大庆裂缝性储层损害机理及评价技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计并加工的造缝装置,能够满足用天然砂岩、凝灰岩、安山岩、玄武岩基质制备裂缝性岩心样品的要求;形成的人造裂缝能够较好地模拟天然裂缝的裂缝表面形态。应力敏感性研究表明,大庆裂缝性储层具有很强的应力敏感性。随着有效压力增加,裂缝的渗透率和缝宽下降;初始裂缝宽度越大,应力敏感越严重。综合损害机理实验研究结果表明,对于裂缝宽度在1.8~2.6μm的裂缝性储层,钻井液的主要损害方式为滤液侵入引起的液相损害;对于裂缝宽度在16.5~19μm和50~70μm的裂缝性储层,钻井液的主要损害方式为固相损害。对于裂缝宽度小于50μm的裂缝性储气层,不必考虑钻井过程中储层的保护问题。
     考虑了裂缝表面特征和裂缝内流动特性,通过采用流体力学和渗流力学及裂缝的分形维数,建立裂缝的有效流动宽度的数学模型,有机地和裂缝性岩心的渗透率联系在一起,更适合钻井液对裂缝性储层的损害评价。粒度分析和暂堵实验证明了有效流动宽度的实用性和准确性。利用1/2~2/3倍裂缝宽度的架桥理论进行模拟损害实验结果表明,针对裂缝宽度在70~110μm的裂缝性岩心,普通的两性复合离子钻井液中加入D50值为47μm的刚性架桥粒子,加量在5%时,基本能够满足实现快速形成桥堵进而大幅度降低钻井液的固相侵入深度的要求;该理论对裂缝性储气层的暂堵是适用的。对裂缝性储气层,在欠平衡钻进过程中不会受到钻井液损害。在条件允许的情况下,采用欠平衡钻井工艺打开深部裂缝性储气层,可以同时有效地保护在地层所处压力状态下的所有宽度范围的裂缝性储层,是保护裂缝性储气层的最佳途径。
The joint, designed and processed in this paper, can satisfy the request of samples made with natural sandstone, tuff, and esite, basalt matrix; the artificial crack formation can simulate the crack surface morphology of natural fractures. The results showed that the stress sensitivity of fractured reservoir at east of daqing changyuan is strong. The permeability and width of crack dicrease with the increasing of the effective pressure; the larger is the initial crack width, the more serious is the stress sensitivity. The results of comprehensive experimental show that the major damage is the liquid-phase damage caused by the invasion of filtrate for the fractured reservoir in 1.8 ~ 2.60μm; while the major damage way is solid-phase damage for fractured reservoirs in16.5 ~ 19μm and 50 ~ 70μm. It need not consider drilling process of reservoir protection problems when the width of crack is less than 50μm.
     Considering the crack surface characteristics and the inner flow characteristics of crack, and adopting hydromechanics, percolation mechanics and the fractal dimension of crack, the mathematical model of the effective width of crack is established, wihich is more suitable for studying the damage assessment of the drilling liquid through linking the permeability of fracture core. Grain size analyses and temporary plugging experiments have proved that the effective flow width is practical and accuracy. The results of the simulation experiment by using the bridge theory with 1/2 ~ 2/3 times of crack width showed that: for the fractured core in 70-110μm crack width, when 5.0% rigid bridge particles with D50 value was added into the common amphiphilic drilling liquid D50 value, it can meet the needs of the rapid forming bridge and the reduction of the wall drilling depth by the solid-phase invasion. The theory is applicable for the temporary plugging of the gas reservoir. The fractured gas reservoir can not be damaged by the drilling in the underbalance drilling process. Under the considerable condition, the fractured gas reservoir can be opened by the underbalanced drilling technology, which can effectively protect the fractured gas reservoir under pressure for all the width of the fractured reservoirs, and the method is the optimal way for protecting the fractured gas reservoir.
引文
[1]罗平亚,康毅力,孟英峰.我国储层保护技术实现跨越式发展[J].天然气工业,2006;26(1):84-87.
    [2]刘大伟,康毅力,刘静,等.钻井液完井液屏蔽环重复形成的实验模拟[J].钻井液与完井液,2005;22(6):26-29. [33陈仕仪,康毅力,马旭JlI.屏蔽暂堵技术在川I东新探区的应用[J].钻采工艺,2005;28(6):99-101.
    [4]何健,康毅力,刘大伟,等.川I渝地区碳酸盐岩气层钻井碱敏性实验研究[J].天然气工业,2005;25(8):60-61.
    [5]刘静,康毅力,陈锐,等.碳酸盐岩储层损害机理及保护技术研究现状与发展趋势[J].油气地质与采收率,2006;13(1):99-101
    [6] Sweatman R E,Kessler C W,Hillier J M.New Solutions to Remedy Lost Circulation,Crossflows,and Underground Blowouts.SPE/IADC 37671,1997.
    [7] Bruton J R,Catalin D I.Lost Circulation Control:Evolving Techniques and Strategies to Reduce Downhole Mud Losses.SPE/IADC 67735,2001.
    [8] Dag Okland,Gabrielsen K,Jorn Gierde.The Importance of Extended Leak-Off Test Data for Combatting Lost Circulation.SPE 78219,2002.
    [9]郑有成,李向碧,邓传光,等.川I东北地区恶性井漏处理技术探索[J].天然气工业,2003;23(6):84-85.
    [10] Aston M S,et a1.Drilling Fluids for Wellbore Strengthening.SPEf lADC 87130,2004.
    [11] Russell K A,Cockburn C,MacLure R. Improved Drilling Performance in Troublesome Environment.SPE 90373,2004.
    [12]林英松,蒋金宝,秦涛.井漏处理技术的研究及发展[J].断块油气田,2005;12(2):4-7.
    [13]马光长,吉永忠,熊焰.川I渝地区井漏现状及治理对策[J].钻采工艺,2006,29(2):25-27
    [14] Effendhy,Junaidi.Fibers in Cement Form Network to Cure Lost Circulation,World oil,2003,6-10.
    [15] Qutob H.Underbalanced Drilling;Remedy for Formation Damage,Lost Circulation。& CIther Related Conventional Drilling Problems.SPE 88698,2004.
    [16] Sanad M,Waheed A.An Effective Means to Control Lost Circulation in Flowing HPHT Wells-Case History from East Med Sea Area.SPE 81413, 2003.
    [17]罗平亚.罗家2井区堵漏压井过程的技术分析[C].西南石油大学油气藏地质及开发工程国家重点实验室学术会议,2006,4.
    [18]郑述全,欧云东,曾明昌,等.高含硫喷漏同存气井钻井与完井工艺技术研究[J].天然气工业,2006(9):65-67.
    [19] Sweatman R,Faul R,Ballew C.New Solutions for Subsalt-Well Lost C:irculation and Optimized Primary Cementing. SPE 56499,1999.
    [20] Davidson E,Richardson L.Control of Lost Circulation in Fractured Limestone Reservoirs.SPE 62734,2000.
    [21] Ivan C D,Bruton J R.Making a Case for Rethinking Lost Circulation Treatment in Induced Fracture.SPE77353,2002.
    [22] Bratton T R.How to Diagnose Drilling Induced Fractures in W ells Drilled with Oil-Based Muds with Real Time Resistivity and Pressure Measurements.SPE/IADC 67742,2001.
    [23] Ivan C D,Bruton J R.Lost Circulation Can be Managed Better Than Ever.World oil,2003,6:35-41.
    [24] Andres Y.Akamine,Bratton,et a1.Application of Real Time Resistivity and Annular Pressure Data in Reducing Lost-Circulation Events.SPE/lADC 79847.
    [25] Lavrov A,Tronvoll J.Modeling Mud Loss in Fractured Formations.SPE 88700,2004.
    [26]张浩,康毅力,等.致密砂岩成组裂缝宽度变化计算机模拟[C].中国石油学会天然气专业委员会2006年学术年会优秀论文,2006,11.
    [27] Adachi L A, Baliey L, Houwen H. Depleted Zone Drilling:Reducing Mud Losses into Fracture. SPE/IADC 87224, 2004.
    [28] Sanad M, Butler C, Waheed A, et a1. Numerical Models Help Analyze Lost-Circulation/Flow Events and Frac Gradient Increase to Control an HPHT Well in the East Mediterranean Sea. SPE/lADC 87094.
    [29] Wang H, Sweatman R, Engelman B. The Key to Successfully Applying Todays Lost-Circulation Solutions. SPE 95895,2005.
    [30] Faruk C.油层伤害一原理、模拟、评价和防治[M].杨风丽,候中昊,译.北京:石油工业出版社,2003:235.
    [31]郝明强,刘先贵,胡永乐,等.微裂缝性特低渗透油藏储层特征研究[J].石油学报,2007,28(5):93-98.
    [32] Bailey L,Boek E , Jacpues S,et a1.Particulate in vasion from drilling fluids[R].SPE54762,1999.
    [33]崔迎春,张琰.储层损害和保护技术的研究现状和发展趋势[J].探矿工程,1999,26(增刊):299-303.
    [34]刘静,康毅力,刘大伟,等.考虑裂缝宽度及压差的裂缝孔隙型储层屏蔽暂堵实验研究[J].钻采工艺,2006,29(2):97-98.
    [35]郑玉玲,赵冬梅,胡国山,等.成像测井技术在碳酸盐岩水平井中的应用[J].新疆地质,2004,2(3):319-322.
    [36] Chauveteau G,NabzarL,Coste J P.Physics and modeling of permeability damage in duced by particle deposition[R].SPE39463,1997.
    [37]邱正松,丁锐.组合裂缝储层保护暂堵评价新技术[J].油钻探技术.1999.27(4):28.
    [38]罗跃,周红灯.裂缝空隙型储层钻井完井保护技术[J].河南石油.2000.14(2):16.
    [39]王富华,邱正松,丁锐.等.一种消除裂缝性储层钻井液滤饼的新方法[J].石油钻探技术.2001.29(1):29~30.
    [40]张振华,郾捷平,王书琪.保护裂缝性碳酸盐岩油气藏的钻井完井液[J].钻采工艺.2000.23(1):6l~62.
    [41]壬富华.火成岩储层应力敏感性试验研究[J].钻井液与完井液,2000.17(6):l~4.
    [42]崔迎春.裂缝性储层评比暂堵分形理论的研究[J].天然气工业.2002.22(2):45~46.
    [43]蒋官澄.裂缝性储层应力敏感性研究[J].钻井液与完井液.1998.15(5):12~l4.
    [44] Settari A.A new general model of fluid loss in hydraulic fracturing.SPE11625,1983.
    [45] Y Fan and Economides M J.Fracturing fluid leakoff and net pressure behavior in frac~pack stimulation.SPE29988,1995.
    [46] Economides M J, el a1. Fluid—leakoff delineation in Highpermeability fracturing.SPEPF1999,May:117-130.
    [47] Barree R D and Mukherjee H.Determination of pressure dependent leakoff and its effect on fracture geometry.SPE 36424.1996.
    [48] Yew C H and Hill A D el a1.A study of fluid leakoff in hydraulic fracture propagation.SPE 64786,2000.
    [49]王鸿勋,张士诚编著.水力压裂设计数值计算方法[M].北京:石油工业出版社,1998.
    [50] James L,Rodgerson.Impact of natural fractures in hydraulic fracturing of tight gas sands.SPE 59540,2000.
    [51]杜德林.泥饼可压缩性的定量研究[J].钻井液与完井液,1996;13(1):15-19.
    [52]谢和平.分形几何一岩石力学导论[M].北京:科学出版社,1997
    [53]施行觉等.岩石断面的分形测量及其分维计算[J].地球物理学报.1992.20(3):264-271.
    [54]李庆忠.怎样正确对待分形、分维技术[J].石油地球物理勘探,1996.31(1):136- 160.
    [55] Brown S R,Scholz C H. A note on the description of surface roughness using fractal dimension.Geophy. Res..Lett., 1987, 14(11): 1089-1095.
    [56] Brown S R,Sehelz C H. Closure of rock joints.J.Geophy.Res.,1986,91(B5):4939-4948
    [57] Brown S R,Scholz C H.Correlation between the surfaces of nature rock joints.Geophy. Res. Lett., 1986, 13(13): 1430-1433.
    [58] Sayles R S, Thomas T R. Surfaces topography as a non—stationary random process.Nature,1978, 27(1): 431-434.
    [59] Nayak P R. Random process model of rough surfaces in plastic contact. Wear, 1973, 26(2): 315-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700