高粘度酸液酸岩反应模拟试验新方法探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油勘探开发技术手段的不断发展,越来越多的复杂致密油气藏投入开发,酸化压裂成为储层改造的重要技术手段。为正确地指导酸压和优化设计及现场施工,需要进行酸岩反应机理研究和相关模拟试验,以确定设计和施工的各项内容和参数。在酸压理论中,酸液体系的发展最快,越来越多的高粘度酸液体系投入到实际储层改造应用中。目前对高粘度酸液的酸岩反应研究处于起步阶段,还没有专门的一套理论和实验方法,而研究认为常规的酸岩反应模拟试验方法并不适用于高粘度酸液体系。真实、有效地对高粘度酸液体系的酸岩反应进行模拟试验,研究高粘度酸液酸岩反应模拟试验的方法,对了解高粘度酸液的酸岩反应机理,准确测定其酸岩反应动力学参数和分析高粘度酸液以及其他类型酸液酸蚀行为具有重要意义。本文在前人研究的基础上,总结了酸岩反应影响因素,重点研究包括高粘度酸岩反应机理、酸岩反应动力学研究和酸蚀行为研究。在酸岩反应模拟试验中合理地考虑和设计酸岩反应影响因素,有效地进行酸岩反应的关键因素研究。从酸岩反应模拟试验的测试内容和试验设备上,分析对比了常规酸岩反应模拟试验的特点及其适应性,并提出了应考虑酸液流向对酸岩反应影响的试验内容。为模拟酸液在地层裂缝中的流动特征,分析酸岩反应模拟试验的准确性,引入并改进了环空内幂律型非牛顿流体流态及稳定性判别方法,模拟了常规施工条件下不同类型的酸液流态及其稳定性。参与研究、设计新型高粘度酸岩反应模拟试验装置,设计思路和工作原理已得到应用。利用该装置进行了稠化酸和交联酸等多组高粘度酸液的酸岩反应模拟试验,证实了常规酸和高粘度酸体系的酸岩反应区别。从高粘度酸岩反应模拟试验获得的试验结果表明这种酸岩反应模拟方式可操作性强,试验数据可信度高,稳定性好,为现场高粘度酸液体系实践和进一步研究酸岩反应各项内容提供理论和实际指导。
With the continuous development of technique in oil exploration and development, more and more complex reservoirs are invested in developing, then acid fracturing becomes an important technique of reservoir stimulation. To properly guide acid fracturing and optimize the design and field construction, we need to study the acid-rock reaction mechanism and do the related simulation test to determine the elements and parameters of the design and construction. In acid fracturing theory, because of the fastest-growing in the acid system, more and more high-viscosity acid system is applied to the actual reservoir reconstruction. At present there isn’t the set of special theory and test methods, then research in the high viscosity of acid-rock reaction at the initial stage, and research founded that the conventional acid-rock reaction test method does not apply to high-viscosity acid system. Doing the simulated test for high-viscosity acid-rock reaction in actually and effectively is of significance to understand the high viscosity of acid rock acid reaction mechanism, accurately measure to kinetic parameters of the high viscosity acid-rock reaction and analysis behavior of acid etching of these and other types. Basing on previous studies, this paper summed up the influential factors of acid-rock reaction and including focuses on mechanism of acid-rock reaction, kinetics of acid-rock and behavior of acid etching. In the simulation test of acid-rock reaction, it is important to reasonably consider and design in influential factors of acid-rock reaction and effective study of the key factors of the acid-rock reaction. From the content and test equipment in simulation test of acid-rock reaction, making analysis and comparison in characteristics and applicability of the conventional simulation test of acid-rock reaction, and proposing to the test content which is consider the flow of acid into the influential factor of the acid-rock reaction. To simulate the flowing characteristics of acid in the fracture formation and analysis accuracy of simulation test of acid-rock reaction, introducing and improving the discriminant methods of flow parttern and stability of non-Newtonian fluid, with power law model, in annulus-type, and simulating flow pattern and stability of different type acid in conditions of conventional construction. Participating in the research and design new device for simulation test of high-viscosity acid-rock reaction, designing concepts and working principles have been applied. Using the device to do simulation test for including the gelled acid and cross-linked acid groups of the high-viscosity acid of the acid-rock reaction, confirmed the difference between the conventional acid and high viscosity system in the acid-rock reaction. Results of simulation test of high-viscosity acid-rock reaction showed that this simulation method of acid-rock reaction is workable, whose experimental data is highly reliable and stable, which provides theory and practical guidance for on-site practice of high viscosity acid system and content of further research in acid-rock reation.
引文
[1]任书泉,李联奎,袁子光等.旋转圆盘试验仪的研制和应用[J].石油钻采工艺.1983.4(9):69-75.
    [2]任书泉,袁子光,李联奎等.酸岩反应的旋转模拟实验[J].石油钻采工艺,1983.2(9):61-67.
    [3]赵立强.碳酸盐岩和盐酸反应动力学的试验研究[J].西南石油学院学报.1988.10(1):34-41.
    [4]张黎明,任书泉,陈冀嵋.用旋转圆盘仪研究酸岩表面反应动力学[J].化学反应工程与工艺,1996.12(3):238-245.
    [5]张建利,孙忠杰,张泽兰.碳酸盐岩油藏酸岩反应动力学实验研究[J].油田化学.2003.20(3):216-219.
    [6]张继周,蒋晓敏,韩晓强等.RDA100高温高压动态腐蚀测定仪在酸岩反应研究中的应用[J].新疆石油科技.2003.13(4):39-42.
    [7]张继周,赵小丽,刘静.变粘酸酸岩反应动力学研究[J].新疆石油科技.2008.18(3):28-30.
    [8]张智勇,蒋廷学,梁冲等.胶凝酸反应动力学试验研究[J].钻井液与完井液.2005.22(5):28-30.
    [9] H.A.Nasr-El-Din,A.M.Al-Mohammad,A.M.Al-Aamri.Reaction Kinetics of Gelled Acids With Calcite[J].SPE103979.1-13.
    [10] K.C.Taylor,H.A.Nasr-El-Din,S.Mehta.Anomalous Acid Reaction Rates in Carbonate Reservoir Rocks[J].SPE89417.488-496.
    [11]蒋卫东,汪绪刚,蒋建方等.酸蚀裂缝导流能力模拟实验研究[J].钻采工艺.1998.21(6):33-36.
    [12]李力.用人工模拟裂缝装置研究盐酸/白云岩反应速率的影响影响因素[J].钻采工艺.2000.23(1):29-31.
    [13]姜浒,陈勉,张广清等.碳酸盐岩储层加砂酸压支撑裂缝短期导流能力试验[J].中国石油大学学报(自然科学版).2009.33(4):89-92.
    [14] Jianye Mou,D.Zhu,A.D.Hill.Acid-Etched Channels in Heterogeneous Carbonates–A Newly Discovered Mechanism for Creating Acid Fracture Conductivity[R].SPE119619.1-17.
    [15] M.G..Melendez,M.Pournik,D.Zhu.The Effects of Acid Contact Time and the Resulting Weakening of the Rock Surfaces on Acid-Fracture Conductivity[R].SPE107772.1-11.
    [16] Yan Li ,R.B.Sullivan. An Overview of Current Acid Fracturing Technology With Recent Implications for Emulsified Acids[R]. SPE26581.
    [17]伊向艺,卢渊,王海涛等.交联酸在白云岩储层酸压施工中携砂能力实验评价[C].成都:油气藏地质及开发工程国家重点实验室,2007:1086-1089.
    [18]伊向艺,卢渊,王海涛等.白云岩储层交联酸滤失性能评价研究[C].成都:油气藏地质及开发工程国家重点实验室,2007:1249-1253.
    [19]伊向艺,卢渊,宋毅等.靖边气田白云岩储层交联酸酸压技术实践[J].油气地质与采收率.2008.15(6):92-94.
    [20]张琪.采油工程原理与设计[M].北京:石油大学出版社,2000.
    [21]李颖川.采油工程[M].北京:石油工业出版社,2002.
    [22] B.B.威廉斯,J.L.吉德里,R.S.谢克特.油井酸化原理[M].北京:石油工业出版社,1984.
    [23]郭春清,沈忠民,张林晔等.砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述[J].地质地球化学.2003.31(3):53-57.
    [24]王海涛.交联酸携砂酸压在白云岩储层改造中的应用[D] .成都:成都理工大学,2007.
    [25]徐伟.高温高压流动条件下灰岩溶解实验研究[D].北京:中国地质大学,2006.
    [26] Williams,B.B.,Gidley,J.L,Guin,J.A.,and Schechter,R.S..Characterization of Liquid-Solid Reaction:The Hydrochloric Acid-Calcium Carbonate Reactions[M].ind.and Eng.Chem.Fund.(1970)9,589-596.
    [27] NA Mumallah.Factors Influencing the Reaction Rate of Hydrochloric Acid and Carbonate Rock[J].SPE21036.371-383.
    [28] R.D.Gdanshi,L.R.Norman.Using the Hollow-Core Test To Determine Acid Reaction Rates[J].SPE12151:111-116.
    [29] Curtls W.Crowe,Gerald R.McGowan,Sandy E.Baranet.Investigation of Retarded Acids Provides Better Understanding of Their Effectiveness and Potential Benefits[J].SPE.1990(5):166-170.
    [30]采油采气专业标准化委员会.SY/T6526-2002盐酸与碳酸盐岩动态反应速率测定方法[S]//国家经济贸易委员会.中华人民共和国石油天然气行业标准.北京:中国标准出版社.
    [31] Levich V G.Physiochemical Hydrodynamics Prentice Hall:Englewood Cliffs[M].NJ,1962.
    [32]章伯其.牛顿和非牛顿流体力学[M].北京:兵器工业出版社,1997.
    [33]戴鲲.粘弹性表面活性剂压裂液研究与应用[D]。吉林:吉林大学,2008.
    [34]赵建春,李其波,徐永辉。泡沫酸流变性室内试验研究[J].化工之友.2007.13:3-4.
    [35]伊向艺.碳酸盐岩储层交联酸酸压技术研究与应用[D] .成都:成都理工大学,2006.
    [36]刘乃震,王廷瑞,刘孝良等.非牛顿流体的稳定性及流态判别[J].天然气工业.2003.23(1):53-57.
    [37]岳湘安,陈家琅.非牛顿流体流动的稳定性参数Y及其应用[J].水动力学研究与进展.1987.2(3):114-122.
    [38]刘崇建,刘孝良,柳世杰等.非牛顿流体流态判别方法的研究[J].天然气工业.2001.21 (4) :49-52.
    [39]朱秀林,宋狄安,王凯。高粘度非牛顿流体用搅拌器的动力特性[J]。化学工程。1985.1:52-68.
    [40]陈家琅。判别幂律液体流动状态的Z值[J]。大庆石油学院。1981.1:37-50.
    [41]刘崇建,刘绘新。判别液体流态准数Z值的讨论[J]。西南石油学院学报。1981.2:12-23.
    [42]李兆敏,蔡国琰.非牛顿流体力学[M].北京:石油大学出版社,1998.
    [43]吴兴国,王小泉,丁培芳.深井超深井温控交联酸的特点与室内性能调试[J].石油与天然气化工.2005.34(4):296-298.
    [44]李海军.塔河油田碳酸盐岩储层酸压酸岩反应影响因素研究[J].中外能源.2006.11(3):26-29.
    [45]孙连环.塔里木盆地塔中碳酸盐岩储层酸岩反应动力学实验研究[J].石油与天然气化工.2006.35(1):51-53.
    [46]贺伟,冯文光,贺承祖.碳酸盐岩储层酸蚀反应机理的实验研究[J].天然气勘探与开发.2000.23(2):27-30.
    [47]王强,赵立强,刘平礼等.天然裂缝性碳酸盐岩酸化数学模型研究[J].河南石油.2006.20(2):75-77.
    [48]康燕,李爱辉,单永桌等.通过岩石抗压强度测定评价酸液性能[J].钻井液与完井液.2005.22(2):66-82.
    [49]王绍先,陈学,吴文刚等.微胶囊固体硝酸酸化液实验研究[J].西南石油大学学报(自然科学版).2008.30(5):129-132.
    [50]赵立强,刘欣,刘平礼等.新兴碳酸盐岩油气层酸压技术——固体酸酸压技术[J].天然气工业.2004.24(10):96-98.
    [51]王奕,张熙,代华等.新型增稠酸的配方及性能研究[J].天然气工业.2007.27(5):85-87.
    [52]周福建,熊春明,刘玉章等一种地下胶凝的深穿透低伤害盐酸酸化液[J].油田化学.2002.19(4):322-324.
    [53]张黎明.酸-岩反应模拟实验装置及其应用[J].中国海上油气(工程),1995.5(2):45-50.
    [54]李小刚,杨兆中,胡学明等.酸压裂缝中酸液流动反应行为研究综述[J].钻井液与完井液.2008.25(6):70-73.
    [55]李年银,赵立强,张倩等.酸压过程中酸蚀裂缝导流能力研究[J].钻采工艺.2008.31(6):59-62.
    [56]罗云,刘爱华,王俊明等.交联酸加砂酸化压裂技术在复杂岩性油藏的应用[J].石油学报.2008.29(2):267-269.
    [57]任书泉,熊宏杰.同离子效应和温度场对裂缝中酸液有效作用距离的影响[J].西南石油学院学报.1986.27(4):23-35.
    [58]赵碧华,任书泉.同离子效应对酸液有效作用距离的影响[J].石油学报.1986.7(1):71-82.
    [59]朱永东.酸岩反应动力学实验研究方法评述[J].内蒙古石油化工,2008.10:23-25.
    [60]赵立强,陈冀眉,任书泉.酸岩反应动力学的试验研究[J].西南石油学院学报.1984.2:14-30.
    [61]任书泉,李联奎,袁子光.压裂酸化时氢离子有效传质系数变化规律的试验研究[J].石油钻采工艺.1983.(3):53-60.
    [62]张黎明,任书泉.白云岩与盐酸非均相表面反应动力学研究[J].油田化学.1994.11(1):32-38.
    [63]向瑜章,姚煦春.基质酸化与酸压的室内评价[J].国外油田工程.2002.18(11):24-29.
    [64]邢静,李勇明.碳酸盐岩油藏酸压模型研究及应用[J].石油钻采工艺.2009.31(3):62-66.
    [65] L.Droberts, J.A.Guin.The effect of surface kinetics in fracture acidizing[R].SPE4349:385-395.
    [66] N.F.Whitsitt,G.R.Dysart.The effect of temperature on stimulation design[R].JPT2497:493-502.
    [67] L.Li,H.A.Nasr-El-Din,F.F.Chang,T.Lindvig. Reaction of Simple Organic Acids and Chelating Agents With Calcite[R].IPTC12886:1-15.
    [68] R. Jain, D.W. Green, G.P. Willhite, M.J. Michnick. Reaction Kinetics of the Uptake ofChromium(III) Acetate by Polyacrylamide[R].SPE89399:247-254.
    [69] H.A.Nasr-El-Din,A.M.Al-Mohammed,A.D.Al-AamriM.A. Al-Fahad.Quantitative Analysis of Reaction Rate Retardation in Surfactant-Based Acids[R].SPE107451:1-11.
    [70] E.J. Mackay. Modeling In-Situ Scale Deposition: The Impact of Reservoir and Well Geometriesand Kinetic Reaction Rates[R].SPE81830:45-56.
    [71] M.L.Hoefner,H.S.Fogler.Fluid-Velocity and Reaction-Rate Effects During Carbonate Acidizing:Application of Network Model[R].SPE15573:56-62.
    [72] S.H. Al-Mutairi, H.A. Nasr-El-Din,A.D. Hill. Effect of Droplet Size on the Reaction Kinetics of Emulsified Acid With Calcite[R].SPE112454:1-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700