用户名: 密码: 验证码:
棉花加工过程智能化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国的棉花加工现状相对于世界先进国家有很大差距。当前我国棉花加工行业对不同回潮率、含杂率的籽棉采用单一的轧花模式,或者由操作人员仅凭经验现场手动调整,缺少在线检测和智能控制环节,属于粗放型加工产业。棉花加工技术的落后致使不同品级的籽棉混级、混轧现象严重,降低了皮棉品级,造成了巨大的资源浪费与经济损失。
     棉花加工过程中影响棉花加工质量的因素众多,涵盖面较广,控制过程复杂,针对加工过程中自动化、智能化方面的不足,本文围绕回潮率在线检测及控制、颜色特征信息提取、杂质自动识别分类、加工设备对棉花性状参数的影响规律、重点设备数控化设计、皮棉质量评价方法及工艺智能优化等关键技术进行了研究。主要工作如下:
     回潮率是影响棉花加工及安全存储的一个关键因素,研究了棉花回潮率的在线检测方法及控制技术。提出一种基于相对湿度的棉花回潮率在线检测方法,并利用改进BP神经网络建立温度、相对湿度与棉花回潮率的关系模型。为了实现加工过程回潮率的精确控制,建立了籽棉烘干模糊PID控制模型,保证了适于棉花加工的回潮率条件。根据棉包储存理论建立皮棉加湿模糊PID控制模型,实现了皮棉加湿量的精确控制。
     棉花图像反映了其颜色特征和杂质信息,通过使用彩色CCD工业相机构建了棉花图像在线提取方案。在XYZ空间分析棉花的颜色特征,计算了反射率和黄度,为棉花品级的评定提供了条件。由于机采棉杂质种类较多以及棉花加工设备清杂侧重点不同,提出了基于杂质颜色与形状特征的棉花杂质分类识别统计方法。对于杂质颜色特征方面,首先对彩色图像在HSI空间采用矢量中值滤波,然后通过改进的模糊C均值聚类算法(FCM)对图像进行分割。改进的FCM能够自适应调整初始聚类中心及聚类数目,有效结合了棉花图像的经验知识与FCM的自适应推理功能,并且该算法在迭代过程中采用改进的欧式距离衡量样本点与聚类中心的颜色差别,此方法符合色调、饱和度对视觉的影响随强度O变化的规律。通过杂质图形区域的面积、圆度、形态复杂度、矩形度、伸长度,提取棉花杂质的形状特征,建立基于颜色与形状特征的棉花杂质识别BP神经网络模型,得到了棉花杂质的类型及其含量,为工艺路线的精确优化提供了依据。
     研究了棉花加工关键设备的清杂机理,针对棉花性状参数与设备工艺参数之间复杂的非线性映射关系,建立了清杂BP神经网络模型。在籽棉清理工艺阶段,分别建立倾斜式籽清、提净式籽清、回收式籽清及喂花轧花BP模型,分析刺钉滚筒转速、刺钉滚筒与格条栅间隙、提净滚筒转速、锯齿滚筒转速及籽棉产量等对籽棉性状参数的影响,并利用正交实验法验证各模型的正确性。针对倾斜式籽清机的结构缺陷,提出了刺钉滚筒与格条栅间隙自动调节的数控化设计方案。
     在皮棉清理工艺阶段,分别建立锯齿式皮清、气流式皮清BP神经网络模型,分析锯齿滚筒转速、锯齿滚筒与排杂刀间隙、皮棉产量、排杂刀数量及缝隙宽度等对皮棉性状参数的影响,并利用正交实验法验证各模型的正确性。提出了锯齿式皮清机排杂刀数量自动控制方案和锯齿滚筒与排杂刀间隙自动调节方案。
     为实现棉花加工工艺的智能优化,提出了基于神经网络-遗传算法(BP-GA)的工艺参数优化策略。采用基于BP模型串联设备的棉花性状参数控制方法,为GA算法提供了参数变量空间。棉花加工工艺优化是一个多目标多变量非线性优化问题,利用线性加权和法将该问题转换为基于收益最大化的单目标多变量优化问题,为遗传算法提供了适应度评价函数。棉花质量是评价函数中一个重要的参数,棉花质量依赖于其品级。通过纤维成熟程度、色特征及轧工质量建立了品级评判BP模型。对于遗传算法,提出基于基因组的混合实数编码方法,使得多层遗传操作得以简化;针对加工工艺要求,根据轧花后皮棉中不含重杂的约束条件,使用惩罚函数将其与适应度评价函数建立关联;结合相似度比较、适应度排序、最优保留策略和小范围竞争的思想,提出基于适应度排序的改进遗传算法,该算法具有较强的全局搜索能力及较快的收敛速度。
     通过本文的工作,提出了棉花加工过程在线检测技术和工艺参数自适应优化策略,该方法能够根据付轧籽棉的回潮率和性状参数等自动优化加工方案,并确定各设备工艺参数,为棉花加工行业实现真正意义上的“因花配车”和精细化作业提供了解决方案。
There's a giant gap between China's cotton processing and that of the advanced countries of the world. Currently, a single pattern is employed to seed cotton ginning regardless of moisture regain and various impurity rates; or operators adjust manually by rules of thumb, lack of both on-line detection and intelligent control, which makes cotton processing still in an extensive form. Because of the poor techniques in cotton processing, different grades of seed cotton are ginned on a mixed-level, affecting lint quality, and leading to a great waste of resources and economic loss.
     There are a variety of factors influencing cotton quality in cotton processing, and control process is complex. In view of insufficient automation and intellectualization of cotton processing, the dissertation carries out research into on-line detection and control techniques of moisture regain, color feature withdrawing, automatic classification of impurities, the laws of influence of processing equipment on the parameters of cotton traits, numerical control design of key equipment, lint quality evaluation approach, and process intelligent optimization. The main research contents of the dissertation are as follows:
     Because moisture regain is a key factor of cotton processing and secure storage, research on on-line detection and control technology of moisture regain is conducted. On-line detection method based on relative humidity was proposed. Relation model among temperature, relative humidity and moisture regain was established by improved BP neural network. In order to realize accurate control over moisture regain in processing, fuzzy PID control model of seed cotton drying was built, guaranteeing moisture regain suitable for cotton processing. According to cotton bale storage theories, the fuzzy PID control model of lint humidification was set up to reach accurate control over lint humidity.
     Cotton images reflect color features and impurity information of cotton. A program of extracting cotton images on-line based on color CCD cameras was launched. Through analysis of cotton color features reflectance Rd and yellowness +b were calculated in XYZ space, laying foundations for grading cotton quality. Each piece of cotton processing equipment focused differently in terms of cotton cleaning, so based on the impurity color and shape feature a classified statistics approach of cotton impurity was adopted. For impurity color features, vector median filtering was applied to color images in color space HIS firstly, and then through improved fuzzy C-means image segmentation was conducted. Improved fuzzy C-means adaptively adjusted initial clustering centers and clustering numbers, which drew on both the experience of the cotton images and the adaptive reasoning function effectively. In the iterative process, the fuzzy C-means clustering algorithm adopted improved Euclidean distance to measure color differences between sample points and cluster centers, which was consistent with the pattern that the impact of color saturation on vision varies with I. The shape features of cotton impurities were withdrawn by the area, roundness, complexity, rectangle degree and elongation of impurity graphic region. Based on color and shape features BP neural network model of cotton impurity identification was built to obtain the types of cotton impurities and the respective amount of different types, which laid foundations for accurate optimization of process route.
     Cleaning mechanism of key processing equipment in cotton processing was studied, and BP neural network model for cleaning was established due to complex non-linear mapping relations between cotton trait parameters and process parameters. At the stage of seed cotton cleaning, BP models were set up respectively in inclined seed cotton cleaners, stripper and stick cleaners, inclined and recovery seed cotton cleaners and saw gin stands. The influence on the parameters of seed cotton traits exercised by the rotational speed of barbed nail rollers, the clearance between barbed nail rollers and lattice grates, the rotational speed of defecation rollers and that of sawtooth rollers and the yield of seed cotton was analyzed. The orthogonal experimental method was used to verify the correctness of each model. Due to the structural defects of inclined seed cotton cleaners, numerical control design scheme of automatic adjustment of the clearance between barbed nail rollers and lattice grates was brought forward.
     At the lint cleaning stage, BP neural network models were respectively established in saw lint cleaners, flow-through air lint cleaners. Besides, the influence on the parameters of lint traits exerted by the rotational speed of saw type rollers, the clearance between grid bars and saw type rollers, the numbers of grid bars, the slit width and the yield of lint was analyzed. The orthogonal experimental method was employed to verify the correctness of each model. A program of automatic control of the numbers of grid bars in saw lint cleaners and that of automatic adjustment of the clearance between saw type rollers and grid bars were put forward.
     To achieve intelligent optimization of cotton processing technology, parameter optimization strategies based on BP-GA were proposed. A method of controlling the parameters of cotton traits of series equipment was established based on BP model which provided the genetic algorithm with parametric variables space. Cotton processing optimization is multi-objective, multi-variable and non-linear, which can be converted to single-targeted and multi-variable optimization based on maximizing revenue by the linear weighted sum, providing the fitness evaluation function for the genetic algorithm. Cotton quality, which highly depends on its grade, is a primary parameter of evaluation function. BP model of grade evaluation was set up through cotton fiber maturity, color characteristics and rolling quality. As to genetic algorithm, the genome-based mixed-real-coded method was proposed, making multi-layer genetic manipulation simplified. In order to meet the requirements of processing technology, according to the constraint condition that there is no flotation in ginned cotton after ginning, the penalty function was used to associate this constraint condition with the fitness evaluation function. An improved genetic algorithm was brought forward based on the ideas of similarity comparison, fitness sorting, optimal retention strategies and small-scale competition. The algorithm had strong global search ability and fast convergence speed.
     On-line detection techniques and adaptive optimization strategies of parameters are proposed in the dissertation. The method can optimize automatically processing programs based on moisture regain and trait parameters of seed cotton, and also determine the parameters of each piece of equipment. The method provides a solution to fine processing and helps to realize "adjusting according to cotton traits".
引文
[1]http://www.china-cotton.org/data-stat.php.
    [2]http://www.chinayarn.com/news/ReadNews.asp?NewsID=53823.
    [3]王敏.机采棉清理加工工艺试验研究[D].兰州:甘肃农业大学,硕士学位论文,2009.
    [4]许刚.棉花加工智能化关键技术研究[D].济南:山东大学,硕士学位论文,2009.
    [5]http://info.texnet.com.cn/content/2011-01-07/324792.html.
    [6]徐红,赵琦.皮棉性能对纺织成本与质量的影响[J].中国棉花加工,2009.(2):23-28.
    [7]刘燕.我国棉花加工技术发展概述[J].中国棉花加工,2010.(1):20-21.
    [8]Schlueter F E, Moines D, Iowa. Cotton Cleaning Structure for a Cotton Harvester:United States,4606177[P].1986-08-19.
    [9]http://www.lummus.com/ginning.html.
    [10]王士国.新疆兵团机采籽棉预处理清理工艺试验研究[D].咸阳:西北农林科技大学,硕士学位论文,2008.
    [11]周亚立,刘向新.兵团棉花机械收获加工设备及配套技术[J].新疆农垦科技,2005,(1):34-35.
    [12]许彦亭,季向民.结合国情合理设计机采棉加工工艺[J].中国棉花加工,2001,(4):16,41.
    [13]王铭,耿向阳,曲京武.HVI与烘箱法测定棉花回潮率的差异分析[J].中国纤检,2011,(1):64-65.
    [14]郑颖航,丁天怀,李勇.基于电阻测量原理的新型棉花水分在线自动测量仪[J].仪表技术与传感,2002,(7):21-22,28.
    [15]Byler R K. Resistance-Type Portable Cotton Lint Moisture Meter[J]. Applied Engineering in Agriculture,2006,22(1):13-17.
    [16]张永林,王旺平,郑长征,等.谷物干燥实时在线智能水分测量系统[J].农业工程学报,2007,23(9):137-140.
    [17]王晓雷,胡建东,江敏,等.附加电阻法快速测定土壤含水率的试验[J].农业工程学报,2009,25(10):76-81.
    [18]Krajewski A S, Gordon S G. An In-Line, Non-Invasive Cotton Moisture Measurement Device for Gin Ducts[J]. Transactions of the ASABE,2010,53(4):1331-1339.
    [19]Baye T M, Pearson T C, Settles A M. Development of a Calibration to Predict Maize Seed Composition Using Single Kernel Near Infrared Spectroscopy[J]. Journal of Cereal Science, 2006,43(2):236-243.
    [20]李勇,魏益民,张波,等.近红外水分稳健分析模型研究[J].光谱学与光谱分析,2005,25(12):1963-1967.
    [21]黎泽伦,黄志诚,黄友均,等.微波水分测量仪的设计[J].农业机械学报,2009,40(2):81-83.
    [22]Ghorashi H M, Galyon M E, Blalock T V. Moisture Sensor:United States,6020744[P]. 2000-02-01.
    [23]GB 1103-2007.棉花细绒棉[S].北京:中国标准出版社,2007.
    [24]杨文柱,李道亮,魏新华,等.基于自动视觉检测的棉花异性纤维分类系统[J].农业机械学报,2009,40(12):177-227.
    [25]杨文柱,李道亮,魏新华,等.基于光谱分析的棉花异性纤维最佳波段选择方法[J].农业机械学报,2009,25(10):186-193.
    [26]杨文柱,李道亮,魏新华,等.棉花异性纤维图像分割方法[J].农业机械学报,2009,40(3):156-160.
    [27]Li D L, Yang W Z, Wang S L. Classification of Foreign Fibers in Cotton Lint Using Machine Vision and Multi-Class Support Vector Machine[J]. Computers and Electronics in Agriculture, 2010, (74):274-279.
    [28]Xin Q U, Ding T H. A Fast Feature Extraction Algorithm for Detection of Foreign Fiber in Lint Cotton within a Complex Background[J]. Acta Automatica Sinca,2010,36(6):785-790.
    [29]丁天怀,郏东耀.利用多颜色空间特征融合方法检测近似目标[J].清华大学学报(自然科学版),2006,46(2):176-179.
    [30]瞿鑫,丁天怀.基于保矩算法的异性纤维特征提取方法[J].计算机工程,2008,37(6):4-6.
    [31]郏东耀,丁天怀.检测皮棉内部杂质的透射成像影响因素分析[J].农业机械学报,2005,36(2):65-69.
    [32]周阳,朱邦太,李勋,等.一种基于视频技术的棉花异性纤维分拣方法[J].河南科技大学学报(自然科学版),2008,29(2):90-93.
    [33]罗德坡,朱邦太,李勋.紫外线荧光效应及其在棉花异性纤维分拣系统中的应用[J].河南科技大学学报(自然科学版),2008,28(2):63-66.
    [34]尚敏娟,朱邦太,李勋,等.一种基于最小二乘法的异性纤维分拣方法[J].工业控制计算机,2008,21(5):64-65.
    [35]冯显英,任长志,解守华.基于阀岛技术的异性纤维清除系统结构与设计[J].机床与液压,2006,(11):139-140.
    [36]冯显英,任长志,黄燕云.基于机器视觉的异性纤维检测系统[J].山东大学学报(工学版),2006,36(4):5-8.
    [37]郑文秀,刘双喜,魏新华,等.棉花异性纤维图像分割方法研究与实现[J].中国棉花加工,2008,(4):24-26.
    [38]郑文秀,刘双喜,魏新华,等.基于Mean-shift的棉花异性纤维图像分割[J].山东农业大学学报(自然科学版),2009,40(2):224-228.
    [39]张馨,刘双喜,郑文秀,等.基于色调分离的棉花异性纤维分割[J].中国棉花加工,2009,(4):35-40.
    [40]Pai A, Sari-Sarraf H, Hequet E F. Recognition of Cotton Contaminants Via X-ray Microtomographic Image Analysis[J]. IEEE Industry Applications Society,2004,40(1):77-85.
    [41]Siddaiah M, Lieberman M A, Hughs S E, et al. Small Trash Identification in Cotton Using Imaging Techniques[C]. Proceedings of the 2004 Beltwide Cotton Conferences. San Antonio, United States.2004:2394-2401.
    [42]Thomasson J A. Image-Processing Solution to Cotton Color Measurement Problems in Gin Process Control[D]. Lexington:University of Kentucky, Ph.D. Thesis,1997.
    [43]Anthony W S, Byler R K, Deavenport L, et al. Experiences with Gin Process Control in the Midsouth and West [J]. Applied Engineering in Agriculture,1995,11(3):409-414.
    [44]Siddaiah M, Lieberman M A, Hughs S E, et al. Automation in Cotton Ginning[J]. International Journal of Intelligent Systems,2004,19(1-2):111-129.
    [45]Byler R K, Anthony W S. Initial Experiences in Computer Control of Cotton Gin Drying[J]. Applied Engineering in Agriculture,1992,8(5):703-709.
    [46]Anthony W S. Impact of Adding Moisture at the Gin Lint Slide on Cotton Fiber Quality[J]. Applied Engineering in Agriculture,2004,20(6):719-734.
    [47]Mangialardi J G J, Anthony W S. Retrospective View of Cotton Gin Dryers[J]. National Cotton Council Educational Brochure,2003:1-54.
    [48]Boykin J C. The Effects of Dryer Temperature and Moisture Addition on Ginning Energy and Cotton Properties[J]. Journal of Cotton Science,2005,9(3):155-165.
    [49]Byler R K. Historical Review on the Effect of Moisture Content and the Addition of Moisture to Seed Cotton before Ginning on Fiber Length [J]. The Journal of Cotton Science,2006, (10): 300-310.
    [50]Ray S J. Alternative Configurations in a Cylinder-Type Cleaner for Seed Cotton [J]. Applied Engineering in Agriculture,2006,22(5):643-649.
    [51]Le S. Cleaning Performance of Modified Cylinder Cleaners [J]. The Journal of Cotton Science, 2006,10:273-283.
    [52]Whitelock D P, Anthony W S. Evaluation of Cylinder Cleaner Grid Bar Configuration and Cylinder Speed for Cleaning of Seed Cotton, Lint, and Lint Cleaner Waste [J]. Applied Engineering in Agriculture,2003,19(1):31-37.
    [53]郭斌杰.清花刺钉辊筒的结构设计[J].中国棉花加工,2010,(2):8-11.
    [54]International Cotton Advisory Committee. Report of an Expert Panel on Ginning Methods: Impact of Ginning on Giber Quality:the Best Ginning Practices[R]. Washington DC, 2001:1-27.
    [55]Boykin J C. Seed Cotton Cleaning Effects on Seed Coat Fragments[C]. Proceedings of the 2009 Beltwide Cotton Conferences. San Antonio, United States,2009:483-486.
    [56]Sui R, Thomasson J A, Byler R K, et al. Effect of Mechanical Actions on Cotton Fiber Quality and Foreign-Matter Particle Attachment to Cotton Fibers[C]. Proceedings of the 2010 Beltwide Cotton Conferences. New Orleans, United States,2010:586-595.
    [57]郭倩如.锯齿皮棉清理机排杂刀的调整[J].中国棉花加工,2007,(3):11-12.
    [58]Delhom C D, Byler R K. Saw-Type Lint Cleaner Damage As Related to Saw Speed[C].2009 ASABE Annual International Meeting. Reno, United States,2009:Paper No 096137.
    [59]Delhom C D, Byler R K, Cui X, et al. Saw-Type Lint Cleaner Damage by Machinery Components[C].2008 ASABE Annual International Meeting. Rhode Island, United States, 2008:Paper No 084094.
    [60]Anthony W S, Greenville, Miss. Apparatus and Method for Reducing Fiber Waste by Lint Cleaners:United States,5909786[P].1998-06-30.
    [61]Gvili M E, Wayland, MA, et al. Apparatus and Method for Controlling the Amount of Trash in Lint:United States,0217076[P].2004-04-02.
    [62]张文翔.基于模糊推理的棉花加工质量监控系统的研究[D].北京:清华大学,硕士学位论文,1998.
    [63]李勇.皮棉质量评价模型与棉机变频调速系统的建立[D].北京:清华大学,硕士学位论文,2003.
    [64]丁天怀,李勇,苗君哲,等.基于BP神经网络的皮棉杂质在线检测方法[J].农业工程学报,2003,19(2):137-140.
    [65]Hudson D, Ethridge D, Brown J. Financial Feasibility of a Gin Process Control System:A Preliminary Assessment[C]. Proceedings of the 1994 Beltwide Cotton Conference. Memphis, United States,1994:172-175.
    [66]Mayfield W, Green K, Todd L, et al. Cost of Ginning Cotton[C]. Proceedings of the 1999 Beltwide Cotton Conference. Memphis, United States,1999:419-429.
    [67]刘旭平.轧花系统自动控制仪的研制及其控制方法研究[D].北京:清华大学,硕士学位论文,1997.
    [68]徐小妮.基于模糊控制的棉花加工计算机控制系统[D].济南:济南大学,硕士学位论文,2006.
    [69]王晓明.棉花加工智能控制系统的研究与开发[D].济南:山东大学,硕士学位论文,2008.
    [70]Anthony W S. Evaluation of an Optimization of a Cotton Ginning Systems[J]. Transactions of the ASABE,1985,30(2):411-414.
    [71]Anthony W S, Wesley R A, Brown L G. Dynamic Programming Model of a Cotton Ginning System[J]. Transactions of the ASABE,1982,25(1):179-186.
    [72]Anthony W S. Computerized Gin Process Control[J]. Applied Engineering in Agriculture,1990,6(1):12-18.
    [73]Bennett B, Misra S, Barker G. Lint Cleaning Stripper-Harvested Cotton for Maximizing Producer Net Returns[J]. Applied Engineering in Agriculture,1997,13(4):459-463.
    [74]Nelson J, Misra S, Bennett B, et al. Gin Lint Cleaning to Maximize Producer Net Returns Revisited[J]. Applied Engineering in Agriculture,1999,15(6):621-626.
    [75]Anthony W S. Impact of Cotton Gin Machinery Sequences on Fiber Value and Quality [J]. Applied Engineering in Agriculture,1996,12(3):351-363.
    [76]Anthony W S, Greenville, Byler R K, et al. System and Method for Materials Process Control: United States,5805452[P].1998-09-08.
    [77]Stephen A F, Charles R H. IntelliGin-A Ginning Revolution from Process Control Technology [J]. International Food and Agribusiness Management Review,1998,1(4): 555-566.
    [78]Patil P G, Padole P M, Agrawal J F, et al. Effect of Roller Speed and Moisture Content of Cotton on Ginning Rate, Lint Quality and Electric Energy Consumption in Double Roller Gins[J]. Textile Research Journal,2007,77(9):635-644.
    [79]赵萌.皮棉加湿研究与探讨[J].中国棉花加工,2005,(5):35-37.
    [80]王婧,姜朋,李栋,等.不同贮藏条件下棉花和大豆种子的水分变化规律及其预测模型[J].作物学报,2010,36(7):1161-1168.
    [81]朱其祥.开展棉垛温湿度自动监测技术研究的意义[J].中国棉花加工,2010,(2):23-25.
    [82]Byler R K. Seed Cotton Moisture Restoration in a Commercial Gin[J]. Applied Engineering in Agriculture,2008,24(5):587-591.
    [83]谷国富.轧花工艺物料水分智能控制系统[J].中国棉花加工,2007,(6):11-12.
    [84]庞鸿锋,罗诗途,陈棣湘,等.基于BP神经网络的磁通门传感器温度误差补偿[J].测试技术学报,2011,25(3):278-282.
    [85]刘超,白玲.基于BP神经网络拟合水泵特性曲线[J].农机化研究,2009,31(6):202-205.
    [86]董永强,王国志.人工神经网络在结构近似重分析中的应用研究[J].现代电子技术,2008,31(10):136-138.
    [87]陶永华.新型PID控制及其应用:第一讲PID控制原理和自整定策略[J].工业仪表与自动化装置,1997,(4):60-64,46.
    [88]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [89]Hodel A S, Hall C E. Variable-Structure PID Control to Prevent Integrator Windup[J]. IEEE Transaction on Industrial Electronics,2001,48(2):442-451.
    [90]陶永华,尹怡欣,葛芦生.新型PID控制系统及其应用[M].北京:机械工业出版社,1998.
    [91]Grossberg S. Nolinear Neural Networks:Principles, Mechanisms and Architectures[J]. Neural Networks,1998,1(1):47-81.
    [92]吴鸣锐.大规模模式识别问题的分类器设计研究[D],北京:清华大学,博士学位论文,2000.
    [93]Rumelhart D E, Hinton G E, Williams R J. Learning Representation of Back-Propagation errors[J]. Nature,1986,3(23):533-536.
    [94]张德丰. MATLAB神经网络应用设计[M].北京:机械工业出版社,2009.
    [95]Rumelhart D E, Hinton G E, Williams R J. Parallel Distributed Processing:Explorations in the Microstructure of Cognition[M]. Cambridge MA:The MIT Press,1986.
    [96]Dayan P. Computation modeling[J]. Current Opinion in Neurobiology,1994, (4):212-217.
    [97]马东昱,孙龙清.基于图像特征的籽棉品级分级模型[J].计算机应用,2010,30(8):2235-2238.
    [98]陈芸,王永初.典型对象特性的优化控制器设计及其参数整定[J].华侨大学学报(自然科学版),2004,25(3):294-297.
    [99]王伟,张晶涛,柴天佑.PID参数先进整定方法综述[J].自动化学报,2000,26(3):347-355.
    [100]胡包钢,应浩.模糊PID控制技术研究发展回顾及其面临的若干重要问题[J].自动化学报,2001,27(4):294-297.
    [101]顾利霞,刘兆峰.亲水性纤维[M].北京:中国石化出版社,1997.
    [102]Gordon S, Home S, Sluijs M V. Moisture in Cotton-the Fundamentals[J]. The Australian Cotton Grower,2009:32-35.
    [103]贾高鹏.原棉回潮率电测方法研究[D].西安:西安工程科技学院,硕士学位论文,2006.
    [104]Barker G L. Temperature Effects on Lint Cotton Equilibrium Moisture Content [J]. Transactions of the ASABE,1992,35(5):1377-1380.
    [105]Baker G L, Laird J W, Buscha T E. Room Temperature Regain Rates for Cotton Lint Moisture[J]. Transactions of the ASAE,1991,34(3):791-794.
    [106]http://www.sensirion.com/en/01_humidity_sensors/03_humidity_sensor_shtl 5.htm.
    [107]王保吉,赵建周.单片机与数字式温湿度传感器SHT11虚拟I2C总线设计[J].安阳工学院学报,2005,(6):13-15.
    [108]陈博,欧阳竹.基于BP神经网络的冬小麦耗水预测[J].农业工程学报,2010,26(4):81-86.
    [109]张春乐.如何提高机采棉加工质量[J].新疆农机化,2010,(1):39-40.
    [110]Barker G L, Laird J W. Temperature Effects on Cotton Lint Moisture Regain Rates [J]. Transactions of the ASABE,1992,35(2):435-441.
    [111]http://datasheets.maxim-ic.com/en/ds/DS18B20.pdf.
    [112]Anthony W S. The Impact of Excess Moisture in the Bale on Fiber Quality [C]. Proceedings of the 2003 Beltwide Cotton Conferences. Nashville, United States,2003:746-760.
    [113]Byler R K, Gamble G R, Boykin J C. Quality Effects from the Addition of Moisture to Seed Cotton with Two Surfactants [J]. Journal of Cotton Science,2008,12(4):345-356.
    [114]陈松恩,王志成.HVI检验与传统机检原棉杂质关系的探讨[J].棉纺织技术,2009,37(7):409-411.
    [115]翟跃辉.我国棉花色泽感官检验和HVI Spectrum检测的对比分析[J].中国纤检,2003,(7): 27-29.
    [116]郭俊先.应义斌.皮棉中杂质检测技术与检出装备的研究进展[J].农业机械学报,2008,39(7):107-116.
    [117]Liebeman M A, Patil R B. Clustering and Neural Networks to Categorize Cotton Trash[J]. Optical Engineering,1994,33(5):1642-1653.
    [118]Liebeman M A, Patil R B. Evaluation of Learing Vector Quantization to Classify Cotton trash[J]. Optical Engineering,1997,36(3):914-921.
    [119]Siddaiah M, Liberman M A, Hughs S E, et al. A Soft Computing Approach to Classification of Trash in Ginned Cotton[C]. Proceedings of the Eighth International Fuzzy Systems Association World Congress. Taipei, Taiwan,1999, (1):151-155.
    [120]Siddaiah M, Liberman M A, Hughs S E, et al. Identification of Trash Types in Ginned Cotton Using Neuro Fuzzy Techniques[C].1999 IEEE International Fuzzy Systems Conference Proceedings. Seoul, South Korea,1999, (2):738-743.
    [121]Siddaiah M, Liberman M A, Hughs S E, et al. Identification of Trash Types and Correlation Between AMS and SWCGRL Trash Content in Ginned Cotton[C]. Proceedings of the 2000 Beltwide Cotton Conferences. San Antonio, United States,2000, (2):1549-1555.
    [122]Stephen A F, Charles R H. IntelliGin-A Ginning Revolution from Process Control Technology[J]. International Food and Agribusiness Management Review,1998,1(4): 555-566.
    [123]熊宗伟.我国棉花纤维质量及颜色等级划分研究[D].北京:中国农业大学,硕士学位论文,2005.
    [124]王学梅.棉花色泽仪的研制[J].中国棉花加工,2005,(5):25-26.
    [125]Nickerson D, Hunter R S, Powell M G. New Automatic Colorimeter for Cotton[J]. Journal of the Optical Society of America,1950,40(7):446-446.
    [126]Thomasson J A. Recalibration Interval for Color Rrash Meters in Cotton Gins [J]. Applied Engineering in Agriculture,1992,8(2):147-151.
    [127]于小新.色特征图介绍[J].中国纤维,2005,(2):20-22.
    [128]韩晓微.彩色图像处理关键技术研究[D].沈阳:东北大学,博士学位论文,2005.
    [129]冈萨雷斯.数字图像处理第二版[M].北京:电子工业出版社,2006.
    [130]金良海,姚行中,李德华.彩色图像矢量滤波技术综述[J].中国图象图形学报,2009,14(2):243-254.
    [131]Cheng H D, Sun J Y. Color Image Sementation:Advances and Prospects[J]. Pattern Recongnition,2011,34(12):2259-2281.
    [132]Liu J Q, Yang Y H. Multiresolution Color Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(7):689-700.
    [133]Plataniontis K N, Venetsanopoulos A N. Color Image Processing and Applications[M]. Heidelberg:Springer,2006.
    [134]黄玥.复杂背景下的灰度图像分割算法研究[D].太原:太原理工大学,硕士学论文,2008.
    [135]林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报,2005,10(1):1-10.
    [136]魏建香,孙越泓,苏新宁.基于聚类分析的学科交叉研究[J].情报学报,2010,29(6):1066-1073.
    [137]Dunn J C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters[J]. Journal of Cybernetics,1973, (3):32-57.
    [138]Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algoritms[M]. New York: Plenum Press,1981.
    [139]王婷婷.彩色图像分割方法的研究与实现[D].青岛:山东科技大学,硕士学位论文,2005.
    [140]王红霞.彩色图像形态学处理方法研究[D].沈阳:东北大学,硕士学位论文,2006.
    [141]高浩亮.统收式采棉机籽棉预清理装置的研究[D].石河子:石河子大学,硕士学位论文,2010.
    [142]王雪,丁天怀,刘旭平.基于遗传模糊神经网络算法的棉花轧花过程智能监控方法研究[J].农业工程学报,1998,(1):204-208.
    [143]Anthony W S, Mayfield W D. Cotton Ginners Handbook[M]. Washington DC:United States Department of Agriculture,1994.
    [144]Holt G A. Optimization of Fiber Quality, Production Rate, and Lint Turnout For The Powered Roll Gin Stand Utilizing Response Surface Methodology and Desirability Functions[D]. Lubbock:Texas Tech University, Ph.D. Thesis,2004.
    [145]唐云岚.集成神经网络和多目标进化算法的卷烟产品参数优化设计方法及应用研究[D].长沙:国防科学技术大学,博士学位论文,2008.
    [146]李向武.基于小波网络的系统辨识理论及模式识别方法在气象预测中的应用[D].广州:华南理工大学,博士学位论文,1997.
    [147]何田中.神经网络分类器及其规则抽取技术的研究[D].南昌:南昌大学,硕士学位论文,2005.
    [148]魏娟,高世江,夏强.棉花加工与除杂[J].中国棉花加工,2006,(3):25-29.
    [149]陈玉辉,彭根旺.影响籽棉清理机清杂效率的因素[J].中国棉花加工,2008,(6):7-9.
    [150]Whitelock D P, Anthony W S. Evaluation of Cylinder Cleaner Grid Bar Configuration and Cylinder Cleaner Speed for Cleaning of Seed Cotton, Lint, and Lint Cleaner Waste[J]. Applied Engineering in Agriculture,2003,19(1):31-37.
    [151]苏金明,王永利MATLAB7.0实用指南(上册)[M].北京:电子工业出版社,2004.
    [152]夏伯忠.正交试验法[M].长春:吉林人民出版社,1985.
    [153]Armijo C B, Baker K D, Hughs S E. Harvesting and Seed Cotton Cleaning of a Cotton Cultivar with a Fragile Seed Coat[J]. The Journal of Cotton Science,2009, (13):158-165.
    [154]杨建梅,陈发,王桂盛,等.机采棉各技术环节同成纱质量的相关性研究[J].中国棉花,2000,27(6):11-12.
    [155]张兆峰,欧阳光红,徐炳琴.机采棉的性能特征及纺纱试验[J].棉纺织技术,2005,33(3):149-152.
    [156]Mangialardi J G J, Anthony W S. Field Evaluations of Air and Saw Lint Cleaning Systems[J]. Journal of Cotton Science,1998,2(1):53-61.
    [157]Dunn T A, Misra S K, Barker G L, et al. Predicting Lint Cleaner Efficiency and Fiber Quality Characteristics in Cotton Ginning[J]. Applied Engineering in Agriculture,2002,18(2): 141-146.
    [158]Anthony W S. Methods to Reduce Lint Cleaner Waste and Damage[J]. Transactions of the ASAE,2000,43(2):221-229.
    [159]Le S. Fiber Quality Properties Produced by Saw-Type Lint Cleaners[J]. Applied Engineering in Agriculture,2007,23(2):125-130.
    [160]于建芝,戴瑞玉.棉花加工中使用皮棉清理机的利与弊[J].中国棉花加工,2006,(3):30.
    [161]董德荣.皮清机的研制、完善及正确使用[J].中国棉花加工,1996,(2):20-23.
    [162]韩振玉.探析皮棉清杂效果影响因素[J].中国棉花加工,2003,(5):34.
    [163]黄新.影响皮棉清理机清杂效率因素分析[J].中国棉花加工,2010,(2):13-15.
    [164]Boykin J C, Armijo C B, Whitelock D P, et al. Fractionation of Foreign Matter in Ginned Lint Before and After Lint Cleaning[J]. Transactions of the ASABE,2009,52(2):419-426.
    [165]郭海平.气流式皮棉清理效果评估[J].中国棉花加工,1995,(5):42-45.
    [166]王少林,茅忠明,伍贻文.棉花加工自动控制系统的设计[J].农业机械学报,2002,33(1):54-57.
    [167]王少林,孟庆金,茅忠明,等.专家模糊控制在棉花加工过程的应用[C].2001中国控创与决策学术年会论丈集.西安,中国,2001:533-535.
    [168]李洪波.机采棉清理加工的全程自动化监控技术[J].中国棉花加工,2008,(3):19-20.
    [169]张生.棉花加工工艺流程研究与发展展望[J].中国棉花加工,2009,(3):18-20.
    [170]王艳秋.先进控制技术的集成及应用研究[D].沈阳:东北大学,博士学位论文,2006.
    [171]汪光文.基于并行遗传算法的风扇/压气机叶片气动优化设计[D].南京:南京航空航天大学,博士学位论文,2009.
    [172]孙学勤,刘丽,付萍,等.一种连续空间优化问题的蚁群算法及应用[J].计算机工程与应用,2005,41(34):218-221.
    [173]高海兵,周驰,高亮,等.广义粒子群优化模型[J].计算机学报,2005,28(12):1980-1987.
    [174]向剑.棉花的色泽、成熟系数与品级关系的探讨[J].中国棉花加工,1998,(1):39-41.
    [175]《棉花仪器化检验》(草案)起草小组.棉花品级与色特征级的辩证关系[J].中国纤检,2005,(5):5-7.
    [176]郑芝奖.我国棉花品级与棉花色征指标的关系[J].纺织学报,2001,22(2):87-89.
    [177]刘超,赵书林.棉花的主要品质指标与品级之间的关系[J].天津工业大学学报,2009,8(6):45-48.
    [178]http://www.socotton.com/News/NewsList.asp?CateID=Industry.
    [179]刘开培.基于Pade逼近的纯滞后系统增益自适应内模PID控制[J].武汉大学学报(工学版),2001,34(4):93-95.
    [180]白瑞林,李军.大纯滞后系统的Smith-NN预估控制[J].电子测量与仪器学报,2000,14(4):40-44.
    [181]吴波,纪兴权.大纯滞后过程的采样控制及其工程实现中的若干问题[J].自动化仪表,2000,21(5):32-35.
    [182]郑金华,蒋浩,邝达,等.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297.
    [183]Fonseca C M,Fleming P J. Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms I:A Unified Formulation[J]. IEEE Transactions on Systems Man and Cybernetics-Part A:Systems and Humans,1998,28(1):1-13.
    [184]Coello C C A, Van V D A, Lamont G B.Evolutionary Algorithms for Solving Multi Objective Problems[M]. New York:Kluwer Accdemic/Plenum Publishers,2002.
    [185]Lee C Y, Moon Y P, Cho Y J, A Lexicographically Fair Allocation of Discrete Bandwidth for Multicast Traffics[J]. Computer and Operations Research,2004:2349-2363.
    [186]郑涛.字典序多目标非线性预测控制的研究[D].合肥:中国科学技术大学,博士学位论 文,2008.
    [187]胡毓达,罗青林.关于较多有效性与Pareto有效性的两个定理[J].上海交通大学学报,1997,31(7):100-102.
    [188]胡毓达,孙尔江.多目标规划的几个最优性充分条件[J].上海交通大学学报,1994,28(3):89-93.
    [189]徐玖平,李军编.多目标决策的理论与方法[M].北京:清华大学出版社,2005.
    [190]Hwalng C L, Yoon K. Multi Attribute Decision Making:Memods and Applications, States-of Art Survey[M]. Berlin and New York:Springer-Verlag,1981.
    [191]Das I,Dennis J A. A Closer Look At Drawbacks of Minimizing Weighted Sums of Objectives for Pareto Set Generation in Multicriteria Optimization Problems[J]. Structural Optimization, 1997,14(1):63-69.
    [192]王伟,胡清华,于霄,等.多值属性系统的故障诊断策略最优化方法[J].仪器仪表学报,2008,29(5):1073-1078.
    [193]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,2005.
    [194]Shaffer J D. Some Experiment in Machine Learning Using Vector Evaluated Genetic Algorithms[D]. Nashville:Vanderbilt University, Ph.D. Thesis,1984.
    [195]Holland J H. Adaptation in Natural and Artificial Systems[M]. Cambridge:The MIT Press, 1992.
    [196]王小平,曹立明.现代优化计算方法[M].西安:西安交通大学出版社,2005.
    [197]飞思科技产品研发中心.MATLAB6.5辅助优化计算与设计[M].北京:电子工业出版社,2003.
    [198]雷英杰,张善文,李续武,等Matlab遗传算法工具箱及应用[M].西安:西安电子科技大学出版杜,2005.
    [199]Ludvig J, Hesser J, Manner R. Tackling The Representation Problem by Stochastic Averaging[C]. Proceedings of the 7th International Conference on Genetic Algorithms. San Francisco, United States,1997:196-203.
    [200]杨晓华,陆桂华,杨志峰.格雷码加速遗传算法及其理论研究[J].系统工程理论与实践,2003,23(3):100-106.
    [201]Michalewicz Z. Genetic Algorithms+Data Structures=Evolution Programs[M]. New York: Spinger Press,1998.
    [202]邹琳,夏巨谌,胡国安.基于实数编码的多种群并行遗传算法研究[J].小型微型计算机系统,2004,25(6):982-986.
    [203]Gen M, Cheng R. Genetic Algorithms and Engineering Optimization[M]. New York: Wiley-Interscience,1999.
    [204]张国辉,蔡力钢,高亮,等.基于改进遗传算法的工艺路线优化[J].机械设计与制造,2006,(8):14-16.
    [205]刘伟,王太勇.基于遗传算法的工艺路线生成及优化[J].农业机械学报,2009,40(8):203-208.
    [206]谭显春,刘飞曹,华军.绿色制造的一种工艺路线决策模型及其求解算法[J].机械工程学报,2004,40(4):154-159.
    [207]白明.基于改进蚁群算法求解FMS工艺路线优化配置问题的研究[D].北京:北方交通大学,硕士学位论文,2003.
    [208]Grefenstette J J. Optimization of Control Parameters for Genetic Algorithms[J]. IEEE Transactions on Systems, Man and Cybernetics,1986,16(1):122-128.
    [209]DeJong KA. Analysis of the Behavior of a Class of Genetic Adaptive Systems [D]. Michigan: University of Michigan, Ph.D. Thesis,1975.
    [210]Homaifar A, Qi X, Lai H. Constrained Optimization Via Genetic Algorithms[J]. Simulation, 1994:62(4),242-253.
    [211]Coello C A C. Use of a Self-Adaptive Penalty Approach for Engineering Optimization Problems[J]. Computers in Industry,2000, (41):113-127.
    [212]李世伦,罗懋康,何小勇.基于种群分类解决遗传算法的早熟与漂移问题[J].四川大学学报(工程科学版),2006,38(6):127-130.
    [213]Rudolph G. Convergence of Non-elitist Strategies[C]. IEEE World Congress on Computational Intelligence. Orlando:United States,1994, (1):63-66.
    [214]Eiben A E, Aarts E H L, Van H K M. Global Convergence of Genetic Algorithms:a Markov Chain Analysis[J]. Lecture Notes in Computer Science,1991,4(96):3-12.
    [215]范艳峰,何华灿,艾丽蓉.[0,∞)区间的N范数及广义自相关系数k的计算方法[J].西安工业大学学报,2010,28(2):270-275.
    [216]戴奉周,刘宏伟,吴顺君.最大相关系数准则下的子带域宽带雷达杂波抑制与距离像增强[J].电子与信息学报,2009,31(7):1701-1705.
    [217]Jun Y. Cosine Similarity Measures for Intuitionistic Fuzzy Sets and Their Applications[J]. Mathematical and Computer Modeling,2011,53(1-2):91-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700