小溪自然保护区非盐环境土壤嗜盐和耐盐菌多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从湖南小溪国家级自然保护区采集普通非盐环境(ordinary non-saline environment)土壤样品,用纯培养法(culture-dependent method)分离其中的嗜盐和耐盐原核生物,进而采用基于16S rRNA基因序列的系统发育分析(phylogenetic analysis)方法研究这些分离菌株的多样性,并对分离菌株进行抗菌活性筛选,以及对部分代表潜在新分类单元(potential new taxa)的菌株进行系统分类学(systematic taxonomy)研究,以期初步了解小溪自然保护区非盐土壤(non-saline soil)样品中的可培养嗜盐和耐盐细菌多样性,并从中发现一批具有开发潜力的抗菌物质产生菌株,以及利用多相分类方法(polyphasic taxonomic approach)确定部分潜在新类群的分类地位,为深入开展普通非盐环境中的嗜盐和耐盐原核生物资源的研究、保护及开发利用奠定基础。
     用补充5~20%(w/v)NaCl的MA、ISP 2、ISP 5、NA和HAA培养基从湖南小溪国家级自然保护区非盐环境土壤样品中分离到114株细菌(含放线菌)菌株,其中18株为中度嗜盐菌,8株为轻度嗜盐菌,88株为耐盐菌。根据形态观察和部分生理生化实验结果去冗余,选取61个代表性菌株进行基于16S rRNA基因序列的系统发育多样性分析。结果表明,这些分离菌株属于3个大的系统发育类群(门; phylum)(Actinobacteria, Firmicutes, Proteobacteria)的16个科(Alteromonadaceae, Bacillaceae, Brevibacteriaceae, Chromatiaceae, Dermabacteraceae, Enterobacteriaceae, Microbacteriaceae, Micrococcaceae, Nocardiaceae, Planococcaceae, Pseudomonadaceae, Sphingomonadaceae, Staphylococcaceae, Streptomycetaceae, Thermomonosporaceae, Yaniellaceae)、18个属(Actinomadura, Arthrobacter, Bacillus, Brachybacterium, Brevibacterium, Erwinia, Halobacillus, Jeotgalibacillus, Microbacterium, Microbulbifer, Nocardia, Pseudomonas, Rheinheimera, Rhodococcus, Sphingomonas, Staphylococcus, Streptomyces, Yaniella),代表了41个物种。多数菌株属于Firmicutes门(38株,62.3%),其中芽孢杆菌科(Bacillaceae)菌株有33株(54.1%),为优势科,Bacillus属(29株;47.5%)为优势属;其次是Actinobacteria门(18株,29.5%)和Proteobacteria门(5株,8.2%)。Shannon-winner多样性指数(H)为3.4968,均匀度指数(E)为0.9416,表明湖南小溪国家级自然保护区普通非盐环境土壤中可培养嗜盐及耐盐菌具有较高的物种多样性和均匀度。大多数菌株与其系统发育关系最密切的已知物种的典型菌株之间存在一定的遗传差异(16S rRNA基因序列相似性为96.9%~99.8%),其中有7个菌株(JSM 070026, JSM 081004, JSM 081006, JSM 081008, JSM 083058, JSM 083085和JSM 084035)代表7个潜在新种(potential novel species)。
     以8个敏感菌株(3株革兰氏阳性菌、3株革兰氏阴性菌和2株真菌)作为指示菌,采用管碟法对分离菌株进行抗菌活性筛选,并对抗菌活性较强的菌株进行了基于16S rRNA基因序列的系统发育分析和生物学特性研究。结果显示,114个受试菌株中有74株的发酵产物具有抗菌活性,阳性率为64.9%,其中9个菌株的发酵产物抗菌活性较强、抗菌谱较广。综合分析形态特征、生理生化特征和基于16S rRNA基因序列的系统发育分析数据,结果表明,9株具有较强抗菌活性的菌株分别属于Bacillus属(JSM 081049, JSM 082021-1, JSM 082056, JSM 082080, JSM 082081-1, JSM 082097)、Arthrobacter属(JSM 082018)、Brachybacterium属(JSM 082044)和Streptomyces属(JSM 082030)。
     运用多相分类方法对部分潜在新分类单元进行了系统分类学研究。综合分析表型特征、化学分类特征、系统发育分析结果和DNA-DNA杂交数据,确立了4个分离菌株的分类地位,即菌株JSM 070026、JSM 081004、JSM 081008和JSM 083058已经被确定分别代表了4个属的4个新种,分别被命名为土壤阎氏菌(Yaniella soli),小溪芽孢杆菌(Bacillus xiaoxiensis),土壤泡菜芽孢杆菌(Jeotgalibacillus soli),湖南鞘胺醇单胞菌(Sphingomonas hunanensis)。
     本研究结果表明,湖南小溪国家级自然保护区普通非盐环境土壤中存在较为丰富的嗜盐及耐盐菌多样性,并且潜藏着较多新的微生物类群(物种),且具有较高比例菌株能产生抗菌活性物质,是一类极有开发利用价值的微生物资源。
To investigate the diversity of culturable halophilic and halotolerant bacteria isolated from ordinary non-saline soil samples collected from Xiaoxi National Natural Reserve (28°42′15′′~28°53′15′′N, 110°6′50′′~110°21′35′′E), Hunan Province, PR China, bacteria were isolated from the samples by using the conventional culture-dependent method and were then investigated by using phylogenetic analysis based on 16S rRNA gene sequence comparisons. Then the antibacterial activities of the fermentation broth extracts from the isolates were detected on eight sensitive microorganisms in order to find some isolates exhibiting strong bioactivity. Finally, some potential new taxa were investigated using the polyphasic taxonomic approach to establish their precise taxonomic positions, and thereby the new taxa would be formally descripted and validly published, which would be helpful in the conservation and utilization of these microbial resources.
     We isolated 114 bacterium strains (8 moderately halophilic bacteria, 19 slight halophilic bacteria, 87 halotolerant bacteria) from the samples on media (marine agar 2216, International Streotomyces Project medium 2 and 5, nutrient agar and humic acid agar) supplemented with 5~20% (w/v) NaCl. On the basis of some morphological, physiological and biochemical characteristics, we selected 61 strains to perform a phylogenetic analysis based on 16S rRNA gene sequences. Our results showed that 61 isolates represented 41 species, belonging to 18 genera (Actinomadura, Arthrobacter, Bacillus, Brachybacterium, Brevibacterium, Erwinia, Halobacillus, Jeotgalibacillus, Microbacterium, Microbulbifer, Nocardia, Pseudomonas, Rheinheimera, Rhodococcus, Sphingomonas, Staphylococcus, Streptomyces, Yaniella) of 16 families (Alteromonadaceae, Bacillaceae, Brevibacteriaceae, Chromatiaceae, Dermabacteraceae, Enterobacteriaceae, Microbacteriaceae, Micrococcaceae, Nocardiaceae, Planococcaceae, Pseudomonadaceae, Sphingomonadaceae, Staphylococcaceae, Streptomycetaceae, Thermomonosporaceae, Yaniellaceae) in three phyla (Actinobacteria, Firmicutes, Proteobacteria). The most abundant and diverse isolates were within the phylum Firmicutes (38 strains, 62.3%) and the phylum Actinobacteria (18 strains, 29.5%).Shannon-winner diversity index (H) was 3.4968,Pielou evenness index (E) was 0.9416。The phylogenetic distance matrix results suggested that there were obvious genetic divergences between most isolates and their closestly related type strains (16S rRNA gene sequence similarities ranged from 96.9% to 99.8%), and that, out of 61 isolates, at least 7 strains (JSM 070026, JSM 081004, JSM 081006, JSM 081008, JSM 083058, JSM 083085, JSM 084035) should represent 7 potential novel species within 6 characterized genera (Yaniella, Bacillus, Jeotgalibacillus, Sphingomonas, Rheinheimera, Microbulbifer).
     The antimicrobial activity of the fermentation brothes of all 114 isolates, was screened using the cylinder-plate method on 8 indicator microorganisms, i.e. three Gram-positive bacteria (Bacillus subtilis, Sarcina lutea, Staphylococcus aureus), three Gram-negative bacteria (Aerobacter aerogenes, Escherichia coli, Proteus vulgaris) and two fungi (Asperillus niger, Candida albican). The results showed that, out of 114 strains tested, 74 were positive in antimicrobial activity (64.9%), in which 9 strains exhibited strong antimicrobial activity. These 9 strains were submitted for 16S rRNA gene amplification and phylogenetic analysis after phenotypic characterization including morphological, biochemical and physiological tests. The results suggested that the 9 strains were within the phyla Actinobacteria and Firmicutes, belong to the genera Bacillus (JSM 081049, JSM 082021-1, JSM 082056, JSM 082080, JSM 082081-1, JSM 082097), Arthrobacter (JSM 082018), Brachybacterium (JSM 082044) and Streptomyces (JSM 082030).
     On the basis of the phylogenetic analysis, phenotypic distinctiveness, chemotaxonomic data and DNA-DNA relatedness, 4 strains were proposed to represent 4 novel species within 4 characterized genera., i.e. Yaniella soli sp. nov., with JSM 070026T (= DSM 22211T = KCTC 13527T) as the type strain; Bacillus xiaoxiensis sp. nov., with JSM 081004T (= CCTCC AA 208057T = DSM 21943T) as the type strain; Jeotgalibacillus soli sp. nov., with JSM 081008T (= DSM 22174T = KCTC 13528T) as the type strain; Sphingomonas hunanensis sp. nov., with JSM 083058T(= CCTCC AA 209011T = DSM 22213T) as the type strain. The articles describing these new taxa have been published or inpressed in international journals, i.e. IJSEM (International Journal of Systematic and Evolutionary Microbiology) and Antonie van Leeuwenhoek (Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology).
     In conclusion, the results presented above show that there are abundant bacterial diversity and a number of potential new taxa in the ordinary non-saline soil collected from Xiaoxi National Natural Reserve, Hunan Province, and that strains isolated there are important resources for bioactive compounds.
引文
[1] Rodriguez-Valera F. Introduction to saline environments. The Biology of Halophilic Bacteria, 1993: 1-15.
    [2] Kaurichev IS, Panov NP, Stratonovich MV, et al. Prácticas de edafología. Editorial Mir, Moscú, 1984: 279-288.
    [3] Deckker P. Australian salt lakes: their history, chemistry, and biota―a review. Hydrobiologia, 1983, 105(1): 231-244.
    [4] Horikoshi Ko, Grant WD. Extremophiles : microbial life in extreme environments. New York: Wiley-Liss, 1998.
    [5] Trüper HG, Galinski EA. Concentrated brines as habitats for microorganisms. Cellular and Molecular Life Sciences, 1986, 42(11): 1182-1187.
    [6]陈义光,李汇明,李沁元,等.一平浪盐矿古老岩盐沉积中可培养细菌的系统发育多样性研究.微生物学报, 2007, 47(4): 571-577.
    [7]肖炜,杨亚玲,刘宏伟,等.昆明盐矿古老岩盐沉积中可培养细菌多样性研究.微生物学报, 2006, 46(6): 967-972.
    [8]许木启,曹宏.青藏高原柴达木盆地尕海盐湖浮游生物群落多样性特征的初步研究.生物多样性, 2002, 10(1): 38-43.
    [9]叶央芳,严小军,黄晓春,等.青海盐湖嗜盐微生物类群及F16菌株生长特性和抗菌,抗肿瘤活性.应用生态学报, 2006, 17(10): 1996-1998.
    [10]蔡艳,薛泉宏,陈占全,等.青海湖水及湖滨盐化土壤放线菌的分类及耐盐性.微生物学杂志, 2005, 25(4): 100-101.
    [11] Chen YG, Cui XL, Zhang YQ, et al. Salinimicrobium terrae sp. nov., isolated from saline soil, and emended description of the genus Salinimicrobium. Int J Syst Evol Microbiol, 2008, 58(11): 2501-2504.
    [12] Chen YG, Liu ZX, Peng DJ, et al. Virgibacillus litoralis sp. nov., a moderately halophilic bacterium isolated from saline soil. Antonie Van Leeuwenhoek, 2009, 96(3): 323-329.
    [13] Yoon JH, Kang KH, Park YH. Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. Int J Syst Evol Microbiol, 2002, 52(6): 2043-2048.
    [14] Larsen H. Halophilism. The bacteria, 1962, 4: 297-342.
    [15] Kushner DJ. Growth and nutrition of halophilic bacteria. The Biology of Halophilic Bacteria, 1993: 87-103.
    [16] Kushner DJ. Life in high salt and solute concentrations: halophilic bacteria. Microbial life in extreme environments, 1978: 318-346.
    [17] Ventosa A, Nieto JJ, Oren A. Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev, 1998, 62(2): 504-544.
    [18] Post F. The microbial ecology of the Great Salt Lake. Microbial Ecology, 1977, 3(2): 143-165.
    [19] Nissen H, Dundas I. Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portuguese saltern. Archives of Microbiology, 1984, 138(3): 251-256.
    [20] Adams R, Bygraves J, Kogut M, et al. The role of osmotic effects in haloadaptation of Vibrio costicola. Microbiology, 1987, 133(7): 1861-1870.
    [21] Quesada E, Bejar V, Valderrama MJ, et al. Growth characteristics and saltrequirement of Deleya halophila in a defined medium. Current Microbiology, 1987, 16(1): 21-25.
    [22] Onishi H, Kobayashi T, Morita N, et al. Effect of salt concentration on the cadmium tolerance of a moderately halophilic cadmium tolerant Pseudomonas sp. Agricultural and Biological Chemistry, 1984, 48(10): 2441-2448.
    [23] Tang SK, Li WJ, Dong W, et al. Studies of the biological characteristics of some halophilic and halotolerant actinomycetes isolated from saline and alkaline soils. Actinomycetol, 2003, 17(1): 6-10.
    [24] Li WJ, Schumann P, Zhang YQ, et al. Proposal of Yaniaceae fam. nov. and Yania flava sp. nov. and emended description of the genus Yania. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(5): 1933-1938.
    [25] Vreeland RH, Hochstein LI. The Biology of halophilic bacteria. Boca Raton, Fla.: CRC Press, 1993.
    [26] Ventosa A. Halophilic microorganisms. Berlin; New York: Springer, 2004.
    [27] Ventosa A. Taxonomy of moderately halophilic heterotrophic eubacteria. Halophilic bacteria, 1988, 1: 71-84.
    [28] Oren A. Halophilic microorganisms and their environments. Dordrecht: Kluwer Academic Publishers, 2002.
    [29] McGenity TJ, Gemmell RT, Grant WD, et al. Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol, 2000, 2(3): 243-250.
    [30] Stan-Lotter H, Pfaffenhuemer M, Legat A, et al. Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol, 2002, 52(5): 1807-1814.
    [31] Norton C, McGenity T, Grant W. Archaeal halophiles (halobacteria) from two British salt mines. Microbiology, 1993, 139(5): 1077-1081.
    [32] Denner E, Mcgenity TJ, Busse H, et al. Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int J Syst Evol Microbiol, 1994, 44(4): 774-780.
    [33]周宇光.极端嗜盐菌的保藏研究.微生物学通报, 1999, 26(3): 201-203.
    [34]刘铁汉,周培瑾.嗜盐微生物.微生物学通报, 1999, 26(3): 232.
    [35]刘岳峰.嗜盐微生物的应用现状和展望.微生物学通报, 1992, 19(2): 108-111.
    [36]刘爱民.嗜盐菌的研究进展.安徽师范大学学报(自然科学版), 2002, 25(2): 181-184.
    [37]任培根,周培瑾.中度嗜盐菌的研究进展.微生物学报, 2003, 43(3): 427-431.
    [38]李文均,徐平,徐丽华,等.极端环境中的放线菌资源.微生物学通报, 2003, 30(4): 125-127.
    [39] Bull TA. Microbial diversity and bioprospecting. Washington, D.C.: ASM Press, 2004.
    [40]姜怡,李文均,徐平,等.盐碱环境放线菌多样性研究.微生物学报, 2006, 46(2): 191-195.
    [41]陈义光,李文均,崔晓龙,等.具抗肿瘤活性放线菌菌株YIM 90022的分离和系统发育分析.微生物学报, 2006, 46(5): 696-701.
    [42]陈义光,姜怡,崔晓龙,等.具抗肿瘤活性中度嗜盐菌YIM 80186的分离和系统发育分析.云南大学学报:自然科学版, 2006, 28(5): 444-449.
    [43]陈义光,姜怡,李文均,等.青海盐碱环境中具抗肿瘤活性放线菌的筛选和多样性研究.微生物学报, 2007, 47(5): 757-762.
    [44]黄苛,张丽,刘祝祥,等.硇洲岛海胆可培养细菌的多样性.微生物学报, 2009, 49(11): 1424-1429.
    [45]肖怀东,陈义光,刘祝祥,等.湛江硇洲岛海葵相关可培养细菌系统发育多样性.微生物学报(Acta Microbiologica Sinica), 2009, 49(2): 246-250.
    [46] Chen YG, Cui XL, Kroppenstedt RM, et al. Nocardiopsis quinghaiensis sp. nov., isolated from saline soil in China. Int J Syst Evol Microbiol, 2008, 58(Pt 3): 699-705.
    [47] Chen YG, Cui XL, Zhang YQ, et al. Gracilibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from saline soil. Int J Syst Evol Microbiol, 2008, 58(Pt 10): 2403-2408.
    [48] Chen YG, Cui XL, Fritze D, et al. Virgibacillus kekensis sp. nov., a moderately halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol, 2008, 58(Pt 3): 647-653.
    [49] Chen YG, Cui XL, Li QY, et al. Saccharospirillum salsuginis sp. nov., a gammaproteobacterium from a subterranean brine. Int J Syst Evol Microbiol, 2009, 59(Pt 6): 1382-1386.
    [50] Chen YG, Cui XL, Wang YX, et al. Psychroflexus sediminis sp. nov., a mesophilic bacterium isolated from salt lake sediment in China. Int J Syst Evol Microbiol, 2009, 59(Pt 3): 569-573.
    [51] Chen YG, Cui XL, Wang YX, et al. Salinicoccus albus sp. nov., a halophilic bacterium from a salt mine. Int J Syst Evol Microbiol, 2009, 59(Pt 4): 874-879.
    [52] Chen YG, Cui XL, Wang YX, et al. Virgibacillus sediminis sp. nov., a moderately halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol, 2009, 59(Pt 8): 2058-2063.
    [53] Chen YG, Wang YX, Zhang YQ, et al. Nocardiopsis litoralis sp. nov., a halophilic marine actinomycete isolated from a sea anemone. Int J Syst Evol Microbiol, 2009, 59(Pt 11): 2708-2713.
    [54] Chen YG, Xiao HD, Tang SK, et al. Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie Van Leeuwenhoek, 2009, 96(3): 259-266.
    [55] Chen YG, Zhang YQ, Huang HY, et al. Halomonas zhanjiangensis sp. nov., a halophilic bacterium isolated from a sea urchin. Int J Syst Evol Microbiol, 2009, 59(Pt 11): 2888-2893.
    [56] Chen YG, Zhang YQ, Huang HY, et al. Halomonas zhanjiangensis sp. nov., a halophilic bacterium isolated from a sea urchin. Int J Syst Evol Microbiol, 2009, 59(11): 2888-2893.
    [57] Chen YG, Zhang YQ, Wang YX, et al. Bacillus neizhouensis sp. nov., a halophilic marine bacterium isolated from a sea anemone. Int J Syst Evol Microbiol, 2009, 59(12): 3035-3039.
    [58] Chen YG, Zhang YQ, Xiao HD, et al. Pontibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from a sea urchin. Int J Syst Evol Microbiol, 2009, 59(7): 1635-1639.
    [59] Chen YG, Zhang YQ, Yi LB, et al. Pontibacillus litoralis sp. nov., a facultatively anaerobic bacterium isolated from a sea anemone, and emended description of the genus Pontibacillus. Int J Syst Evol Microbiol, 2009, 60(3): 560-565.
    [60] Galinski E, Tindall B. Biotechnological prospects for halophiles and halotolerant micro-organisms. In Herbert Ra, Sharp Rj(ed.), Molecular biology and Biotechnology of Extremophiles.Glasgow: Blackie, 1992: 76-114.
    [61] Ventosa A, Nieto JJ. Biotechnological applications and potentialities of halophilic microorganisms. World Journal of Microbiology and Biotechnology, 1995, 11(1): 85-94.
    [62] Gupta S, Kuhad RC, Bhushan B, et al. Improved xylanase production from a haloalkalophilic Staphylococcus sp. SG-13 using inexpensive agricultural residues. World Journal of Microbiology and Biotechnology, 2001, 17(1): 5-8.
    [63] Kobayashi T, Kanai H, Aono R, et al. Cloning, expression, and nucleotide sequence of the alpha-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J Bacteriol, 1994, 176(16): 5131-5134.
    [64] Onishi H, Yokoi H. An application of a bioreactor with flocculated cells of halophilic Micrococcus varians subsp. halophilus which preferentially adsorbed halophilic nuclease H to 5'-nucleotide production. New York, NY: Plenum Press, 1991.
    [65]周宝宏. DNA拓扑异构酶.生物化学与生物物理进展, 1988, 3
    [66]曹军卫.智能生物材料--细菌视紫红质分子研究进展,现代微生物进展.武汉:武汉大学出版社, 1994.
    [67] Garzon M, Deaton R. Biomolecular computing and programming. In: IEEE Trans Evol Comput 3, 1999.
    [68] Galinski E, Trüper H. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiology Reviews, 1994, 15(2-3): 95-108.
    [69] Sauer T, Galinski EA. Bacterial milking: A novel bioprocess for production of compatible solutes. Biotechnol Bioeng, 1998, 57(3): 306-313.
    [70] Robert H, Le Marrec C, Blanco C, et al. Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila. Appl Environ Microbiol, 2000, 66(2): 509-517.
    [71] Ben-Mahrez K, Sorokine I, Thierry D. An archaebacterial antigen used to study immunological response to C-nyc oncongene product. General and applied aspects of halophic microorganisms. Rodriguez-Valera F ed. New York: Plenum Prees, 1991.
    [72] Forterre P, Gadelle D, Charbonner F, et al. DNA topology in halobacteria.General and applied aspects of halophic microorganisms. In Rodriguez-Valera F ed. New York: Plenum Prees, 1991.
    [73]厉云,向华,谭华荣.极端嗜盐古菌蛋白类抗生素―嗜盐菌素.微生物学报, 2002, 42(4): 502-505.
    [74] Milne PJ, Hunt AL, Rostoll K, et al. The biological activity of selected cyclic dipeptides. J Pharm Pharmacol, 1998, 50(12): 1331-1337.
    [75] Wagner-Dobler I, Rheims H, Felske A, et al. Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol, 2004, 54(4): 1177-1184.
    [76] Ciferri O, Tiboni O. The biochemistry and industrial potential of Spirulina. Annu Rev Microbiol, 1985, 39: 503-526.
    [77] Margesin R, Schinner F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles, 2001, 5(2): 73-83.
    [78] Oren A. The genera Haloanaerobium, Halobacteroides and Sporohalobacter. The prokaryotes. 1992.
    [79] Cánovas D, Vargas C, Csonka L, et al. Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway. Journal of Bacteriology, 1996, 178(24): 7221-7226.
    [80] Cànovas D, Vargas C, Ventosa A, et al. Salt-Sensitive and Auxotrophic Mutants of Halomonas elongata and H. meridiana by Use of Hydroxylamine Mutagenesis. Curr Microbiol, 1997, 34(2): 85-90.
    [81] DeFrank JJ, Cheng TC. Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate. Journal of Bacteriology, 1991, 173(6): 1938-1943.
    [82] Kim SG, Bae HS, Oh HM, et al. Isolation and characterization of novel halotolerant and/or halophilic denitrifying bacteria with versatile metabolic pathways for the degradation of trimethylamine. FEMS microbiology letters, 2006, 225(2): 263-269.
    [83] Nicholson CA, Fathepure BZ. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol, 2004, 70(2): 1222-1225.
    [84] Delille D, Basseres A, Dessommes A. Effectiveness of bioremediation for oil-polluted Antarctic seawater. Polar Biology, 1998, 19(4): 237-241.
    [85] Margesin R, Schinner F. Biological decontamination of oil spills in cold environments. Journal of Chemical Technology & Biotechnology, 1999, 74(5): 381-389.
    [86] Amann R, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Biology Reviews, 1995, 59(1): 143-169.
    [87] Pace NR. A molecular view of microbial diversity and the biosphere. Science, 1997, 276(5313): 734-740.
    [88] Bull AT. Microbial diversity and bioprospecting. Washington, DC.: ASM Press, 2004.
    [89] Hugenholtz P, Goebel BM, Pace NR. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol, 1998, 180(18): 4765-4774.
    [90] Stackebrandt E, Tindall BJ. Appreciating microbial diversity: rediscovering the importance of isolation and characterization of microorganisms. Environ Microbiol, 2000, 2: 9-10.
    [91] Breznak JA. A need to retrieve the not-yet-cultured majority. Environ Microbiol, 2002, 4(1): 4-5.
    [92] Zinder SH. The future for culturing environmental organisms: a golden era ahead? Environmental microbiology, 2002, 4(1): 14-15.
    [93]崔晓龙,徐丽华.青海柴达木盆地7个盐湖底泥的细菌多样性研究. 2006中国微生物学会第九次全国会员代表大会暨学术年会论文摘要集, 2006.
    [94] Stackebrandt E. The phylogenetic diversity of cultured and as-yet uncultured prokaryotes. Nova Acta Leopoldina NF 80, 1999, 312: 99-115.
    [95] Echigo A, Hino M, Fukushima T, et al. Endospores of halophilic bacteria of the family Bacillaceae isolated from non-saline Japanese soil may be transported by Kosa event(Asian dust storm). Saline Systems, 2005, 1: 8.
    [96] Echigo A, Fukushima T, Mizuki T, et al. Halalkalibacillus halophilus gen. nov., sp. nov., a novel moderately halophilic and alkaliphilic bacterium isolated from a non-saline soil sample in Japan. Int J Syst Evol Microbiol, 2007, 57(5): 1081-1085.
    [97] Echigo A, Minegishi H, Mizuki T, et al. Geomicrobium halophilum gen. nov., sp. nov., moderately halophilic and alkaliphilic bacteria isolated from soil samples. Int J Syst Evol Microbiol, 2010, 60(4): 990-995.
    [98] Usami R, Echigo A, Fukushima T, et al. Alkalibacillus silvisoli sp. nov., an alkaliphilic moderate halophile isolated from non-saline forest soil in Japan. Int J Syst Evol Microbiol, 2007, 57(4): 770-774.
    [99] Hozzein WN, Goodfellow M. Nocardiopsis arabia sp. nov., a halotolerantactinomycete isolated from a sand-dune soil. Int J Syst Evol Microbiol, 2008, 58(11): 2520.
    [100] Nielsen P, Fritze D, Priest FG. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology, 1995, 141(7): 1745-1761.
    [101] Pinar G, Ramos C, R lleke S, et al. Detection of indigenous Halobacillus populations in damaged ancient wall paintings and building materials: molecular monitoring and cultivation. Applied and Environmental Microbiology, 2001, 67(10): 4891-4895.
    [102] Arahal DR, Marquez MC, Volcani BE, et al. Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. Int J Syst Evol Microbiol, 1999, 49(2): 521-530.
    [103]张世鑫,刘世彪,张代贵.湖南小溪国家级自然保护区植物多样性研究.生命科学研究, 2009, 13(2): 122-127.
    [104]刘立之,黄思,李义龙,等.小溪国家自然保护区环境对生物的影响及生物适应性调查和研究.生物学通报, 2005, 40(5): 39-41.
    [105]朱桂玉,张世鑫,葛孝聪,等.湖南小溪国家级自然保护区野生药用植物资源研究.中国林副特产, 2007, (6): 60-64.
    [106] Atlas RM. Handbook of microbiological media. Boca Raton: CRC Press, 2004.
    [107] Daionov DA, Savoyant L, Dupuy C. Application of the ICP-MS technique to trace element analysis of peridotites and their minerals. Geostandards and Geoanalytical Research, 2007, 16(2): 311-315.
    [108] Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(24): 4876-4882.
    [109] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 1980, 16(2): 111-120.
    [110] Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular biology and evolution, 2007, 24(8): 1596-1599.
    [111] Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39(4): 783-791.
    [112] Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol, 1994, 44(4): 846-849.
    [113]刘敏,李潞滨,杨凯,等.冷箭竹根际土壤中可培养细菌的多样性.生物多样性, 2008, 16(1): 91-95.
    [114]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社, 2001.
    [115] Kushner DJ. The Halobacteriaceae. In: Sokatch J R ,Ornston L N. ed. The Bacteria, a Treatise on Structure and Function, volⅧ. San Diego: Academic Press, 1985: 171-206.
    [116] Chen YG, Chen J, Chen QH, et al. Yaniella soli sp. nov., a new actinobacterium isolated from non-saline forest soil in China. Antonie Van Leeuwenhoek, 2010, 98(3): 395-401.
    [117] Chen YG, Peng DJ, Chen QH, et al. Jeotgalibacillus soli sp. nov., isolated from non-saline forest soil, and emended description of the genus Jeotgalibacillus. Antonie Van Leeuwenhoek, 2010, 98(3): 395-401.
    [118] Chen QH, Chen JH, Ruan Y, et al. Sphingomonas hunanensis sp. nov., isolatedfrom forest soil. Antonie Van Leeuwenhoek, 2011, 99(4): 753-760.
    [119]东秀珠,洪俊华.原核微生物的多样性.生物多样性, 2001, 9(1): 18-24.
    [120]周德庆.微生物学教程.高等教育出版社, 1993.
    [121]赵百锁,杨礼富,宋蕾,等.中度嗜盐菌在生物技术中的应用.微生物学通报, 2007, 34(2): 359-362.
    [122] Asad S, Amoozegar MA, Pourbabaee AA, et al. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource technology, 2007, 98(11): 2082-2088.
    [123]胡昌勤,刘炜.抗生素微生物检定法及其标准操作.北京:气象出版社, 2004.
    [124]程元荣,郑卫.微生物生物活性物质的研究进展.中国抗生素杂志, 2002, 27(10): 632-640.
    [125]赵永坤,于化泓,杨萌.微生物生物活性物质开发应用进展.江西食品工业, 2007, 4: 37-40.
    [126] Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Applied Microbiology and Biotechnology, 1978, 5(2): 123-127.
    [127] Schleifer K, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Microbiology and Molecular Biology Reviews, 1972, 36(4): 407-477.
    [128] De Minnikin MDC, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. Journal of Applied Microbiology, 2008, 47(1): 87-95.
    [129] Collins M, JONES D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. Journal of Applied Microbiology, 2008, 48(3): 459-470.
    [130] Kroppenstedt RM, ed. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series vol. 20), pp. 173-179. Edited by M. Goodfellow & D. E. Minnikin. New York: Academic Press, 1985.
    [131] Meier A, Kirschner P, Schroder K, et al. Mycobacterium intermedium sp. nov. Int J Syst Evol Microbiol, 1993, 43(2): 204-209.
    [132] Chen YG, Cui XL, Pukall R, et al. Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol, 2007, 57(10): 2327-2332.
    [133] Ventosa A, Quesada E, Rodriguez-Valera F, et al. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology, 1982, 128(9): 1959-1968.
    [134] Cowan ST, Steel KJ. Manual for the identification of medical bacteria. New York, Cambridge, 1977.
    [135] Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. International Journal of Systematic Bacteriology, 1989, 39(3): 224-229.
    [136] Christensen H, Angen O, Mutters R, et al. DNA--DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol, 2000, 50(3): 1095-1102.
    [137] He L, Li W, Huang Y, et al. Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol, 2005, 55(5): 1939-1944.
    [138] Li WJ, Chen HH, Xu P, et al. Yania halotolerans gen. nov., sp. nov., a novelmember of the suborder Micrococcineae from saline soil in China. Int J Syst Evol Microbiol, 2004, 54(2): 525-531.
    [139] Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Evol Microbiol, 1997, 47(2): 479-491.
    [140] Li WJ, Zhi XY, Euzeby JP. Proposal of Yaniellaceae fam. nov., Yaniella gen. nov. and Sinobaca gen. nov. as replacements for the illegitimate prokaryotic names Yaniaceae Li et al. 2005, Yania Li et al. 2004, emend Li et al. 2005, and Sinococcus Li et al. 2006, respectively. Int J Syst Evol Microbiol, 2008, 58(2): 525-527.
    [141] Yassin AF, Hupfer H, Siering C, et al. Auritidibacter ignavus gen. nov., sp. nov., a novel bacterium of the family Micrococcacea isolated from ear swab of a man with otitis externa, transfer of the family Yaniellaceae Li et al. 2008 to the family Micrococcaceae and emended description of the suborder Micrococcineae. Int J Syst Evol Microbiol, 2010: doi: 10.1099/ijs.1090.019786-019780.
    [142] Wayne LG, Brenner DJ, Colwell RR, et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol, 1987, 37: 463-464.
    [143] Ash C, Farrow JAE, Wallbanks S, et al. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Letters in Applied Microbiology, 1991, 13(4): 202-206.
    [144] Nielsen P, Rainey F, Outtrup H, et al. Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. FEMS microbiology letters, 1994, 117(1): 61-65.
    [145] Arahal DR, Ventosa A, eds. Moderately halophilic and halotolerant species of Bacillus and related genera. Oxford: Blackwell, p. 83-99, 2002.
    [146] Romano I, Lama L, Nicolaus B, et al. Bacillus saliphilus sp. nov., isolated from a mineral pool in Campania, Italy. Int J Syst Evol Microbiol, 2005, 55(1): 159-163.
    [147] Lim JM, Jeon CO, Kim CJ. Bacillus taeanensis sp. nov., a halophilic Gram-positive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol, 2006, 56(12): 2903-2908.
    [148] Lim JM, Jeon CO, Lee SM, et al. Bacillus salarius sp. nov., a halophilic, spore-forming bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol, 2006, 56(2): 373-377.
    [149] Yumoto I, ed. Environmental and taxonomic biodiversities of Gram-positive alkaliphiles. Washington, DC: American Society for Microbiology, p. 295-310, 2007.
    [150] Ghosh A, Bhardwaj M, Satyanarayana T, et al. Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol, 2007, 57(2): 238-242.
    [151] Yumoto I, Hirota K, Goto T, et al. Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. Int J Syst Evol Microbiol, 2005, 55(2): 907-911.
    [152] Olivera N, Sineriz F, Breccia JD. Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina. Int J Syst Evol Microbiol, 2005, 55(1): 443-447.
    [153] Kampfer P. Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Systematic and applied microbiology, 1994, 17(1): 86-98.
    [154] Yoon JH, Weiss N, Lee KC, et al. Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with L-lysine in the cell wall, andreclassification of Bacillus marinus Ruger 1983 . as Marinibacillus marinus gen nov., comb. nov. Int J Syst Evol Microbiol, 2001, 51(6): 2087-2093.
    [155] Yoon JH, Kang SJ, Schumann P, et al. Jeotgalibacillus salarius sp. nov., isolated from a marine saltern, and reclassification of Marinibacillus marinus and Marinibacillus campisalis as Jeotgalibacillus marinus comb. nov. and Jeotgalibacillus campisalis comb. nov., respectively. Int J Syst Evol Microbiol, 2010, 60(1): 15-20.
    [156] Ruger HJ. Differentiation of Bacillus globisporus, Bacillus marinus comb. nov., Bacillus aminovorans, and Bacillus insolitus. Int J Syst Evol Microbiol, 1983, 33(2): 157-161.
    [157] Yoon JH, Kim IG, Schumann P, et al. Marinibacillus campisalis sp. nov., a moderate halophile isolated from a marine solar saltern in Korea, with emended description of the genus Marinibacillus. Int J Syst Evol Microbiol, 2004, 54(4): 1317-1321.
    [158] Yabuuchi E, Yano I, Oyaizu H, et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiology and immunology, 1990, 34(2): 99-119.
    [159] Takeuchi M, Kawai F, Shimada Y, et al. Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov.. Systematic and applied microbiology, 1993, 16(2): 227-238.
    [160] Yabuuchi E, Kosako Y, Naka T, et al. Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiol Immunol, 1999, 43(4): 339-349.
    [161] Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol, 2001, 51(4): 1405-1417.
    [162] Yabuuchi E, Kosako Y, Fujiwara N, et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol, 2002, 52(5): 1485-1496.
    [163] Busse HJ, Denner EB, Buczolits S, et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol, 2003, 53(5): 1253-1260.
    [164] Asker D, Beppu T, Ueda K. Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol Lett, 2007, 273(2): 140-148.
    [165] Nigam A, Jit S, Lal R. Sphingomonas histidinilytica sp. nov., isolated from a hexachlorocyclohexane dumpsite. Int J Syst Evol Microbiol, 2010, 60: 1038-1043.
    [166] Yoon JH, Kang SJ, Lee SY, et al. Sphingomonas insulae sp. nov., isolated from soil. Int J Syst Evol Microbiol, 2008, 58(1): 231-236.
    [167] Huang HD, Wang W, Ma T, et al. Sphingomonas sanxanigenens sp. nov., isolated from soil. Int J Syst Evol Microbiol, 2009, 59(4): 719-723.
    [168] Roh SW, Kim KH, Nam YD, et al. Sphingomonas aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol, 2009, 59(6): 1359-1363.
    [169] Romanenko LA, Tanaka N, Frolova GM, et al. Sphingomonas japonica sp. nov., isolated from the marine crustacean Paralithodes camtschatica. Int J Syst Evol Microbiol, 2009, 59(5): 1179-1182.
    [170] Yoon JH, Park S, Kang SJ, et al. Sphingomonas hankookensis sp. nov., isolated from wastewater. Int J Syst Evol Microbiol, 2009, 59(11): 2788-2793.
    [171] Zhang JY, Liu XY, Liu SJ. Sphingomonas changbaiensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol, 2010, 60(4): 790-795.
    [172]陈奇辉,张丽,刘祝祥,等.小溪自然保护区嗜盐及耐盐菌抗菌活性筛选及生物学特征.微生物学杂志, 2010, 30(4): 7-12.
    [173]陈奇辉,刘祝祥,彭清忠,等.小溪自然保护区非盐环境土壤中嗜盐和耐盐菌多样性.微生物学报, 2010, 50(11): 1452-1459.
    [174] Takeuchi M, Sakane T, Yanagi M, et al. Taxonomic Study of Bacteria Isolated from Plants: Proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. International Journal of Systematic Bacteriology, 1995, 45(2): 334-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700