万古霉素动态组合化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
万古霉素是一种糖肽抗菌素,是人类用来抵抗革兰氏阳性细菌感染的最后一道防线。万古霉素的抑菌机理之一是通过其七肽骨架与细菌细胞壁糖蛋白合成启动子——胞壁酰五肽的末端二肽片段D-Ala-D-Ala形成五个氢键来抑制细菌细胞壁的生长,从而导致细菌细胞凋亡。近年来,万古霉素的过度使用导致了耐药菌的出现,即细菌细胞壁合成启动子的末端由D-Ala-D-Ala突变成D-Ala-D-Lac。
     动态组合化学是一种新兴的组合化学技术,是通过物理与化学的动态变化、集合成与筛选为一体的组合化学研究方法。其特点是在物理非共价结合为驱动的条件下,进行动力学稳态化学反应,并将这种化学反应识别出来,进而发现分子间相互作用的内容和形式。基于固相筛选具有易分离、操作简便、适合于筛选大数量化合物等特点,本文建立了固载化探针筛选动态组合化学库的方法,并对N-去甲万古霉素亮氨酸的氨基进行动态修饰,以寻找与D-Ala-D-Ala结合能力更强的新万古霉素类似物,具体为:
     (一)以PEGA氨基树脂为载体,利用丁二酸酐将树脂上的反应官能团转化成羧基,采用叔丁酯保护策略以100%的效率逆向合成了C-端羧基裸露的PEGA-L-Lys(-Suc-D-Ala-D-Ala-OH)_2。采用高分辨魔角核磁共振(HR/MAS NMR)技术研究了PEGA-L-Lys(-Suc-D-Ala-D-Ala-OH)_2与N-去甲万古霉素之间的氢键作用。
     (二)基于席夫碱(schiff-base)反应的可逆性,以及N-去甲万古霉素亮氨酸氨基反应活性高于糖片段氨基的特点,构建了N-去甲万古霉素亮氨酸氨基的席夫碱动态组合化学库。通过探针PEGA-L-Lys(-Suc-D-Ala-D-Ala-OH)_2的结合驱动作用筛选到一个新的万古霉素类似物cyy202。HR/MAS NMR研究和紫外差谱结合常数测定结果表明,该化合物与D-Ala-D-Ala之间的氢键作用是N-去甲万古霉素的2倍。
     (三)为了与固载化探针筛选动态组合化学库策略进行对照,以游离的(Ac)_2-L-Lys-D-Ala-D-Ala-OH为探针,以N-去甲万古霉素为底物,本文构建并筛选了对应的液相动态组合化学库,发现了三种新化合物cyy202、cyy201及cyy209。结合常数测定结果表明后两者与探针的结合能力弱于N-去甲万古霉素。
     综上所述,可以得到如下创新性结论:
     1)固载化D-Ala-D-Ala二聚体PEGA-L-Lys(-Suc-D-Ala-D-Ala-OH)_2可以作为筛选N-去甲万古霉素动态组合化学库的探针。
     2)固载化探针分子策略可以用于研究小分子与中等分子之间的动态相互作用,实现筛选动态组合化学库的目的。
     3)固载化探针分子筛选策略的选择性高于液相筛选策略。
     此外,依据本实验室前期研究工作的积累,本文进一步合成了万古霉素新类似物的糖片断氨基的芴甲氧羰酰基(Fmoc)化衍生物,其生物活性正在测试中。
     最后,以(Ac)_2-L-Lys-D-Ala-D-Lac-OH为探针,以N-去甲万古霉素为底物初步筛选了其液相动态组合化学库,尚未发现潜在的活性化合物。该结果表明,寻找能够与D-Ala-D-Lac有强相互作用的万古霉素类似物难度更大,需要进一步扩大动态组合化学库的容量,以便增大发现能够与D-Ala-D-Lac有强相互作用的万古霉素类似物的机会。
Vancomycin is a glycopeptidic antibiotic enlisted as the last line of defense against methicilin-resistant Gram-positive infections. Vancomycin exerts its antibacterial action by binding to the terminal D-Ala-D-Ala fragment of the growing peptidoglycan biosynthetic precursor through an intricate network of five hydrogen bonds, thereby inhibiting cell wall growth and cross-linking. However, excessive usage of vancomycin has clinically mutanted the D-Ala-D-Ala of bacteria cell wall into the D-Ala-D-Lac which makes binding ability of vancomycin drop down 1000 times.
     Dynamic combinatorial chemistry (DCC) makes use of reversible bond-forming reactions to create thermodynamically controlled library. Upon addition of a target molecule or a probe, the molar fractions of individual library member are perturbed as a function of their affinity to that target or probe. Solid-phase screening with the merits of easy separation and operation is benefit from the potential screening of large number compounds and quick determination of the interesting molecular structures and the interactions between them. This thesis aimed to develop a highly throughput resin-bound probe screening method by using a dynamic library of N-demethylvanco -mycin to find vancomycin analogues with better binding ability to the D-Ala-D-Ala in the DCL of amino group of N-demethylvancomycin's leucin residue.
     1) Through the action of succinic anhydride the -NH_2 function of PEGA resin was converted into -COOH. The resin-bound probe PEGA-L-Lys(-Suc-D-Ala-D-Ala -OH)_2 then was obtained with 100% yield by t-butyl esters protective stratege of D-Alanine. The hydrogen-bound interactions between PEGA-L-Lys(-Suc-D-Ala-D-Ala-OH)_2 and N-demethylvancomycin were studied by high resolution magic angle spinning NMR (HR/MAS NMR).
     2) Through the screening actions of PEGA-L-Lys(-Suc-D-Ala-D-Ala-OH)_2 a novel of vancomycin analog has been identified which is stronger binding to D-Ala-D-Ala as two times as N-demethylvancomycin by the U.V. difference spectroscopy evaluation.
     3) In order to further validate and compare the solid-phase screening method, corresponding liquid-phase DCL was designed and screened in this thesis with free (Ac)_2-L-Lys-D-Ala-D-Ala-OH as probe. Same analog of vancomycin was also identified, however, with the lower selectivity.
     In summary, 1) PEGA-L-Lys(-Suc-D-Ala-D-Ala-OH)_2 is able to be used as probe to screening DCL of N-demethylvancomycine. 2) The resin-bound probe method is compatible with the study of the interactions between small molecules and middle molecules. 3) The solid-phase screening approach is more specific than liquid-phase method.
     Based on our previous results, the vancosamine Fmoc derivatives of the new vancomycin analogues were also synthesized. Their antibacterial activity against various vancomycin sensitive and resistant strains is under testing.
     Meaning while, screening the same vancomycin dynamic library by using free (Ac)_2-L-Lys-D-Ala-D-Lac-OH probe was also performed in this thesis. However, none of potential compounds was found. This result indicates that looking for the vancomycin analog with strong binding to D-Ala-D-Lac will be more difficult and lower chance. Increasing the library size could be necessary.
引文
1.Neu,H.C.The crisis in antibiotic resistance[J].Science,1992,257,1064-1073.
    2.Walsh,C.T.Molecular mechanisms that confer antibacterial drug resistance[J].Nature,2000,406,775-781.
    3.Dancer,R.J.;Try,A.C.;Sharman,G.J.;Williams,D.H.Binding ofa vancomycin group antibiotic to a cell wall analogue from vancomycin-resistant bacteria[J].Chem.Commun.,1996,1445-1446.
    4.Williams,D.H.;Maguire,A.J.;Tsuzuki,W.An anlaysis of the origins of a cooperative binding energy of dimerization[J].Science.1998,280,711-713.
    5.Bleicher,K.;Lin,M.;Shapiro,M.J.et al.Diffusion edited NMR:screening compound mixtures by affinity NMR to detect binding ligands to vancomycin [J].J.Org.Chem.,1998,63,8486-8490.
    6.Williams,D.H.;Kalman,J.R..Structure and mode of action studies on the antibiotic vancomycin.Evidence from 270-MHz proton magnetic resonance[J].J.Am.Chem.Soc.,1977,99,2768-2774.
    7.Barna,J.C.J.;Williams,D.H.The structure and mode of action of glycopeptides antibiotics of the vancomycin group[J].Ann.Rev.Microbi,1984,38,339-357.
    8.Williamson,M.P.;Williams,D.H.Structure revision of the antibiotic vancomycin,the use of Nuclear Overhauser effect difference spectroscopy[J].J.Am.Chem.Soc.1981,103,6580-6585.
    9.Sheldrick,G.M.;Jones,P.G.;Kennard,O.et al.Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine[J].Nature,1978,271,223-225.
    10.Williams,D.H.;Williamson,M.P.;Butcher,D.W.et al.Detailed binding sites of the antibiotics vancomycin and restocetin A:determination of intermolecular distances in antibiotic/substrate complexes by use of the time-dependent NOE [J].J.Am.Chem.Soc.,1983,105,1332-1339.
    11.Molinari,H.;Pastore,A.Structure of vancomycin and a vancomycin/D-Ala-D-Ala complex in solution[J].Biochemistry,1990,29,2271-2277.
    12.Pearce,C.M.;Gerhard,U.;Williams,D.H.Ligands which bind weakly to vancomycin:studies by ~(13)C NMR spectroscopy[J].J.Chem.Soc.Perkin.Trans.2,1995,159-162.
    13.Ge,M.;Chen Z.;Kahne,D.;et al.Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala[J].Science,1999,284,507-511.
    14.Christopher,W.Deconstructing vancomycin[J].Science,1999,284,42-443.
    15.Kerns,R.;Dong,S.D.;Kahne,D.The role of hydrophobic substituents in the biological activity of glycopeptides antibiotics[J].J.Am.Chem.Soc.,2000,122,12608-12609.
    16.Eggert,U.S.;Ruiz,N.;Kahne,D.et al.Genetic Basis for Activity Differences Between Vancomycin and Glycolipid Derivatives of Vancomycin[J].Science,2001.294,361-364.
    17.Niclaou,K.C.Target-accelerated combinatorial synthesis and discovery of highly potent antibiotics effective against vancomycin-resistant bacteria[J],Angew.Chem.Int.Ed.,2000,39,3823-3828.
    18.Jain,R.K.;Trias,J.;Ellman,J.A.D-Ala-D-Ala binding is not required for the high activity of vancomycin dimers against vancomycin resistant enterococci[J].J.Am.Chem.Soc.,2003,125,8740-8741.
    19.Crowley,B.M,Boger,D.L.Total synthesis and evaluation of[ψ[CH2NH]Tpg4]Vancomycin aglycon:reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding[J].J.Am.Chem.Soc,2006,128,2885-2892.
    20.Kerns,R.,Dong,S.D.;Kahne,D.The role of hydrophobic substituents in the biological activity of glycopeptide antibiotics[J].J.Am.Chem.Soc.2000,122,12608-12609.
    21.Yao N-H;Liu G.Solid-phase synthesis and antibacterial evaluations of N-demeth -ylvancomycin derivatives[J].Bioorg.Med.Chem.Lett.2005,15,2325-2329.
    22.Barbara,T.M.Cylindrical demagnetization fields and microprobe design in high-resolution NMR[J].J.Magn.Reson.Ser A.,1994,109,265-269.
    23.Fuks,L.F.Susceptibility,lineshape,and shimming in high-resolution NMR[J].J.Magn.Reson.1992,100,229-242.
    24.Lippens,G.;Warrass,R.;Wieruszeski,J-M.Rousselot-Paiolley,P..Resolution Magic Angle spinning NMR in combinatorial chemistry[J].Combinatorial Chemistry & High Throughput Screening 2001,4,333-351.
    25.Yao,N-Y;He,W-Y;Kit.S.L.et al.Solid-phase synthesis of O-glycosylated Fmoc protected amino acids and analysis by the High Resolution Magic Angle Spinning NMR(HR/MAS NMR).J.Comb.Chem.,2004,6,214-219.
    26.Dhalluin,C.;Boutillon,C.;Tartar,A.et al.Magic Angle Spinning Nuclear Magnetic Resonance in solid-phase peptide synthesis[J].J.Am.Chem.Soc.1997,119,10494-10500.
    27.Rousselot-Pailley,P.;Ede,N.J.;Lippens,G.Monitoring of solid-phase organic synthesis on macroscopic supporting by High-Resolution Magic Angel Spinning NMR[J].J.Comb.Chem.2001,3,559-563.
    28.Wehler,T H;Westman.J.Magic Angle Spinning NMR:A valuable tool for monitoring the progress of reactions in solid phase synthesis[J].Tetrahedron Lett.1996,37,4771-4774.
    29.Warrass.R.;Lippens,G.Quantitative monitoring of solid phase organic reaction by High-Resolution Magic Angle Spinning NMR spectroscopy[J].J.Org.Chem.2000,65,2946-2950.
    30.Sarkar,S.K.;Garigipati,R.S.;Adams,J.L.;Keifer P.A.An NMR method to identify nondestructively chemical compounds bound to a single solid-phase-synthesis bead for combinatorial chemistry applications[J].J.Am. Chem.Soc.1996,118,2305-2306.
    31.Furrer,J.;Piotto,M.;Bourdonneau,M.;Limal,D.et al.Evidence of secondary structure by High-Resolution Magic Angle Spinning NMR spectroscopy of a bioactive peptide bound to different solid support[J].J.Am.Chem.Soc.2001,123,4130-4138.
    32.Yao N-H,He W-Y,Liu G.Conformational studies of resin-bound vancomycin and the complex of vancomycin and Ac_2-L-Lys-D-Ala-D-Ala,Journal of Combinatorial Chemistry.2004,6,214-219.
    33.Lehn,J-M.;Eliseev,A.V.Dynamic combinatorial chemistry[J].Science.291,2331.
    34.Otto,S.;Furlan,R.L.E.;Sanders,J.K.M.Selection and amplification of hosts from dynamic combinatorial libraries of macrocyclic disulfides[J].Science.297,590.
    35.Huc,I.;Lehn,J-M.Virtual combinatorial libraries:Dynamic generation of molecular and supramolecular diversity by self-assembly[J].Proc.Natl.Acad.Sci.USA.1997,94,2106-2110.
    36.Rowan,S.J.;Cantrill,S.J.;Stoddart,J.F.Dynamic covalent chemistry[J].Angew Chem.Int.Ed.2002,41,898-952.
    37.Erlanson,D.A.;Braisted,A.C.;Wells,J.A.et al.Site-directed ligand discovery [J].Proc.Natl.Acad.Sci.USA.2000,97,9367-9372.
    38.Kubota,Y.;Sakamoto,S.;Fujita,M.et al.Guest-induced organization of an optimal receptor from a dynamic receptor library:Spectroscopic screening[J].Proc.Natl.Acad.Sci.USA.2002,99,4854-4856.
    39.Furlan,R.L.E.;Otto,S.;Sanders,J.K.M.Supramolecular templating in thermodynamically controlled synthesis[J].Proc.Natl.Acad.Sci.USA.2002,99,4801-4804.
    40.Lehn,J-M.Toward complex matter:Suoramolecular chemistry and selforganization [J].Proc.Natl.Acad.Sci.USA.2002,99,4763.
    41.Hochgt(u|¨)rtel,M.;Kroth,H.;Eliseev,A.V.Target-induced formation of neur -aminidase inhibitors from in vitro virtual combinatorial libraries[J].Proc.Natl. Acad.Sci.USA.2002,99,3382-3387.
    42.Cousins,G.R.L.;Poulsen,S.A.;Sanders,J.K.M.Molecular evolution:dynamic combinatorial libraries,autocatalytic networks and the quest for molecular function[J].Current Opinion in Chemical Biology.2000,4,270-279.
    43.Nitschke,J.R.;Lehn,J-M.Self-organization by selection:Generation of a metallosupramolecular grid architecture by selection of components in a dynamic library of ligands[J].Proc.Natl.Acad.Sci.USA.2003,100,11970-11974.
    44.Otto,S.;Furlan,R.L.E.;Sanders,J.K.M.Recent developments in dynamic combinatorial chemistry[J].Current Opinion in Chemical Biology.2002,6,321-327.
    45.Otto,S.;Furlan,R.L.E.;Sanders,J.K.M.Dynamic combinatorial chemistry[J].Drug Discovery Today.2002,7,117-125.
    1.Yao N-H,He W-Y,Liu G..Conformational studies of resin-bound vancomycin and the complex of vancomycin and Ac_2-L-Lys-D-Ala-D-Ala,Journal of Combinatorial Chemistry.2005,7,123-129.
    2.Johansson,A.;Akerblom,E.;Ersmark,K.et al.An improved procedure for N-to C-directed(inverse) solid-phase Peptide synthesis[J].J.Comb.Chem.2000,2,496-507.
    3.William G.G.;Xu Q.C.N-to-C solid-phase peptide and peptide trifluorom -ethylketone synthesis using amino acid tert-butyl esters[J].Chem.Pharm.Bull.2002,50,688-691.
    4. Ramakrishna, S.; William, G. G. General inverse solid-phase synthesis Method for C-terminally modified peptide mimetics [J]. J. Comb. Chem. 2004, 6, 911-915.
    
    5. Kwon, Y.; Kelly, W.; Alexander R.; Mitchell, J. A. C. Preparation of peptide p-Nitroanilides using an aryl hydrazine resin [J]. Organic letters. 2004, 6,3801-3804.
    
    6. Milne, H. B.; Most, C. F. Peptide synthesis via oxidation of N-acyl-a-amino acid phenylhydrazides. II. Benzyloxycarbonyl peptide phenylhydrazides [J]. Peptide synthesis. 1968,33,169-175.
    
    7. Stieber, F.; Grether, U.; Waldmann, H. An oxidation-labile traceless linker for solid-phase synthesis [J]. Angew. Chem. Int. Ed. 1999, 38, 1073-1077.
    
    8. Berst, R; Holmes, A. B.; Ladlow, M.; Murray, P. J. A latent aryl hydrazine 'safety-catch' linker compatible with N-alkylation [J]. Tetrahedron Letters. 2000,41,6649-6653.
    
    9. Peters, C; Waldmann, H. Solid-phase synthesis of peptide esters employing the hydrazide linker [J]. J. Org. Chem. 2003, 68, 6053-6055.
    
    10. Dancer, R. J.; Try, A. C; Sharman, G. J.; Williams, D. H. Binding of a vancomycin group antibiotic to a cell wall analogue from vancomycin-resistant bacteria[J]. Chem. Commun., 1996, 1445-1446.
    
    11. Williams, D. H; Maguire, A. J.; Tsuzuki, W. An anlaysis of the origins of a cooperative binding energy of dimerization [J]. Science. 1998, 280, 711-713.
    
    12. Searle M. S.; Sharman G. J.; Williams D. H. et al. Enthalpic (electrostatic) contribution to the chelate effect: a correlation between ligand binding constant and a specific hydrogen bond strength in complexes of glycopeptide antibiotics with cell wall analogues [J]. J. Chem. Soc, Perkin Trans, 1. 1996, 2781-2786.
    
    13. O'Brien, D. P.; Richard, M. H. E.; Matthew, A. C. et al. High affinity surface binding of a strongly dimerizing vancomycin-group antibiotic to a model of resistant bacteria [J]. J. Am. Chem. Soc. 1999, 121, 5259-5265.
    
    14. Kurz, M.; Guba, W.; Andreiniv, B. P. 3D structure of the complex of MDL 63,246 with the cell wall model peptide Ac_2-Lys-D-Ala-D-Ala [J]. J. Am. Chem. Soc.1996, 118,5874-5880.
    15. Williams, D. H.; Maguire, A. J.; Tsuzuki W. An analysis of the origins of a cooperative binding energy of dimerization[J]. Science. 1998, 280, 711-713.
    
    16. Williams, D. H.; Butcher, D. W. Binding site of the antibiotic vancomycin for a cell-wall peptide analogue [J]. J. Am. Chem. Soc. 1981, 103, 5697-5700.
    
    17. Groves, P.; Searle, M. S.; Williams, D. H. et al. Recognition of the cell-wall binding site of the vancomycin-group antibiotics by unnatural structural motifs:1H NMR studies of the effects of ligand binding on antibiotic dimerisation [J]. J.Chem. Soc. Perkin Trans, 1. 1994, 659-667
    
    18. Williamson, M. P.; Williams, D. H. ~1H N.M.R. studies of the structure of ristocetin A and of its complexes with bacterial cell wall analogues in aqueous solution [J]. J. Chem. Soc. Perkin Trans 1. 1985, 949-955.
    
    19. Waltho, J. P.; Williams, D. H. Intramolecular determination of conformation and mobility within the antibiotic vancomycin [J]. J. Am. Chem. Soc. 1988, 110,5638-5643.
    
    20. Kannan, R.; Harris, C. M.; Williams, D. H. et al. Function of the amino sugar and N-terminal amino acid of the antibiotic vancomycin in its complexation with cell wall peptides [J]. J. Am. Chem. Soc. 1988, 110, 2946-2953.
    
    21. Hawkes, G. E.; Molinari, H.; Singh, S. A ~(15)N NMR study of intermolecular interaction between vancomycin and Ac-D-Ala-D-Ala [J]. J. Magnetic.Resonace.1982,74, 188-192.
    
    22. Waltho, J. P.; Cavanagh, J.; Williams D. H. Aspects of molecular recognition: Use of a truncated driven pseudo-NOESY experiment to elucidate the environment of intermolecular electrostatic interactions in vancomycin [J]. J. Chem. Soc.Chem. Commun. 1988, 707-709.
    
    23. Kalman, J. R.; Williams, D. H. An NMR study of the interaction between the antibiotic ristocetin A and a cell wall peptide analogue. Negative Nuclear Overhauser Effects in the investigation of drug binding sites [J]. J. Am. Chem.Soc. 1980,906-912.
    
    24. Williams, D. H.; Kalman, J. R. Structural and mode of action studies on the antibiotic vancomycin. Evidence from 270-MHz proton magnetic resonance [J]. J. Am. Chem. Soc. 1977, 99, 2768-2774.
    
    25. Brown, J. P.; Feeney, J.; Burgen, A. S. V. A Nuclear Magnetic Resonance study of the interaction between vancomycin and Acetyl-D-alanyl-D-alanine in aqueous solution [J]. Molecular Pharmacology. 11, 119-125.
    
    26. Llinds, M.; Klein, M. P. Charge relay at the peptide bond. A proton magnetic resonance study of solventation effects on the amide electron density distribution [J]. J. Am. Chem. Soc. 1975, 97, 4731-4737.
    
    27. Andersen, N. H.; Neidigh, J. W.; Harris, S. M. et al. Extracting information from the temperature gradients of polypeptide NH chemical shifts. 1. The importance of conformational averaging [J]. J. Am. Chem. Soc. 1997, 119, 8547-8561.
    
    28 . Williams, D. H.; Jonathan, P. L. C.; Andrew J. D. et al. Toward the semiquantitative estimation of binding constants guides for peptide-peptide binding in aqueous solution [J]. J. Am. Chem. Soc. 1991, 113, 7020-7030.
    
    29. Williamson, M. P.; Williams, D. H.; Hammond, S. J. Interactions of vancomycin and ristocetin with peptides as a model for protein binding [J]. Tetrahedron.1984,40,559-577.
    
    30. Perkins, H. R. Specificity of combination between mucopeptide precursors and vancomycin or ristocetin [J]. Biochem. J. 1969, 111,195-205.
    
    31. Nieto, M.; Perkins, H. R. Physicochemical properties of vancomycin and iodovancomycin and their complexes with Diacetyl-L-Lysyl-D-alanyl-D-alanine [J]. Biochem. J. 1971, 123,773-787.
    
    32. Nieto, M.; Perkins, H. R. Modification of the Acyl-D-alanyl-D-alanine terminus affecting complex-formation with vancomycin [J]. Biochem. J. 1971, 123,789-803.
    
    33. Nieto, M.; Perkins, H. R. The specificity of combination between ristocetins and peptides related to bacterial cell wall mucopeptide precursors [J]. Biochem. J.1971, 124,845-852.
    
    34. Cristofaro, M. F.; Beauregard, D. A.; Yan, H. et al. Cooperativity between Non-polar and ionic forces in the binding of bacterial cell wall analogues by vancomycin in aqueous solution [J]. The Journal of antibiotics. 1995, 48, 805-810.
    35.Pieters,R.J.Synthesis and binding studies of carboxylate binding pocket analogs of vancomycin[J].Tetrahedron Letters.2000,41,7541-7545.
    36.Scatchard,G.The attractions of proteins for small molecules and ions[J].Ann.N.Y.Acad.Sci.1969,661-672.
    37.黄永华,沈昊宇,龙姝.氨基葡萄糖席夫碱金属配合物与DNA的作用[J].化学通报,2002,65,1-4.
    38.Yao N-H,Liu G.Solid-phase synthesis and antibacterial evaluations of N-demeth -ylvancomycin derivatives[J].Bioorg.Med.Chem.Lett.,2005,15,2325-2329.
    39.Ge M.;Chen Z.;Kahne D.et al.Vancomycin derivatives that inhibit peptide -glycan biosynthesis without binding D-Ala-D-Ala[J].Science,1999,284,507-511.
    40.Christopher,W.Deconstructing vancomycin[J].Science,1999,284,442-443.
    41.Kerns R.;Dong S.D.;Kahne D.The role of hydrophobic substituents in the biological activity of glycopeptides antibiotics[J].J.Am.Chem.Soc.,2000,122,12608-12609.
    42.Eggert U.S.;Ruiz N.;Kahne D.et al.Genetic Basis for Activity Differences Between Vancomycin and Glycolipid Derivatives of Vancomycin[J].Science,2001,294,361-364.
    1.Neu,H.C.The crisis in antibiotic resistance[J].Science,1992,257,1064-1073.
    2.Walsh,C.T.Molecular mechanisms that confer antibacterial drug resistance[J].Nature,2000,406,775-781.
    3.Williams,D.H.;Kalman,J.R.Structure and mode of action studies on the antibiotic vancomycin.Evidence from 270-MHz proton magnetic resonance[J].J.Am.Chem.Soc.,1977,99,2768-2774.
    4.Barna,J.C.J.;Williams,D.H.The structure and mode of action of glycopeptides antibiotics of the vancomycin group[J].Ann.Rev.Microbi,1984,38,339-357.
    5.Williamson,M.P.;Williams,D.H.Structure revision of the antibiotic vancomycin,the use of Nuclear Overhauser effect difference spectroscopy[J].J.Am.Chem.Soc.,1981,103,6580-6585.
    6. Sheldrick, G. M.; Jones, P. G; Kennard, O. et al. Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine [J]. Nature, 1978, 271, 223-225.
    
    7. Williams, D. H.; Williamson, M. P.; Butcher, D. W. et al. Detailed binding sites of the antibiotics vancomycin and restocetin A: determination of intermolecular distances in antibiotic/substrate complexes by use of the time-dependent NOE [J].J.Am. Chem. Soc, 1983, 105, 1332-1339.
    
    8. Molinari, H.; Pastore, A. Structure of vancomycin and a vancomycin/D-Ala-D-Ala complex in solution [J]. Biochemistry, 1990, 29, 2271-2277.
    
    9. Pearce, C. M.; Gerhard, U.; Williams, D. H. Ligands which bind weakly to vancomycin: studies by ~(13)C NMR spectroscopy [J]. J. Chem. Soc. Perkin. Trans.2, 1995, 159-162.
    
    10. Dancer, R. J.; Try, A. C; Sharman, G. J.; Williams, D. H. Binding of a vancomycin group antibiotic to a cell wall analogue from vancomycin-resistant bacteria[J]. Chem. Commun., 1996, 1445-1446.
    
    11 . Ge M; Chen, Z.; Kahne, D. et al. Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala [J]. Science, 1999, 284,507-511.
    
    12. Christopher, W. Deconstructing vancomycin [J]. Science, 1999, 284, 442-443.
    
    13. Kerns, R.; Dong, S. D.; Kahne, D. The role of hydrophobic substituents in the biological activity of glycopeptides antibiotics [J]. J. Am. Chem. Soc, 2000, 122,12608-12609.
    
    14. Eggert, U.S.; Ruiz, N.; Kahne, D. et al. Genetic Basis for Activity Differences Between Vancomycin and Glycolipid Derivatives of Vancomycin [J].Science,2001.294,361-364.
    
    15. Bleicher, K.; Lin, M.; Shapiro, M. J. et al. Diffusion edited NMR: screening compound mixtures by affinity NMR to detect binding ligands to vancomycin [J]. J. Org. Chem., 1998, 63, 8486-8490.
    
    16. Jeffrey, M.; Steven, L. C.; Boger, D. L. et al. Synthesis and evaluation of vancomycin and vancomycin aglycon analogues that bear modifications in the residue 3 asparagine [J]. Bioorganic & Medicinal Chemistry Letters, 2002, 12, 1319-1322.
    17.Kerns,R.;Dong,S.D.;Kahne,D.The role of hydrophobic substituents in the biological activity of glycopeptide antibiotics[J].J.Am.Chem.Soc.,2000,122,12608-12609.
    18.Fu X.;Albermann,C.;Thorson,J.S.et al.Diversifying vancomycin via chemoenzymatic strategies[J].Organic letters,2005,7,1513-1515.
    19.Yao N-H;Liu G.Solid-phase synthesis and antibacterial evaluations of N-demeth -ylvancomycin derivatives[J].Bioorg.Med.Chem.Lett.,2005,15,2325-2329.
    20.Mu Y-Q;Nodwell,M.;Judice,J.K.Vancomycin disulfide derivatives as antibacterial agents[J].Bioorganic & Medicinal chemicstry letters,2004,14,735-738.
    21.Niclaou,K.C.Target-accelerated combinatorial synthesis and discovery of highly potent antibiotics effective against vancomycin-resistant bacteria[J],Angew.Chem.Int.Ed.,2000,39,3823-3828.
    22.Jain,R.K.;.Trias,J.;Ellman,J.A.D-Ala-D-AIa binding is not required for the high activity of vancomycin dimers against vancomycin resistant enterococci[J].J.Am.Chem.Soc.,2003,125,8740-8741.
    23.Freund,E.;Robinson,J.A.Solid-phase synthesis of a putative heptapeptide inter -mediate in vancomycin biosynthesis[J].Chem.Commun.,1999,2509-2510.
    24.Brink,H.T.T;Rijkers,D.T.S.;Liskamp,R.M.J.Synthesis of alkyne-bridged cyclic tripeptides toward constrained mimics of vancomycin[J].J.Org.Chem.,2006,71,1817-1824.
    25.Crowley,B.M.;Boger,D.L.Total synthesis and evaluation of[ψ[CH2NH]Tpg4]Vancomycin aglycon:reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding[J].J.Am.Chem.Soc.,2006,128,2885-2892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700