甘蓝型油菜每角粒数的遗传和主效QTL的定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
每角粒数作为甘蓝型油菜产量重要构成因素之一,一直以来受到遗传育种者的重视。我国已选育出一些代表性品种的每角粒数大多在20粒左右。而在育种实践中,华中农业大学油菜育种研究室发现一份每角粒数多且配合力高的品系Y10(6206A)。目前利用该品系已配制出杂交种“圣光86”、“华皖油5号”和“华油杂15号”等多个国家级和省级双低油菜新品种。这些杂交种在大田生产条件下每角粒数可达到23粒以上。尽管Y106在育种中效果显著但其形成及利用的遗传基础不明。对每角粒数的遗传基础进行剖析可为油菜产量的遗传改良提供理论依据。
     本研究利用甘蓝型油菜每角粒数多的品系Y106和3份不同来源的每角粒数少的品系(HZ396、HZ165和HZ168)为材料,进行了每角粒数的遗传研究和N19连锁群每角粒数主效QTL的定位等工作。主要结果如下:
     1.通过品系Y106和HZ396配制杂交组合,分析其F_2群体每角粒数的频率分布规律,发现存在多峰,且偏离正态分布,表明可能存在主基因控制该性状。
     2.为了验证该结果,以3份每角粒数少的品系(HZ396、HZ165、HZ168)为材料,分别与Y106配制正反交F_1。分析亲本与正反交F_1的每角粒数表现,发现:每角粒数在不同年份能较稳定表达,受环境的影响不大;每角粒数受核基因控制,不存在细胞质效应;每角粒数普遍存在不同程度的杂种优势,大值亲本对小值亲本在杂交后代中以显性的方式表现出来。
     3.通过“主基因+多基因”的遗传分析,发现每角粒数在不同杂交组合中均符合E-0模型,即2对加性-显性-上位性主基因+加性-显性-上位性多基因模型。2对主基因的加性效应值在不同组合间存在差异,变异范围在1.49与3.71之间。杂交组合HZ396×Y106的2对主基因加性效应值明显大于另外两个组合,说明杂交组合HZ396×Y106更有利于2对主基因加性效应的表达,该组合衍生的分离群体更有利于每角粒数主效QTL的检测。主基因的遗传率较大,不同世代(B1, B2和F_2)变化在39%至84%之间,而多基因的遗传率较小,说明主基因发挥着主要作用。
     4.通过HZ396和其它两份小值材料(HZ165和HZ168)配制杂交组合,分析F_2群体每角粒数的频率分布,发现HZ396和其它两份小值材料不等位。暗示着在不同杂交组合里,不同位点发挥着主要作用。
     5.为进一步在QTL水平上研究每角粒数的遗传基础,利用品系HZ396与Y106为亲本构建F_1,对F_1进行小孢子培养,得到140份株系的DH群体。利用该DH群体构建了一张包含349个标记(其中SSR标记有151个,其余为AFLP标记)的遗传连锁图,包含19个连锁群,图谱总长1833.9 cM,标记间平均图距5.1cM。与Piquemal等(2005)及Cheng等(2009)国际上已发表的遗传图谱有较好的一致性。
     6.该DH群体分别在武汉(2007,2008)与甘肃(2009)进行性状的考察。通过QTL元分析,共检测到13个consensus QTL,每角粒数有3个,即cqSS.N8、cqSS.N13和cqSS.N19,千粒重有4个,角果长有6个。其中,有9个consensus QTL表现为主效QTL。不同性状间QTL被整合成6个unique QTL,它们分布在N7、N8、N13和N19连锁群上,都表现出多效性。这些unique QTL在连锁群上的位置和遗传效应方向,在一定程度上可以反映出每角粒数与角果长正相关而与千粒重负相关的关系。其中,位于N19连锁群上unique QTL表现的尤为典型:每角粒数cqSS.N19和角果长cqSL.N19平均解释的表型变异分别为57.77%和29.14%,增效基因来自于Y106,而千粒重cqSW.N19平均解释的表型变异为37.30%,增效基因来自于HZ396。
     7. QTL cqSS.N19(或简化为qSS.C9)在不同环境中稳定检测到,故作为靶QTL进行定位。考虑到AFLP标记分析基因型的繁琐,期望将两侧的AFLP标记(EA08MC13-150和SA09MC04-220)转化为SCAR标记,结果只有SA09MC04-220成功转化为SCAR标记SCC9-005。进而为了加密该QTL区间的标记,我们利用已发表的Quantum×No2127-17群体(Chen et al., 2007)和Tapidor×Ningyou 7群体(Qiu et al., 2006) N19连锁群上的SSR引物,分析DH群体,新增2个SSR引物(sS2066和sNRG42)。同时利用已公布的白菜公共数据库中A10连锁群上BAC(Bacterial Artificial Chromosomes)末端序列设计SSR引物,新增1个SSR引物SRC9-022。8.采用连续回交的方法,构建了以HZ396为遗传背景的cqSS.N19的近等基因系BC3F_2。区间作图法分析发现,QTL cqSS.N19位于显性的SSR标记SRC9-022和共显性的SCAR标记SCC9-005之间,峰值处为0.60 cM。在BC3F_2群体中,每角粒数解释85.8%的表型变异,加性和显性效应值分别为6.1和5.7粒。这表明,cqSS.N19是Y106在育种中每角粒数效果显著最主要的遗传位点。
     本研究提出了下面几个进一步研究课题:1.每角粒数主效QTL cqSS.N19的精细定位与克隆,在此基础上,利用重组单株克隆cqSW.N19;2.每角粒数及千粒重和角果长在QTL水平上的相关性进一步深化与拓展,尤其角果籽粒密度(Packing of seed within the silique);3.每角粒数QTL的聚合效应分析。
Seeds per silique (SS) is one of the three important components of yield in oilseed rape (Brassica napus L.) and has always received much attention. By comparing SS in the representive cultivars registered officially in China, it could be inferred that SS was about 20. In the breeding practice, one stable high-SS and high combining ability line‘Y106’(or 206A), was found by Rapeseed Laboratory of Huazhong Agricultural University. This elite line had been applied to produce many hybrid cultivars, i.e.‘Shengguang 86’,‘Huawanyou No. 5’,‘Huayouza No.15’and so on, registered officially in nation or province trials. And the SS of these hybrids was above 23 in the farmers’fields. Although‘Y106’had remarkable high-SS effect in the breeding programs, the genetic basis of SS remains elusive. Hence, genetic dissection of SS will facilitate formulating breeding strategies for seed yield improvement.
     The Brassica napus lines,‘Y106’exhibiting high-SS and‘HZ396’,‘HZ165’and‘HZ168’with low to moderate SS, had different genetic backgrounds and were used as parents. We analyzed the genetic studies of SS and mapped the major QTL cqSS.N19 in a B3F_2 population. The main results were as follows.
     1. The genetic control of SS was primarily studied in the cross of‘HZ396’בY106’. The frequency distribution of the F_2 generation deviated from a normal distribution and appeared to have a multi-modal pattern, indicating the influence of major genes mixed with polygenes.
     2. To test this hypothesis and uncover the genetic basis of SS in diverse genotypes, three low to moderate SS materials,‘HZ396’,‘HZ165’and‘HZ168’, were selected. An experiment with the orthogonal and reciprocal F_1 generations derived from three crosses,‘HZ396’בY106’,‘HZ165’בY106’and‘HZ168’בY106’, along with their parents was conducted for investigating the heterosis and cytoplasmic effects of this trait. Results revealed that SS more or less unaffected by environments, that SS was controlled by nuclear genes instead of cytoplasmic genes, that there were all levels of dominance from partial to full dominance in the F_1 as the major contributor to heterosis and the higher-SS genotype was almost completely dominant over the lower-SS genotype.
     3. The major genes and polygenes mixed genetic model was used to analyze SS in rapeseed. The joint segregation analysis revealed that SS was best described by the E-0 genetic model, a case of two additive-dominace-epistasis major genes as well as additive-dominace-epistasis polygenes. The additive effects of the two major genes ranged from 1.49 to 3.71 in the three crosses. And the additive effects of two major genes in the cross of‘HZ396’בY106’were obviously larger than those in the other two crosses, which demonstrated that the two major genes for SS in the cross of‘HZ396’בY106’could easily be detected and passed on to offspring. Significant progress could be made in mapping the two major genes contributing to SS by constructing mapping populations using‘HZ396’and‘Y106’as parental lines. Heritability of the major genes varied from 39% to 84% in diverse generations (B1, B2 and F_2), which was much larger than that of the polygenes. It meant that SS was mainly controlled by major genes.
     4. Allelic tests of the three low to moderate SS materials,‘HZ396’,‘HZ165’and‘HZ168’were performed by the frequency distribution of the F_2 generations. Results revealed that the three lines were probably non-allelic, which meant that the major genes varied according to the specific crosses performed.
     5. To dissect the genetic basis of SS, we used one F1 plant of the cross of‘HZ396’בY106’to develop double haploid (DH) population. The DH population, consisted of 140 lines, was used for map construction and QTL analysis. A linkage map comprising 151 Simple Sequence Repeat (SSR) and 198 Amplified Fragment Length Polymorphism (AFLP) markers covering 1833.9 cM with an average interval of 5.1 cM between adjacent markers was constructed. The order of most markers is consistent with the published linkage maps of Piquemal et al. (2005) and Cheng et al. (2009).
     6. In field experiments across three seasons and two locations in China 140 doubled haploid lines and their corresponding parents were evaluated for silique-traits. Quantitative Trait Loci (QTL) meta-analysis revealed that 6, 3 and 4 consensus QTL for silique length (SL), SS and seed weight (SW) respectively. Of them, 9 QTL showed main effects. And 6 unique QTL were pleiotropic and mapped on linkage groups N7, N8, N13 and N19, which reflected significant correlation of all pairs of the silique-traits by the genomic location and effects of QTL detected. For the unique QTL in the linkage group N19, the additive effects of cqSS.N19, which explained 57.77% of the phenotypic variance of SS, and cqSL.N19 were positive while the additive effect of cqSW.N19 showed a negative effect at the same locus in the linkage group N19, which is a hint for the reason of positive correlation coefficient between SS and SL while negative correlation coefficient between SS and SW.
     7. Since the major QTL cqSS.N19 (for simplicity, designated as qSS.C9) was stable across various environments, we selected this QTL as a target QTL to map. Given that AFLP has limitations in genotype analysis, we attempted to convert the two AFLP markers EA08MC13-150 and SA09MC04-220 into SCAR markers. And only SA09MC04-220 successfully converted into codominant SCAR marker SCC9-005. To enrich the markers located in the target QTL further, we utilized the SSR markers in the published linkage maps of Chen et al. (2007) and Qiu et al. (2006) and developed SSR markers from the end sequence of BAC in the linkage group A10 in Brassic rapa. Results revealed that 3 SSR markers (sS2066, sNRG42 and SRC9-022) were enriched in the linkage group N19.
     8. For the consensus QTL, cqSS.N19, we constructed one near isogenic-line (BC3F2) in the HZ396 background by consecutive backcrossing, according to the primary QTL identified in DH lines. QTL analysis based on the BC3F2 population showed that this locus was located between the dominant SSR marker SRC9-022 and co-dominant SCAR marker SCC9-005. The QTL peak was near SRC9-022 marker at a distance of 0.60 cM. Furthermore this locus explained 85.8% of phenotypic variance with additive and dominant effects of 6.1 and 5.7 SS, respectively. The finding suggested that the locus was major for SS of‘Y106’, which had remarkable high-SS effect in the breeding programs.
     Three aspects of research work in the future are as follows: 1. Fine mapping and cloning of major QTL cqSS.N19; 2. Cloning of cqSW.N19 using recombinants based on cloning of cqSS.N19; 3. Expanding and deepening the correlation of all pairs of the silique-traits at the QTL level, especially packing of seed within the silique; 4. Genetic analysis of pyramiding QTL of SS.
引文
1.陈留根,Nassi N.直播油菜结角层结构及经济性状分析.江苏农业科学,2002,4:24-26
    2.董一洪,朱耕如.春油菜角粒发育的特性.作物杂志,1996,3:32-36
    3.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001,47-48
    4.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,2000
    5.盖钧镒,章元明,王建康.植物数量性状遗传体系.北京:科学出版社,2003
    6.官春云,王国槐,赵均田.甘蓝型油菜不同杂种组合的优势比较.中国油料,1980,4:17-20
    7.何小红,徐辰武,顾世梁,李韬.数量性状基因作图精度的主要影响因子.作物学报,2001,27:469-475
    8.何余堂,龙卫华,胡进平,傅廷栋,李殿荣,陈宝元,涂金星.白菜型油菜角果多室性状的遗传及解剖学研究.中国油料作物学报,2003,25:1-3
    9.洪登峰.甘蓝型油菜显性细胞核雄性不育基因Ms/Mf的定位.[博士学位论文].武汉:华中农业大学图书馆,2006
    10.孔繁玲.植物数量遗传学.北京:中国农业大学出版社,2005
    11.冷锁虎,单玉华,储海平,喻义珠.油菜角果质量与分枝数的关系.江苏农业科学,2000,21:25-28
    12.郦美娟,顾菊生.油菜农艺性状的基因效应分析.浙江农业学报,1992,4:149-153
    13.廖桂平,官春云.不同播期对不同基因型油菜产量特性的影响.应用生态学报,2001,12:853-858
    14.刘定富,蔡怀武.甘蓝型油菜特长角突变体的发现和鉴定.湖北农学院学报,1994,4:1-4
    15.刘定富,刘后利.甘蓝型油菜数量性状遗传变异的研究.遗传学报,1987,14:31-36
    16.刘后利.油菜的遗传和育种.上海:上海科技出版社,1985
    17.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25:317-321
    18.陆光远.甘蓝型油菜显性细胞核雄性不育基因和抑制基因的分子标记及其应用.[博士学位论文].武汉:华中农业大学图书馆,2003
    19.马育华.植物育种的数量遗传学基础.江苏:江苏科学技术出版社,1982,442-445
    20.莫惠栋,李志民.增广NCⅡ交配设计和遗传模型测验.作物学报,1991,17:1-9
    21.戚存扣,盖钧镒,傅寿仲,浦惠明,张洁夫,陈新军,高建琴.甘蓝型油菜千粒重性状遗传体系分析.作物学报,2004,30:1274-1277
    22.戚存扣,盖钧镒,章元明.甘蓝型油菜芥酸含量的“主基因+多基因”遗传.遗传学报,2001,28:182-187
    23.戚存扣,浦惠明,张洁夫,傅寿仲,高建芹,陈新军,盖钧镒.油菜(Brassica napus L. )千粒重性状主位点组遗传分析.江苏农业学报,2005,21:1-5
    24.王汉中.中国油菜品种改良的中长期发展战略.中国油料作物学报,2004,20:98-101
    25.王建康.数量性状基因的完备区间作图方法.作物学报,2009,35:239-245
    26.王艳惠,牛应泽.人工合成甘蓝型油菜特长角性状的遗传分析.遗传,2006,28:1273-1279
    27.危文亮.甘蓝型油菜长角果变异体的遗传研究.遗传,2000,22:93-95
    28.许绍斌,陶玉芬,杨昭庆,褚嘉佑.简单快速的DNA银染和胶保存方法.遗传,2002,24:335-336
    29.杨光圣,员海燕.作物育种原理.北京:科学出版社,2009,111-138
    30.余凤群,金明源.甘蓝型油菜DH群体几个数量性状的遗传分析.中国农业科学,1998,31:44-48
    31.俞斌.不同来源甘蓝型油菜品系DH群体遗传变异研究及抗(耐)菌核病恢复系选育.[博士学位论文].武汉:华中农业大学图书馆,2009
    32.张红伟,孔繁玲.玉米籽粒性状的遗传模型研究.遗传学报,2000,27:56-64
    33.张书芬,马朝芝,朱家成,王建平,文雁成,傅廷栋.甘蓝型油菜含油量的“主基因+多基因”遗传效应分析.遗传学报,2006,33:171-180
    34. Anbessa Y, Warkentin T, Vandenberg A, Ball R. Inheritance of time to flowering in chickpea in a short-season temperate environment. J Hered, 2006, 97: 55-61
    35. Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, David L. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics, 2004, 20: 2324-2326
    36. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 209: 741-745
    37. Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf1 encodes the a-subunit of GTP-binding protein. Proc Nat Acad Sci USA, 1999, 96: 10284–10289
    38. Brandle J E, Mcvetty P B E. Heterosis and combining ability in hybrids derived from oilseed rape cultivars and inbred lines. Crop Sci, 1989, 29: 1191-1195
    39. Butruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines in Brassica napus L. Genetics, 1999, 153: 949-964
    40. Chay P, Thurling N. Identification of genes controlling pod length in spring rapeseed, Brassica napus L., and their utilization for yield improvement. Plant Breed, 1989, 103: 54-62
    41. Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007, 115: 849-858
    42. Cheng X M, Xu J S, Xia S, Gu J X, Yang Y, Fu J, Qian X J, Zhang S C, Wu J S, Liu K. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet, 2009, 118: 1121-1131
    43. Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963-971
    44. Comstock R E, Robinson H F. Estimation of average dominance of genes. In: Gowen J W, eds., Heterosis. Iowa: Iowa State College Press, 1952, 494-516
    45. Doebley J, Stec A, Gustus C. teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 1995, 141: 333-346
    46. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386: 485-488
    47. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18:926-936
    48. Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11-15
    49. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171
    50. Foisset N, Delourme R, Barret P, Hubert N, Landry B S, Renard M. Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on doubled haploid progeny. Theor Appl Genet, 1996, 93: 1017-1025
    51. Frary A, Nesbitt T C, Frary A, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2: A Quantitative Trait Locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88
    52. Gai J Y, Wang Y J, Wu X L, Chen S Y. A comparative study on segregation analysis and QTL mapping of quantitative traits in plants-with a case in soybean. Front Agric China, 2007, 1: 1-7
    53. Gai J, Wang J. Identification and estimation of a QTL model and its effects. Theor Appl Genet, 1998, 97: 1162-1168
    54. Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics, 2000, 155: 463-473
    55. Grant I, Beversdorf W D. Heterosis and combining ability estimates in spring rape (Brasica napus). Can J Genet Cytol, 1985, 27: 472-478
    56. Gur A, Zamir D. Unused natural variation can lift yield barriers in plant breeding. Plos Biology, 2004, 2: 1610-1615
    57. Hao J J, Yu S X, Ma Q X, Fan S L, Song M Z. Inheritance of time of flowering in upland cotton under natural conditions. Plant Breed, 2008, 127: 383-390
    58. Hayman B I. The theory and analysis of diallel crosses. Genetics, 1954, 39: 789-809
    59. He G, Luo X, Tian F, Li K, Zhu Z, Su W, Qian X, Fu Y, Wang X, Sun C, Yang J. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Research, 2006, 16: 618-626
    60. He J P, Ke L P, Hong D F, Xie Y Z, Wang G C, Liu P W, Yang G S. Fine mapping of arecessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theor Appl Genet, 2008, 117: 11-18
    61. Hong D F, Wan L L, Liu P W, Yang G S, He Q B. AFLP and SCAR markers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed (Brassica napus L.). Euphytica, 2006, 151: 401-409
    62. Huang L, Brooks S A, Li W L, Fellers J P, Trick H N, Gill B S. Map-based cloning of leaf rust resistance gene Lr21 from the large and polypolid genome of bread wheat. Genetics, 2003, 164: 655-664
    63. Jin J, Huang W, Gao J, Yang J, Shi M, Zhu M, Luo D, Lin H. Genetic control of rice plant architecture under domestication. Nat Genet, 2008, 40: 1365-1369
    64. Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S. Identification of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus. Plant Breed, 2005, 124: 367-370
    65. Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe W J J, Koornneef M, Kakutani T. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J, 2007, 49: 38-45
    66. Knaap E v d, Sanyal A, Jackson S A, Tanksley S D. High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics, 2004, 168: 2127-2140
    67. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano a M. Hd3a, a rice ortholog of the Arabidopsis FT Gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43: 1096-1105
    68. Konishi S, Izawa T, Lin S Y, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication. Science, 2006, 312: 1392-1396
    69. Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172-175
    70. Kresovich S, Szewc-McFadden A K, Bliek S M, McFerson J R. Abundance and characterization of simple sequence repeats (SSR) loci isolated from a size-fractionated genomic library of Brassica napus L. (rapeseed). Theor Appl Genet,1995, 91: 206-211
    71. Lagercrantz U, Putteill J, Coupland G, Lydicate D. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J, 1996, 9: 13-20
    72. Landry B S, Hubert N, Etoh T. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991, 34: 543-552
    73. Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science, 2006, 311: 1936-1939
    74. Li J, Thomson M, McCouch S R. Fine mapping of a grain-weight Quantitative Trait Locus in the pericentromeric region of rice Chromosome 3. Genetics, 2004, 216: 2187-2195
    75. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luok D, Han B, Li J. Control of tillering in rice. Nature, 2003, 422: 618-621
    76. Lincoln S, Daly M, Lander E. Constructing genetic maps with MAPMAKER/EXP
    3.0. ed. Cambridge: Whitehead Institute Technical report, Whitehead Institue, 1992, 1-12
    77. Liu J, Eck J V, Cong B, Tanksley S D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA, 2002, 99: 13302–13306
    78. Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B S, Choi S, Lim Y, Meng J. Flowering time Quantitative Trait Loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics, 2007, 177: 2433-2444
    79. Lowe A J, Moule C, Trick M, Edwards K J. Efficient large scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet, 2004, 108: 1103-1112
    80. Lyttle T W. Segregation distorters. Annu Rev Genet, 1991, 25: 511-557
    81. Mackay T F C, Stone E A, Ayroles J F. The genetics of quantitative traits: challenges and prospects. Nat Rev Genet, 2009, 10: 565-577
    82. Mather K, Jinks J L. Biometrical genetics. ed. London: Chapman and Hall, 1982, 5-23
    83. Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional Cloning of Rice Semidwarfing Gene, sd-1: Rice‘Green Revolution Gene’Encodes a Mutant Enzyme Involved in Gibberellin Synthesis. DNA Research, 2002, 9: 11-17
    84. Olsen K M, Caicedo A L, Polato N, McClung A, McCouch S, Purugganan M D. Selection under domestication: evidence for a sweep in the rice Waxy genomic region. Genetics, 2006, 173: 975-983
    85. Osterberg M K, Shavorskaya O, Lascoux M, Lagercrantz U. Naturally occurring indel variation in the Brassica nigra COL1 gene is associated with variation in floweringtime. Genetics, 2002, 161: 299-306
    86. Parkin I A, Sharpe A G, Lydiate D J. Patterns of genome duplication within the Brassica napus genome. Genome, 2003, 46: 291-303
    87. Paterson A H, Lander S E, Hewitt J D, Peterson S, Lincoln H D, Tanksley S D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphism. Nature, 1988, 335: 721-726
    88. Peng J, E D, Richards, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. `Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261
    89. Piquemal J, Cinquin E, Couton F. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet, 2005, 111: 1514-1523
    90. Price A H. Believe it or not, QTLs are accurate! Trends Plant Science, 2006, 11: 213-216
    91. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet, 2006, 114: 67-80
    92. Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet, 2006,113: 549-561
    93. Radoev M, Becker H C, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics, 2008, 179: 1547-1558
    94. Salvi S, Tuberosa R. To clone or not to clone plant QTLs: present and future challenges. Trends Plant Science, 2005, 10: 297-304
    95. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution: A mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702
    96. Shen X, Guo W, Lu Q, Zhu X, Yuan Y, Yu J Z, Kohel R J, Zhang T. Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers. Mol Breed, 2005, 15: 169-181
    97. Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009, 182: 851-861
    98. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40: 1023-1028
    99. Siebert P D, Chenchick A, Kellogg D E, Lukyanov K A, Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucl Acids Res, 1995, 23: 1087-1088
    100.Song K, Suzuki J, Slocum M. A linkage map of Brassica rapa (syn. campestris) based on restriction fragment length polymorphism loci. Theor Appl Genet, 1991, 82: 296-304
    101.Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630
    102.Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1),‘‘green revolution’’rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043–9048
    103.Stuber C W, Edwards K J, Wendel J F. Molecular marker-facilitated investigations ofquantitative trait loci in maize.II. Factors influencing yield and its component traits. Crop Sci, 1987, 27: 639-648
    104.Suwabe K, Iketani H, Nunome T, Kage T, Hirai M. Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet, 2002, 104: 1092-1098
    105.Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics, 2006, 173: 309-319
    106.Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922–7927
    107.Takeda S, Matsuoka M. Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet, 2008, 9: 444-457
    108.Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet, 2008, 40: 1360-1364
    109.Tanksley S D, Nelson J C. Advanced QTL analysis: unadapted a methed for the simultaneous and transfer of valuable QTLs from germplasm into elite discovery breeding lines. Theor Appl Genet, 1996, 92: 191-203
    110.Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286-289
    111.Tian F, Zhu Z, Zhang B, Tan L, Fu Y, Wang X, Sun C Q. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon). Theor Appl Genet, 2006, 113: 619-629
    112.Tuinstra M R, Ejeta G, Goldsbrough P B. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet, 1997, 95: 1005-1011
    113.U N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot, 1935, 7: 389 -452
    114.Udall J A, Quijada P A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet, 2006, 113: 597-609
    115.Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y C, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693-698
    116.Vos P, Hogers R, Bleeker M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23: 4407-4414
    117.Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, Weng J F, Wang H L, Lei C L, Wang J L, Zhang X, Cheng Z J, Guo X P. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 2006, 112: 1258-1270
    118.Wang D L, Zhu J, Li Z K L. Mapping QTLs with epistatic effects and QTL 9 environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255-1264
    119.Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370-1374
    120.Wang J, Gai J. Mixed inheritance model for resistance to agromyzid beanfly (Melanagromyza sojae Zehntner) in soybean. Euphytica, 2001, 122: 9-18
    121.Wang N, Wang Y, Tian F, King G J, Zhang C, Long Y, Shi L, Meng J. A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol, 2008, 180: 751-765
    122.Xiao H, Jiang N, Schaffner E, Stockinger E J, Knaap E v d. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science, 2008, 319: 1527-1530
    123.Xing Y Z, Tang W J, Xue W Y, Xu C G, Zhang Q. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as asingle Mendelian factor in rice. Theor Appl Genet, 2008, 116: 789-797
    124.Xu Y H, Zhu Y Y, Zhou H C, Li Q, Sun Z X, Liu Y G, Lin H X, He Z H. Identification of a 98-kb DNA segment containing the rice Eui gene controlling uppermost internode elongation, and construction of a TAC transgene sublibrary. Mol Gen Genomics, 2004, 272: 149-155
    125.Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767
    126.Xue Y, Jiang L, Su N, Wang J K, Deng P, Ma J F, Zhai H Q, Wan J M. The genetic basic and fine-mapping of a stable quantitative-trait loci for aluminium tolerance in rice. Planta, 2007, 227: 255-262
    127.Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet 1998, 97: 37-44
    128.Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet, 2005, 110: 634-639
    129.Yan L, Loukoianov A, Tranuilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene Vrn1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268
    130.Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity Quantitative Trait Locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2483
    131.Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007, 52: 891-896
    132.Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    133.Zhao J, Becker H C, Zhang D, Zhang Y, Ecke W. Conditional QTL mapping of oilcontent in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006, 113: 33-38
    134.Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633-1639
    135.Zhu Y, Nomur T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander L N, Kamiy Y, Yamaguchi S, He Z. ELONGATED UPPERMOST INTERNODE Encodes a cytochrome P450 monooxygenase that epoxidizes Gibberellins in a novel deactivation reaction in rice. Plant Cell, 2006, 18: 442-456

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700