suzuki-Miyaura coupling reaction in water [J]. ChemEur J,2010,16:8047-8053.
    [33] JIN Y, WANG P J, YIN D H, et al. Gold nanoparticles stabilized in a novelperiodic mesoporous organosilica of SBA-15for styrene epoxidation [J].Microporous Mesoporous Mater,2008,111:569-576.
    [34] ZONNEVIJLLE F, TOURNé C M, TOURNé G F. Preparation andcharacterization of heteropolytungstates containing group3A elements [J].Inorg. Chem,1982,21:2742-2750.
    [35] PATHAN S, PATEL A. Transition-metal-substituted phosphomolybdates:Catalytic and kinetic study for liquid-phase oxidation of styrene [J]. Ind EngChem Res,2013,52:11913-11919.
    [36] PATHAN S, PATEL A. Keggin type mono Ni(Ⅱ)-substitutedphosphomolybdate: a sustainable, homogeneous and reusable catalyst forSuzuki-Miyaura cross-coupling [J]. Dalton Trans,2013,42:11600-11606.
    [37] ARMATAS G S, BILIS G, LOULOUDI M. Highly ordered mesoporouszirconia-polyoxometalate nanocomposite materials for catalytic oxidation ofalkenes [J]. J Mater Chem,2011,21:2997-3005.
    [38] PATHAN S, PATEL A. Solvent free clean selective oxidation of alcoholscatalyzed by mono transition metal (Co, Mn, Ni)-substitutedKeggin-phosphomolybdates using hydrogen peroxide [J]. Appl Catal A,2013,459:59-64.
    [39] BORDOLOI A, LEFEBVRE F, HALLIGUDI S B. Selective oxidation ofanthracene using inorganic-organic hybrid materials based onmolybdovanadophosphoric acids [J]. J Catal,2007,247:166-175.
    [40] YANG Y, ZHANG Y, HAO S J, et al. Heterogenization of functionalized Cu(Ⅱ)and VO(IV) Schiff base complexes by direct immobilization ontoamino-modified SBA-15: Styrene oxidation catalysts with enhanced reactivity[J]. Appl Catal A,2010,381:274-281.
    [41] SUN J, KAN Q B, LI Z F, et al. Different transition metal (Fe2+, Co2+, Ni2+, Cu2+or VO2+) Schiff complexes immobilized onto three dimensional mesoporoussilica KIT-6for the epoxidation of styrene [J]. RSC Adv,2014,4:2310-2317.
    [42] SHI Z Q, DONG Z P, SUN J, et al. Filled cobalt nanoparticles into carbonnanotubes as a rapid and high-efficiency catalyst for selective epoxidation ofstyrene with molecular oxygen [J]. Chem Eng J,2014,237:81-87.
    [43] JONES S D, NEAL L M, EVERETT M L, et al. Characterization ofZrO2-promoted Cu/ZnO/nano-Al2O3methanol steam reforming catalysts [J].Appl Surf Sci,2010,256:7345-7353.
    [44]杨英.含席夫碱或8-羟基喹啉金属配合物的有机-无机杂化材料的合成、表征及其环氧化催化性能研究[D].长春:吉林大学化学学院,2010.
    [45]卢玉坤.非经典金属-氧簇合物的合成、结构与性能[D].长春:吉林大学化学学院,2009.
    [46]邱江华,磷钼杂多化合物的制备及其催化柴油深度脱硫的研究[D].武汉,武汉科技大学化学工程与技术学院,2010.
    [47] ANGELESCU E, PAVEL O D, IONESCU R, et al. Transition metalcoordination polymers MeX2(4,4'bipyridine)(Me=Co, Ni, Cu; X=Cl-,CH3OCO-, acetylacetonate) selective catalysts for cyclohexene epoxidationwith molecular oxygen and isobutyraldehyde [J]. J Mol Catal A,2012,352:21-30.
    [48] MIZUNO N, WEINER H. Co-oxidative epoxidation of cyclohexene withmolecular oxygen, isobutyraldehyde reductant, and the polyoxoanion-supportedcatalyst precursor [(n-C4H9)4N]5Na3[(1,5-COD)Ir·P2W15Nb3O62]. Theimportance of key control experiments including omitting the catalyst andadding radical-chain initiators [J]. J Mol Catal A,1996,14:15-28.
    [49] WENTZEL B B, ALSTERS P L, FEITERS M C, NOLTE R J M. Mechanisticstudies on the mukaiyama epoxidation [J]. J Org Chem,2004,69:3453-3464.
    [50] NAM W, KIM H J, KIM S H, et al. Metal complex-catalyzed epoxidation ofolefins by dioxygen with co-oxidation of aldehydes. A mechanistic study [J].Inorg Chem,1996,35:1045-1049.
    [51] LI Z F, LIU L L, HU J, et al. Epoxidation of styrene with molecular oxygencatalyzed by a novel oxovanadium(IV) catalyst containing two different kindsof ligands [J]. Appl Organometal Chem,2012,26:252-257.
    [52] YANG Y, GUAN J Q, QIU P P, KAN Q B. Synthesis, characterization andcatalytic properties of heterogeneous iron(Ⅱ)tetradentate Schiff basecomplexes for the aerobic epoxidation of styrene [J].Transition Met Chem,2010,35:263-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700