无硫高抗氧化性膨胀石墨的制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨插层复合材料——膨胀石墨是用天然鳞片石墨与其它无机、有机物人工复合而成的一类新型功能材料,广泛应用于石油、化工、冶金、电力、机械、制药、汽车、航天、核能等领域。
    天然鳞片石墨为层状结构,由于层间作用力较弱,可插入一些物质,形成石墨层间化合物,制成一种新的复合材料。这种材料既保留了天然石墨的耐高温,耐腐蚀,耐辐射,导电性等优良性质,又具有天然石墨所没有的柔软性,回弹性,自粘性,不渗透性,吸附性和低密度等特性。
    由于以往国内生产的产品常用浓硫酸作插入物,在作密封材料时制品中含有的残余硫会腐蚀金属,影响密封效果。因此,人们尝试选用不同的插层剂,所合成的产品具有不同的特性。
    本文采用磷酸作为插层剂,硝酸、高锰酸钾做氧化剂合成石墨插层复合材料——膨胀石墨,讨论了其最佳合成工艺条件,并且与选用不同的无机物和有机物作为插层剂所制得的产品进行比较,测定了该系列产品的PH、灰分、抗氧化性、水溶液中的电导率、吸附性。
    合成膨胀石墨的工艺过程为:在鳞片石墨中加入浓硝酸和高锰酸钾(氧化剂),混合均匀后,加入插层剂,在一定温度下反应,洗涤至PH为5左右,100℃以下干燥,900℃膨化30S。
    氧化剂的作用是使鳞片石墨被氧化,这是生成层间化合物的第一步。氧化剂用量过小,碳原子被氧化得不够,层间化合物较少,膨胀容小;用量过大,灰分增加,产品质量下降。对于硝酸用量的选择,首先,硝酸在反应中起两方面的作用:一是在酸性条件下,提高氧化剂的氧化能力;二是作为插层物质进入石墨层间,然而硝酸的用量也不宜过大,过量会导致含水量增加,膨胀容下降。所以开始时,膨胀容随硝酸的加入量增大而增加,但是
    
    
    当硝酸过量到一定的程度时,膨胀容反而随硝酸的增加而降低。对于高锰酸钾用量的选择,开始时随着高锰酸钾加入量的增加,反应进行的越来越完全,直至达到最大,其后当再增加高锰酸钾的用量时,就会增加产品的灰分,从而影响到产品的质量。对于磷酸用量的选择,由于磷酸的用量过大会增大产品的灰分,所以在保证膨胀容较大的前提下,应尽量降低磷酸的用量。在不同的反应时间和温度下,反应时间越长,反应温度越高,反应越完全,膨胀容也就越大,但成本也越高。对于不同的膨化时间,膨化时间越长,插层剂的气化越充分,膨胀容积也越大,但时间过长,则会引起产品的氧化,导致产品质量降低。因此,综合考虑以上因素,用磷酸制备膨胀石墨的最佳工艺条件为:石墨(g),硝酸(ml),高锰酸钾(g),磷酸(ml)的用量比为1:2.4:0.06:0.3。反应温度为70℃,反应时间为1h,膨化时间为30s。
    通过测量产品的水溶液的电导率,可以初步确定其层间化合物的成分。可以看出,用硫酸做插层剂的产品在水溶液中电导率较高,可以推测NO3-、HSO4-作为插层离子进入层间,所以用硫酸合成的产品在水溶液中的电导能力较强,反应式为:
    n石墨 + nHNO3+ nH2SO4 + n/2[O] →
    [石墨 +·NO3-·HSO4-]n+n/2H2O
    以磷酸、磷酸酐做插层剂的产品电导率居中,这说明插层物质除NO3-外,磷酸是以分子形式进入了层间,所以用磷酸、磷酸酐做插层剂的产品在水溶液中的电导能力居中,反应式为:
    n石墨 + nHNO3+ nH3PO4+ n/2[O] →
    [石墨 +·NO3-·H3PO4]n+ n/2H2O
    以乙酸、乙酸酐做插层剂的产品电导率较低,说明插层物质除NO3-外,大部分插层物质是乙酸分子,因此用乙酸、乙酸酐合成的产品在水溶液中的电导能力较弱,反应式为:
    n石墨 + nHNO3 + nCH3COOH + n/2[O]
    →[石墨 +·NO3-·CH3COOH]n + n/2H2O
    由于插入层间的物质不同,导致了产品性质上的差别。层间
    
    
    化合物的化学通式[graphite+·NO3-·B],用硫酸插层,B代表硫酸氢根离子,这种层间化合物,高温膨化时,能放出二氧化硫和氮氧化合物,所以灰分比磷酸类层间化合物小,但含硫量高,腐蚀性强。用硝酸插层,成本低,但膨胀容小。用乙酸,乙酸酐作为插层剂,插入石墨层间的为乙酸分子和一少部分硝酸根离子,B代表乙酸分子,在高温膨胀时,能放出二氧化碳和一小部分氮氧化合物,因为有机物易挥发,因此灰分较小,纯度高,但膨胀容小。而以磷酸和磷酸酐制备时,B则代表磷酸分子,虽然灰分较大,但含硫量低,膨胀容大。由于各种材料性质不同,所以使用时应根据需要选择产品。
    对于系列产品的抗氧化性的实验,通过失重率随时间的变化和随温度的变化来进行比较。由于膨胀石墨比表面积大,在高温下的抗氧化性较天然石墨弱。用乙酸、乙酸酐作为插层剂,产品的抗氧化性较弱,用磷酸、磷酸酐插层的膨胀石墨抗氧化性要强于其它产品。
    膨胀石墨的结构疏松多孔,有较大的比表面积,一般可达50-200m2/g,孔径基本以中、大孔为主,因此易于吸附非极性有机大分子物质,特别是油类物质。通过对产品的吸附性的研究,膨胀石墨对有机油类大分子表现出优良的吸附能力,优于活性炭和棉花,而且是其它吸附产品无法比拟的。膨胀石墨具有低密度、轻质、高化学稳定性和无毒的特点,对比活性炭、棉花,其大孔结构及其独特的压延柔性,将使其成为一种新型的吸附材料,并会在化工、环保等领域具有非常广阔的应用前景。在环?
Graphite intercalation composite is a new kind of technology material which is prepared with different kinds of inorganic and organic compound and graphite. It is widely used in many fields such as petrochemical industry, metallurgical industry, electric utility industry, mechanical industry, pharmacy industry, auto industry, aerospace industry and nuke industry.
     Natural squama graphite has layer structure. It can be compounded into graphite intercalation compounds (GIC) after some materials are intercalated into layers because of the weak binder and be produced into a new kind of composite. This kind of material has not only the good properties of natural graphite such as high-temperature, corrosion and radiation resistance, electrical conductivity, but also the characters of flexibility, resilience, self-adhesion, impermeability, adsorption, low density which natural graphite has not.
    Because of H2SO4 as inset in the old process of expanded graphite, there are remainder sulfur in the product which corrupt metal and affect the result of sealing. Therefore, different kinds of insets had been tried, the product being compounded have different characters.
    Graphite intercalation composite ——expanded graphite is prepared with HNO3,KMnO4 as oxidant and H3PO4 as intercalation in this paper. The conditions of optimum synthetic processing are discussed, too. The production is compared with the other kinds of productions prepared with different inorganic and organic compound. This series of productions’ PH, ash content, anti-oxidation, conductivity of solution, adsorption are studied and compared.
    
    The craft process of preparing expanded graphite: HNO3, KMnO4 (oxidant) and inset are added into squama graphite, the mixture is puddle into mash. The materials are kept at certain temperature, washed to PH=5,and dried at maximum of 100℃.Finally, they are exfoliated at 900℃ for 30s.
    The function of oxidant is to make squama graphite oxygenated, which is the first step of the preparation of GIC. If the quantity of oxidant is too low, the carbon atom is less oxygenated and less GIC are compounded, so the expand volume of product is low; If the quantity of oxidant is too large, the ash content of the product would increase, the quality of the product would decrease. According to the option for HNO3 quantity, first, there are two function in the reaction about HNO3: 1, HNO3 prompt the oxidation ability of oxidant; 2, the quantity of HNO3 is not too large when HNO3 is intercalated into the layers, otherwise, the water content would increase and expand volume would decrease. So, at the beginning, the expand volume increase as the increase of HNO3 quantity, but the expand volume decrease as the increase of HNO3 quantity when the HNO3 quantity increase at certain limit. According to the option for KMnO4 quantity, at the beginning, the mixture react more completely as the increase of KMnO4 quantity, The ash content would increase and the quality would be effected when the KMnO4 quantity increase out of certain limit. According to the option for H3PO4 quantity, the ash content would increase if H3PO4 quantity is too large, so H3PO4 quantity is decreased to the least in order to keep expand volume relatively large. The mixture react more completely and the expand volume is larger when the reaction time and the reaction temperature increase, but the cost would much more. According to different exfoliation time, inset is more fully gasified and expand volume would be larger when the exfoliation time increase, the product will be oxygenated and the
    
    
    quality of the product would decrease if the exfoliation time is too long. Therefore, we take all these factors into account and get the best condition of preparing expanded graphite with H3PO4 is: graphite(g): HNO3(ml): KMnO4(g): H3PO4(ml)= 1:2.4:0.06:0.3.The reaction temperature is 70℃, the reaction time is 1 hour, The exfoliation time is 30s.
    According to the conductivity of solution of the products, the component of GIC would be presumed. The conductivity of soluti
引文
[1] 樊邦棠,一种新颖工程材料——膨胀石墨[J],化学通报,1987,(1):34-39
    [2] 李湘洲,新型碳材料——膨胀石墨[J],新型碳材料,1996,(3):38-41
    [3] 黎梅,高风格,一种新型的工程材料——膨胀石墨[J],化学教育,1999,(4):1-3
    [4] 黎梅,臧大乔,李冀辉,以重铬酸钾作氧化剂制备低硫可膨胀石墨[J],碳素,1997,(4):46-48
    [5] 王慎敏,周群,乔英杰,低硫可膨胀石墨制备新工艺[J],应用化学,2000,17(1):93-95
    [6] 宋克敏,路文义,武风林,等,制备低硫可膨胀石墨的研究[J],无机材料学报,1994,9(4):455-460
    [7] 宋克敏,路文义,高淑英,等,低硫可膨胀石墨的制备[J],应用化学,1995,12(1):94-95
    [8] 王慎敏,乔英杰,林茂青,柔性石墨的制备及降低硫含量方法的探讨[J],化工进展,2000,(5):40-42
    [9] 刘力,王昌惠,姚鼎文,双氧水-硫酸法低硫可膨胀石墨的研究[J],湖北化工,1995,(4):23-24
    [10] 伍文斌,徐子刚,吴清洲,低硫可膨胀石墨的制备[J],非金属矿,1999,22(5):8-9
    [11] Rudorff W,Hoffman U,Preparation of hydrogen sulfate graphite intercalation compounds [J],J. inorg. Chem.,1983,(1):238-240
    [12] B. Tryba , A. W. Morawski and K. Kaucki, Trace analyses of gaseous products formed during heat treatment of high stage H2SO4-GICs and expanded graphite, Journal of Physics and Chemistry of Solids, 2004, 65 (2) :165-169
    [13] 陈祖耀. 朱继平. 张增辉,可膨胀石墨的化学氧化法制备及其
    
    
    表征[J],中国科学技术大学学报,1998,28(2):205-210
    [14] 刘金鹏. 宋克敏,可膨胀石墨制备研究[J],功能材料,1998,29(6):659-661
    [15] 顾家琳. 刘虎. 张帆,可膨胀石墨中水分的作用[J],炭素,1998,(3):2-6
    [16] 张瑞军. 刘建华,化学法制备可膨胀石墨中KMnO4等氧化剂氧化特性的比较研究[J],炭素,1998,(3):39-42
    [17] 金为群,权新军,蒋引珊,无硫高抗氧化性可膨胀石墨制备[J ],非金属矿,2003,26 (3):25
    [18] 金为群,权新军,蒋引珊,用磷酸酐制备无硫可膨胀石墨研究[J ],非金属矿,2000,23 (1):18
    [19] 孟宪光,无硫高抗氧化膨胀石墨及制品的生产[J],非金属矿,1996,(3):22-24
    [20] 宋克敏,李国山,冯玉玲等,混酸法制备低硫可膨胀石墨[J],无机材料学报,1996,11(4):749-752
    [21] Chen Xiling,Song Kemin,Li Jihui,et al,Preparation of lower-sulfur content and expandable graphite[J],Carbon,1996, 34(12):599-1603
    [22] 宋克敏,陈希陵,路文义等,以乙酸为反应介质制备低硫可膨胀石墨[J],无机材料学报,1995,10(4):478-482
    [23] 李冀辉,黎梅,扈海英等,制备低硫可膨胀石墨的新方法[J],新型碳材料,1999,14(1):65-68
    [24] 杨丽华,翟彤宇,冯硕等,以浓硝酸为插入剂制备无硫可膨胀石墨[J],河北农业大学学报,2000,23(3):107-108
    [25] 宋克敏,刘金鹏,敦惠娟,混酸法制备无硫可膨胀石墨的研究[J],无机材料学报,1997,12(4):632-636
    [26] 宋克敏,翟彤宇,杨丽华,无硫可膨胀石墨的制备[J],河北农业大学学报,1999,22(1):93-95
    [27] 路文义,高淑英,宋克敏,用高锰酸钾作氧化剂制备可膨胀石墨[J ],河北化工,1995,(3):26-28
    
    [28] 宋克敏,刘金鹏,靳通收,制备无硫可膨胀石墨的研究[J ],无机材料学报,1997,12 (2) :252-255
    [29] 冯硕. 杨丽华. 翟彤宇,以甲酸为插入剂制备无硫可膨胀石墨[J],河北农业大学学报,2002,25(2):111-113
    [30] Robert Letc. Au[P].Pat8062—1979
    [31] Robert Letc. Au[P].Pat9669—1979
    [32] Yasumi Kaminoetc[P].Jap.Pat61—16993
    [33] 任京成,沈万慈,杨赞中等,柔性石墨材料和膨胀石墨材料的现状及发展趋势[J],非金属矿,1999,22(5):5-9
    [34] Wenge Zheng and Shing-Chung Wong, Electrical conductivity and dielectric properties of PMMA/expanded graphite composites, Composites Science and Technology, 2003,63(2):225-235
    [35] Ana Rodríguez Sánchez, Hans-Peter Klein and Manfred Groll, Expanded graphite as heat transfer matrix in metal hydride beds, International Journal of Hydrogen Energy, 2003, 28(5): 515-527
    [36] X. Py, E. Daguerre and D. Menard, Composites of expanded natural graphite and in situ prepared activated carbons, Carbon, 2002,40 (8): 1255-1265
    [37] A. Celzard, M. Krzesiska, D. Bégin, Preparation, electrical and elastic properties of new anisotropic expanded graphite-based composites, Carbon, 2002, 40( 4) : 557-566
    [38] J. F. Marêché, D. Bégin, G. Furdin, Monolithic activated carbons from resin impregnated expanded graphite, Carbon, 2001,39(5): 771-773
    [39] Jong Hun Han and Kun-Hong Lee, Gas permeability of expanded graphite–metallic salt composite ,Applied Thermal Engineering, 2001.21(4):453-463
    [40] 田金星,杨华,柔性石墨功能材料的应用研究[J],矿产保护与利用,1999,(5):14-17
    [41] 贺福,石墨与膨胀石墨[J],新型碳材料,1996,(4):12-17
    
    [42] 陈国义,高碳石墨提纯工艺[J],实用技术市场,1989,(4):8-10
    [43] 罗佑初,酸法生产高碳石墨的试验研究[J],非金属矿,1994,(2):17-22
    [44] 马永明等,用稀酸和氟化物两步处理脱除石墨中的矿物质[J],燃料化学学报,1996,(5):464-468
    [45] 李继业等,用氯化焙烧法生产高碳石墨的研究[J],中国矿业,1996,25(3):45-48
    [46] 张瑞军,刘建华,沈万慈,石墨层间化合物阶结构的标定方法[J],炭素,1998,(2):5-8
    [47] 传秀云,石墨层间化合物GICs的形成机理探讨[J],新型碳材料,2000,15(1):52-56
    [48] M. S. Dresselhaus,G. Dresslhaus,Intercalation compounds of graphite[J],Advanced in Physics,1981,30(2):139-326
    [49] X. Chuan, D. Chen and X. Zhou , Intercalation of CuCl2 into expanded graphite, Carbon, 1997, 35( 2): 311-313
    [50] F. Kang,Y. Leng,T. Y. Zhang,Electrochemical synthesis and characterization of formic-graphite intercalation compound[J], Carbon,1997,35(8):1089-1096
    [51] 罗佑初,柔性石墨生产工艺浅探[J],非金属矿,1993,(2):56-59
    [52] 国家标准GB10698-89《可膨胀石墨》
    [53] 顾家林,曹文泉,沈万慈等,柔性石墨的孔结构对其压缩回弹性能的影响[J],炭素,1996,(3):1-6
    [54] 刘志雄,沈万慈,刘英杰等,膨胀石墨孔结构参数影响因素分析[J],新型碳材料,1996,111(3):33-37
    [55] 曹乃珍,沈万慈,温诗铸等,膨胀石墨表面性能研究[J],化学通报,1996,(4):37-41
    [56] 魏环,宋庆功,石墨插层化合物的结构与特性[J],河北理工学院学报,1999,21(4):67-72
    
    [57] 曹乃珍. 沈万慈. 温诗铸,膨胀石墨孔结构的影响因素[J],材料科学与工程,1996,14(4):22-26
    [58] 曹乃珍. 沈万慈. 温诗铸,膨胀石墨的微观孔结构分析[J],炭素技术,1996,(1):1-6
    [59] 周伟. 董建. 兆恒,膨胀石墨结构的研究[J],炭素技术,2000,(4):26-30
    [60] 连锦明. 童庆松. 陈前火,膨胀石墨形成过程电子显微研究[J],电子显微学报, 2002,21(5):747-748
    [61] 王海宁. 郑永平. 康飞宇,膨胀石墨孔结构的定量研究[J],无机材料学报,2003,18(3):606-612
    [62] 曹乃珍. 沈万慈. 温诗铸,膨胀石墨制备及微孔结构相关性研究[J],材料科学与工艺,1997,5(2):121-123
    [63] Marta Krzesiska and Andrzej I. Lachowski, Elastic properties of monolithic porous blocks of compressed expanded graphite related to their specific surface area and pore diameter, Materials Chemistry and Physics, 2004 ,86(1): 105-111
    [64] F.Suárez-García, A.Martínez-Alonso, J.M.D.Tascón, Characterization of porous texture in composite adsorbents based on exfoliated graphite and polyfurfuryl alcohol, Fuel Processing Technology, 2002, 77-78 : 401-407
    [65] A. Celzard, S. Schneider and J. F. Marêché,Densification of expanded graphite,Carbon, 2002,40(12):2185-2191
    [66] A. Celzard, J. F. Marêché and G. Furdin, Surface area of compressed expanded graphite, Carbon, 2002. 40(14): 2713-2718
    [67] 初茉,李华民,任守政,膨胀石墨与活性炭对煤焦油吸附性的对比研究[J],中国矿业大学学报(自然科学版),2001,30(3):307-310
    [68] 徐子刚,吴清洲,伍文斌, 膨胀石墨对柴油吸附程度的分析[J ],非金属矿,2000,23 (4):33-34
    [69] 周伟,兆恒,胡小芳等, 膨胀石墨吸油行为及机理的研究[J ],
    
    
    水处理技术,2001,27 (6):335-337
    [70] 初茉. 任守政. 李华民,利用膨胀石墨处理焦化废水的研究[J],煤炭加工与综合利用,1999,(5):19-20
    [71] 曹乃珍. 沈万慈. 温诗铸,膨胀石墨吸附材料在环境保护中的应用[J],环境工程,1996,14 (3):27-30
    [72] 沈万慈. 曹乃珍. 温诗铸,膨胀石墨对有机化合物的吸附[J],炭素技术,1996,(3):1-5
    [73] 沈万慈. 曹乃珍. 李晓峰,膨胀石墨的表观密度、孔隙率和吸附吸收特性[J],炭素技术,1996,(5):11-13
    [74] 曹乃珍. 沈万慈. 温诗铸,膨胀石墨对油亲和吸附分析[J],化学研究与应用,1997,9(1):54-56
    [75] 任京成. 董风之. 沈万慈,膨胀石墨用于溢油污染治理[J],矿产综合利用,2001,(2):35-37
    [76] 兆恒. 周伟. 曹乃珍,膨胀石墨的孔隙结构及其在液相吸附吸着时的变化[J],材料科学与工程,2002,20(2):153-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700