立体视频深度图提取及深度序列编码技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多视点视频广泛应用于三维视频(Three Dimensional Video,3DV)系统,自由视点视频(Free-Viewpoint Video, FVV)系统,三维医疗显示系统和三维视频监控系统等。尤其作为多视点视频面向广大消费者日常生活的一个典型应用,自由视点视频系统成为了现阶段视频信号处理领域的热点议题,作为新生代视觉多媒体系统,其允许用户在任意角度观看视频画面,满足了人们对不同视角的视频信号的感官体验需求。自由视点视频系统中典型的数据表示格式是多视点+多深度(Multi-view Videoplus Depth,MVD)数据格式,由于在终端采用了虚拟视点绘制技术,解决了多视点信号采集、海量数据编码传输及存储的难题。虚拟视点绘制技术可以通过多视点视频中的任意两个视点彩色视频序列及其相应的深度序列来合成两视点间的任意位置视点的视频信号,满足人们任意角度观看视频画面的需求。基于MVD框架的自由视点视频系统一般包括多视点彩色视频信号获取,多视点深度序列的获取,多视点彩色视频序列编码,多视点深度序列编码,多视点彩色及深度序列的传输,多视点彩色及深度序列解码,虚拟视点绘制和三维显示等部分。
     在多视点视频技术给人类带来的身心感观愉悦及生活便利的同时,也面临着诸多技术瓶颈。在深度序列采集方面,多视点深度序列则由于采集装置分辨率及设备费用限制,使得多视点深度序列的采集面临困难。因此常采用深度图提取算法来获得深度图,但是现存方法都会不同程度上在图像的纹理区、无纹理区和深度不连续区产生误匹配,导致匹配精度降低。在深度序列的编码传输方面,由于深度序列结构特性不同于彩色纹理视频,结构简单,层次分明的特点使其有更大的压缩空间,但是深度图是面向虚拟视点绘制的中间步骤,解码后的深度图质量严重影响着虚拟视点的绘制质量,因此对深度序列的压缩需要有特殊的压缩方法或者处理技术。鉴于深度图提取算法和深度序列压缩方法两个方面面临的技术瓶颈,本文提出了四个算法来解决这两个问题。
     1.针对深度图(视差图)提取算法中的目标边界和精细纹理区域匹配不精确的问题,提出立体灰度图像对平面亮度法线的概念,通过对立体灰度图像对亮度法线的分析,灰度图亮度法线可以反映出灰度图的高频信息。根据灰度图平面亮度法线这一特性,提出了灰度图像亮度法线相似性测度的概念,并在经典局部匹配算法自适应权值匹配算法核心思想的基础上,提出基于亮度法线相似性和自适应权值匹配算法。算法的实现结果提高了深度图的目标边界及精细纹理区域的匹配精度。
     2.针对深度图(视差图)提取算法中在无纹理区产生大量误匹配点的问题,提出根据立体图像对之间的视差能量特性,通过引入二次平滑因子,将立体匹配问题模型化为凸函数优化求解问题。通过使用次梯度投影法,以全变分函数为凸约束集,在凸集框架下寻求视差值最优解。这一算法不仅很好的保留了图像的边缘,而且减少了图像匹配过程中在无纹理区产生的误匹配点,提高了无纹理区的匹配精度。
     3.针对采用H.264/MVC编码框架对深度序列进行压缩编码时,由于编码器中的量化步骤会引入人工效应,尤其会直接导致解码端深度图的目标边缘产生不同情况的扭曲这一问题,提出了将深度图中感兴趣的目标边缘进行边缘检测,进而通过调整编码器的量化参数保留感兴趣的目标边缘。在保证传输码率基本不变的情况下,利用解码后的深度序列进行新视点的绘制,从实验结果可以看出,这一方法提高了绘制的虚拟视点的主观质量。
     4.针对下/上采样的低分辨率深度序列编码方案,在自适应权值上采样方法的基础上,提出了多相似性自适应权值上采样方法。通过对深度图边缘结构的特点分析,提出三种使用滤波器和上采样方法结合的方案来重构全分辨率深度图。方案一提出结合边缘保留à-Trous小波滤波及自适应权值上采样方法重构全分辨率深度图,方案二提出结合中值滤波及多相似性自适应权值上采样方法重构全分辨率深度图,方案三提出结合边缘保留à-Trous小波滤波及多相似性自适应权值上采样方法重构全分辨率深度图。提出的三种方案都能保证在低比特率下更好地实现了深度序列边缘的保留及重建。通过使用重建后的全分辨率深度序列绘制虚拟视点,提高了绘制后的虚拟视点的主客观质量。
The Multi-view Video is widely used in Three Dimensional Video (3DV) system,Free Viewpoint Video (FVV) system, Three Dimensional Medical Display system andThree Dimensional Video Surveillance system, etc. Free Viewpoint Video is a typicalapplication of Multi-view Video in daily life for the majority of consumers, and FVVsystem becomes a hot topic in the field of video signal processing at this stage. As the newgeneration of visual multimedia systems, FVV allows users to watch a video scene at anyangle, to meet the needs of the sensory experience from different perspectives of the videosignal. Multi-view Video plus Depth (MVD) is the typical data format of Free ViewpointVideo system. The problems of Multi-view signal acquisition, transmission and storageare solved by the virtual viewpoint rendering technology. Virtual viewpoint renderingtechniques can use any two of the multi-view video viewpoint color video sequence andtheir corresponding depth sequence to synthesize an arbitrary position video between thetwo viewpoints video signals, to meet the requirement of watching in any angle. FreeViewpoint Video system based on MVD data representation is consist of Multi-viewpointcolor video collecting, Multi-viewpoint depth sequence extracting, Multi-viewpoint colorvideo sequence encoding, Multi-view depth sequence encoding, color/depth sequencetransmission, Multi-view color and depth sequence decoding, virtual viewpoint renderingand three dimensional display, etc.
     Multi-view Video technology brought pleasant and convenient into human life in thephysical and psychological sense, meantime, it also faces many technical bottlenecks. Inthe facet of depth map acquisition, the lower resolution and higher cost of Multi-viewdepth sequence acquisition device are limited to collect multi-view depth sequence.Therefore common depth map extraction algorithm is used to obtain the depth map, butthe existing methods produce a certain amount of wrong matching in the texture area,lower texture area and depth discontinuities area in the image. In the facet of depthsequence encoding, due to the architecture of depth map sequence is different from thecolor texture video,there is a greater spatial redundancy in depth map sequence, and thedepth map is the intermediate step oriented to render virtual viewpoint video, the qualityof the decoded reconstructed depth map affects the rendering quality of the virtualviewpoint video seriously. Given the two faced technical bottleneck of depth mapextraction algorithm and depth map sequence compression method, this paper presentsfour algorithms to solve the problems.
     1. According to the inaccurate problem in the target boundary area and fine texturearea of current matching algorithm, the concept of the normal to the planar luminance isproposed. Through the analysis of luminance normal, grayscale image luminance normalcan reflect the high-frequency information of the depth map. Given the characteristics ofgrayscale image luminance normal, a luminance normal similarity and adaptive weightsmatching algorithm is proposed, which is base on the adaptive weight matching algorithm.The algorithm improves matching precision of the object boundary and fine texture regionin the depth map.
     2. According to the mismatching problem in the low-texture area of the matching algorithm, a convex function method is proposed to solve the problem. According to thedisparity energy characteristics between the stereo image pair, stereo matching question ismodeled into convex function optimization problem by introducing a secondarysmoothing factor. It searches the optimal solution in the total variational constraint set bythe sub-gradient projection method. This algorithm not only keeps the edges of the imagewell, but also reduces the mismatching of the low-texture area, and improves the matchingaccuracy of low-texture area.
     3. According to the problem of the artificial effect quantization step introduced by theencoder, especially the problem of leading to wrong edge of the target in the decoding. Amethod is proposed to detect the interest edge of the target in the depth map, thereby toretain the interest edge of the target by adjusting the quantization parameter of the encoder.When the transmission rate is keeping invariant, the new video is rendered by the decodeddepth map, the experimental results show that this method improves the subjective qualityof the virtual viewpoint.
     4. According to the depth map coding scheme of down/up sample resolution, amulti-similarity and adaptive weight sampling method based on adaptive weight isproposed. Through the analysis of the structural characteristics of the depth map edge,three schemes are proposed to reconstruct the full resolution depth map by combiningfilter and the sampling method. The first scheme is established by combining the keepingedge à-Trous wavelet filtering and adaptive weights sampling method, the second schemecombines median filtering and multi-similarity adaptive weights sampling method, thethird scheme is proposed by combining keeping edge à-Trous wavelet filtering andmulti-similarity adaptive weights sampling method. The three schemes all can keep betterdepth map edge and reconstruct the normal resolution in low bitrates. The virtual view isrendered by the full-resolution depth map sequence reconstructed. The subjective andobjective quality of the virtual video are improved.
引文
[1] ONURAL L. Television in3-D: What are the prospects?[J] Proceedings of theIEEE.2007,95(6):1143-1145.
    [2] VETRO A, MATUSIK W, PFISTER H, and XIN J. Coding approaches forend-to-end3DTV system[C].3DTV Conference, December2004, Picture CodingSymposium (PCS),2004:1-4.
    [3] TANIMOTO M. Overview of free viewpoint television [J]. Signal Processing:Image communications,2006,21:454-461.
    [4] SMOLIC A, MUELLER K, MERKELE P, KAUFF P, and WIEGAND T. Anoverview of available and emerging3D video formats and depth enhanced stereoas efficient generic solution. Berlin, Germany,6-8May2009[C]. Picture CodingSymposium (PCS),2009:1-4.
    [5] BOGUMIL B, REINHARD K. Dense depth maps from low resolutiontime-of-flight depth and high resolution color views.5th International Symposium,ISVC,2009[C], Springer-Verlag,2009,5876:228-239.
    [6] FRICK A, KELLNER F, BARTCZAK B, KOCH R. Generation of3D-TVLDV-content with Time-Of-Flight Camera.3DTV Conference: The True VisionCapture, Transmission and Display of3D Video, Potsdam,4-6May2009[C].2009,1-4.
    [7] FRICK A, BARTCZAK B, KOCH R. Real-time preview for layered depth video in3d-tv production. Real-Time Image and Video Processing, Brussels, Belgium|April12,2010[C]. SPIE, May2010,77240F.
    [8] LEE C, SONG H, CHOI B, and HO Y S.3D Scene Capturing using StereoscopicCameras and a Time-of-Flight Camera [J]. IEEE Transactions on ConsumerElectronics,2011,57(3):1370-1376.
    [9] KANG Y S, HO Y S. High-quality multi-view depth generation using multiplecolor and depth cameras. IEEE International Conference on Multimedia and Expo(ICME), Suntec,19-23July2010[C].2010,1405-1410.
    [10] LEE E K, HO Y S.. Generation of high-quality depth maps using hybrid camerasystem for3-D video [J]. Journal of Visual Communication and ImageRepresentation,2011,22(1):73-84.
    [11] KIM S Y, LEE E K, HO Y S. Generation of ROI enhanced depth maps usingstereoscopic cameras and a depth camera[J]. IEEE Transactions on Broadcasting.2008,54(4):732-740.
    [12] LEE E K, HO Y S.3-D Test Sequence Multi-view Video and Depth Map.ISO/IECJTC1/SC29/WG11, M16396. Maui, USA, Apr2009.
    [13] DEMETRI T. Regularization of inverse visual problems involving discontinuities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),1986, PAMI-8(4):413-424.
    [14] SEBASTIEN R. Stereo without epipolar lines: A maximumflow formulation [J].International Journal of Computer Vision,1999,34(2/3):147-161.
    [15] BOYKOV Y, VEKSLER O, ZABIH R. Fast approximate energy minimization viagraph cuts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11):1222-1239.
    [16] KOLMOGOROV V, ZABIN R. What Energy Functions can be Minimized viaGraph Cuts?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(2):147-159.
    [17] LI H, CHEN G Q. Segment-based Stereo Matching Using Graph Cuts. ComputerVision and Pattern Recognition, Proceedings of IEEE Computer SocietyConference on.27June-2July2004[C].2004.1: I-74-I-81.
    [18] KOMODAKIS N, TZIRITAS G. Approximate Labeling via Graph Cuts Based onLinear Programming [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2007,29(8):1436-1453.
    [19] NILS E, JULIAN E. A Two-Stage Correlation Method for Stereoscopic DepthEstimation. International Conference on Digital Image Computing: Techniques andApplications (DICTA), Sydney, NSW,1-3Dec.2010[C].2010,227-234.
    [20] PRICE BL, COHEN S. StereoCut: Consistent Interactive Object Selection inStereo Image Pairs. IEEE International Conference on Computer Vision (ICCV),Barcelona,6-13Nov.2011[C],2011,1148-1155.
    [21] ZUREIKI A, DEVY M and CHATILA R G. Stereo Matching Using Reduced-Graph Cuts. IEEE International Conference on Image Processing, San Antonio, TX,Sept.162007-Oct.192007[C]. IEEE,2007,1:I-237-I-240.
    [22] FEZZA S A, OUDDANE S. Fast stereo matching via graph cuts.7th InternationalWorkshop on Systems, Signal Processing and their Applications (WOSSPA).Tipaza,9-11May2011[C].2011,115-118.
    [23] SUN J, ZHENG N N, SHUM H Y. Stereo Matching Using Belief Propagation [J].IEEE JOURNALS&MAGAZINES.2003,25(7):787-800.
    [24] SUN J, LI Y, KANG S B, SHUM H Y. Symmetric Stereo Matching for OcclusionHandling. IEEE Computer Society Conference on Computer Vision and PatternRecognition,20-25June2005[C] IEEE,2005,2:399-406.
    [25] YANG Q X, WANG L, YANG R G, STEWENIUS H D. Stereo Matching withColor-Weighted Correlation, Hierarchical Belief Propagation, and OcclusionHandling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(3):492-504.
    [26] FELZENSZWALB P F, HUTTENLOCHER D P. Efficient Belief Propagation forEarly Vision. Proceedings of the2004IEEE Computer Society Conference onComputer Vision and Pattern Recognition.27June-2July2004[C]. IEEE,2004,1:I-261-I-268.
    [27]姚力.自然三维电视系统中立体匹配及视点合成技术研究[D].杭州:浙江大学信息与电子工程学院,2012.
    [28]郁理,郭立,袁红星.基于分级置信度传播的立体匹配新方法[J].中国图象图形学报,2011,16(1):103-109.
    [29] KIM J C, LEE K M, CHOI B T, LEE S U.A dense stereo matching using two-passdynamic programming with generalized ground control points. IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition.20-25June2005[C].2005,2:1075-1082.
    [30] VEKSLER O. Stereo correspondence by dynamic programming on a tree. IEEEComputer Society Conference on Computer Vision and Pattern Recognition,20-25June2005[C]. IEEE,2005,2:384-390.
    [31] CHANG X F, ZHOU Z, WANG L, SHI Y J, ZHAO Q P. Real-time accurate stereomatching using modified two-pass aggregation and winner-take-all guided dynamicprogramming. International Conference on3D Imaging, Modeling, Processing,Visualization and Transmission, Hangzhou.China.16-19May2011[C] IEEE,2011,73-79.
    [32] CHAMBON S, and CROUZIL A. Similarity measures for image matching despiteocclusions in stereo vision [J]. Elsevier,2011,1-43.
    [33] YOON K J, KWEON I S. Locally Adaptive Support-Weight Approach for VisualCorrespondence Search. IEEE Computer Society Conference on Computer Visionand Pattern Recognition,20-25June2005[C], IEEE.2005,2:924-931.
    [34] KANADE T and OKUTOMI M. A Stereo Matching Algorithm with an AdaptiveWindow: Theory and Experiments [J], IEEE Trans. Pattern Analysis and MachineIntelligence,1994,16(9):920-932.
    [35] BOYKOV Y, VEKSLER O, and ZABIH R. A Variable Window Approach toEarly Vision [J]. IEEE Trans. Pattern Analysis and Machine Intelligence.1998,20(12):1283-1294.
    [36] Veksler O. Stereo Correspondence with Compact Windows via Minimum RatioCycle [J]. IEEE Trans. Pattern Analysis and Machine Intelligence.2002,24(12):1654-1660.
    [37]罗桂娥.双目立体视觉深度感知与三维重建若干问题研究[D].长沙:中南大学信息科学与工程学院,2012.
    [38] FUSIELLO A, ROBERTO V and TRUCCO E. Efficient Stereo with MultipleWindowing. IEEE Computer Society Conference on Computer Vision and PatternRecognition, San Juan,17-19Jun1997[C]. IEEE,1997,858-863.
    [39] Bobick A F and Intille S S. Large Occlusion Stereo [J], International Journal ofComputer Vision,1999,33(3):181-200.
    [40]卢思军.立体匹配关键技术研究[D].南京:南京理工大学,2010.
    [41] KANG S B, SZELISKI R S, and CHAI J X. Handling Occlusions in DenseMulti-View Stereo[C]. Proceedings of the2001IEEE Computer SocietyConference on Computer Vision and Pattern Recognition. IEEE,2001, I-103-I-110.
    [42] Prazdny K, Detection of Binocular Disparities [J]. Biological Cybern,1985,52:93-99.
    [43] DARREL T. A Radial Cumulative Similarity Transform for Robust ImageCorrespondence. in Proc. IEEE Conf. Computer Vision and Pattern Recognition,Santa Barbara, CA.23-25Jun1998[C], IEEE,1998.656-662.
    [44] XU Y, WANG D, FENG T, and SHUM H Y. Stereo Computation using RadialAdaptive Windows[C]. Pattern Recognition,2002. Proceedings.16th InternationalConference on,2002,3:595-598.
    [45] YOON K J, KWEON I S.Adaptive Support-Weight Approach for CorrespondenceSearch [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2006,28(4):650-656.
    [46] GENG Y N, ZHAO Y, and CHEN H X. Stereo matching based on adaptivesupport weight approach in RGB vector space [J]. Applied Optics,2012,51(16):3538-3545.
    [47] LEONARDO D M, ARANTXA V, Cabeza R. Stereo matching using gradientsimilarity and locally adaptive support-weight [J]. Pattern Recognition Letters,2011,32(13):1643-1651.
    [48] GU Z, SU X, LIU Y, and ZHANG Q. Local stereo matching with adaptivesupport-weight, rank transform and disparity calibration [J]. Pattern Recogn. Lett.2008,29:1230-1235.
    [49] HU W, ZHANG K, SUN L, LI J, LI Y, and YANG S. Virtual support window foradaptive-weight stereo matching. Visual Communications and Image Processing.Tainan,6-9Nov.2011[C], IEEE,2011,1-4.
    [50] NALPANTIDIS L and GASTERATOS A. Biologically and psychophysicallyinspired adaptive support weights algorithm for stereo correspondence [J]. Robot.Auton. Syst. Elsevier,2010,58:457-464.
    [51] SCHARSTEIN D, SZELISKI R S, ZABIH R. A taxonomy and evaluation of densetwo-frame stereo correspondence algorithms. in Proceedings of IEEE Workshop onStereo and Multi-Baseline Vision. Kauai, HI,9-10Dec2001[C]. IEEE,2002,131-140.
    [52] GAO K, CHEN H X, ZHAO Y, GENG Y N, Wang G. Stereo matching algorithmbased on illumination normal similarity and adaptive support weight [J]. OpticalEngineering,2013,52(2):027201-1-027201-7.
    [53] GENEVA C H.“Joint Draft7.0on multiview video coding”, Germany, JVT-AA209,Apr,2008.
    [54] FEHN C. A3D-TV approach using depth-image-based rendering (DIBR). in Proc.of PCS, San Francisco, CA,2004[C].
    [55] Kim, Sung-Yeol and Yo-Sung Ho. Mesh-based depth coding for3D video usinghierarchical decomposition of depth maps. IEEE International Conference onImage Processing. San Antonio, TX. Sept.162007-Oct.192007[C]. IEEE.5:V-117-V-120.
    [56] KARISSON L S, and SJOSTROM M: Region-of-interest3D video coding basedon depth images.3DTV Conference: The True Vision Capture, Transmission andDisplay of3D Video, Istanbul,28-30May2008[C].2008:141-144.
    [57] KRISHNAMURTY R, CHAI B B, TAO H, and SETHURAMAN S. Compressionand transmission of depth maps for image-based rendering. Image Processing2001Proceedings International Conference on, Thessaloniki,07-10Oct2001[C]. IEEE,2001:828-831.
    [58] TAUBMAN D and MARCELLIN M W. JPEG2000Image Compression:Fundamentals, Standards and Practice. Boston, MA: Kluwer,2002.
    [59] MORVAN Y, FARIN D S I, and DE WITH P H N. Depth-image compressionbased on an RD optimized quadtree decomposition for the transmission ofmultiview images. Image Processing,2007, IEEE International Conference on SanAntonio, TX. Sept.162007-Oct.192007[C]2007,5: V-105-V-108.
    [60] ZANUTTIGH P and CORTELAZZO G M. Compression of depth information for3D rendering.3DTV Conference: The True Vision-Capture, Transmission andDisplay of3D Video, Potsdam,4-6May2009[C],2009,1-4.
    [61] MILANI S; CALVAGNO G,A Depth Image Coder Based on ProgressiveSilhouettes[J]. Signal Processing Letters, IEEE.2010,17(8):711-714
    [62] KAMOLRAT B, MRAK M, and FERNANDO W A C. Flexible motion modelwith variable size blocks for depth frames coding in colour-depth based3D VideoCoding. Multimedia and Expo,2008IEEE International Conference on, Hannover,June232008-April262008[C].IEEE.2008,573-576.
    [63] KAMOLRAT B, FERNANDO W A C, Mrak M, KONDOZ A M.3D MotionEstimation for Depth Image Coding in3D Video Coding [J]. Consumer Electronics,IEEE Transactions on,2009,55(2):824-830.
    [64] KAMOLRAT B, FERNANDO W A C, MRAK M.3D motion estimation for depthinformation compression in3D-TV applications [J]. Electronics Letters,2008,44(21):1244-1245.
    [65] MERKLE P, SMOLIC A, MüLLER K, WIEGAND T. Multi-view Video PlusDepth Representation and coding. Image Processing, ICIP2007. IEEEInternational Conference on, San Antonio, TX.Sept.162007-Oct.192007[C]IEEE2007,1: I-201-I-204.
    [66] TAO S P, CHEN Y, HANNUKSELA M M, WANG Y K, GABBOUJ M, LI H Q.Joint texture and depth map video coding based on the scalable extension ofH.264/AVC. Circuits and Systems,2009. ISCAS2009. IEEE InternationalSymposium on. Taipei,24-27May2009[C]. IEEE.2009:2353-2356.
    [67]张秋闻.自由视点视频深度编码关键技术研究[D].上海:上海大学通信与信息工程学院,2012年5月.
    [68] LIU S J, LAI P L, TIAN D,CHEN C W. New Depth Coding Techniques WithUtilization of Corresponding Video [J].IEEE Transactions on Broadcasting2011,57(2):551-561.
    [69] FAN Y C, WU S F, LIN B L. Three-Dimensional Depth Map Motion Estimationand Compensation for3D Video Compression [J]. Magnetics, IEEE Transactionson.2011,47(3):691-695.
    [70]刘晓仙.任意视点视频深度估计及编码技术研究[D].西安:西安电子科技大学,2011.
    [71] WILDEBOER M O, YENDO T, TEHRANI M P, FUJII T, TANIMOTO M. Colorbased depth up-sampling for depth compression. Picture Coding Symposium (PCS),Nagoya,8-10Dec.2010[C]. PCS,2010,170-173.
    [72] LI Y J; SUN L F. A novel upsampling scheme for depth map compression in3DTV system. Picture Coding Symposium (PCS), Nagoya,8-10Dec.2010[C].2010,186-189.
    [73] OH K J, YEA S H, VETRO A, HO Y S. Depth Reconstruction Filter and Down/UpSampling for Depth Coding in3-D Video [J]. Signal Processing Letters, IEEE,2009,16(9):747-750.
    [74] SMOLIC A, KIMATA H, VETRO A. Development of MPEG Standards for3Dand Free Viewpoint Video[R]. Mitsubishi Electric Research Laboratories,2005.
    [75] ISO/IEC JTC1/SC29/WG11, M15378:1D Parallel Test Sequences for MPEG-FTV,Archamps, France,2008.
    [76] ISO/IEC JTC1/SC29/WG11, M15413: HHI Test Material for3D Video, Archamps,France,2008.
    [77] MSI sequences with corresponding calibration parameters [Online].Available:http://research.microsoft.com/en-us/um/people/sbkang/3dvideodownload/.
    [78] MORRISON G. Video coding standards for multimedia: JPEG, H.261, MPEG. IETColloquium on Technology Support of Multimedia, London,13Apr1992[C]1992,2/1-2/4.
    [79] MORRIS O J.MPEG-2: where did it come from and what is it. MPEG-2-What it isand what it isn't, IET Colloquium on. London,24Jan1995[C].1995,1/1-1/5.
    [80] HANZO L, CHERRIMAN P and STREIT J. Comparative Study of the H.261andH.263Codecs [J]. Wireless Video Communications: Second to Third Generationand Beyond,2001,733-776.
    [81] ISO/IEC. Video Coding of Audio-Visual Objects-Part2:Visual,14496-2(MPEG-4Video),1999.
    [82] ISO/IEC. Advanced video coding for generic audiovisual services. Rec. ITU-TH.264(03/2009).
    [83] CHEN Y, WANG Y K, and HANNUKSELA M M.“On MVC reference picturelist construction,” JVT-V043, Marrakech, Morocco, January2007.
    [84] SCHWARZ H, MARPE D, and WIEGAND T. Analysis of hierarchical B picturesand MCTF. ICME2006, Multimedia and Expo,2006IEEE InternationalConference on, Toronto, Ontario9-12July2006[C], IEEE,2006,1929-1932.
    [85] IZQUIERDO E, FENG X H, Modeling arbitrary objects base on geometric surfaceconformity [J]. Circuits and Systems for Video Technology, IEEE Transactions on.1999,9(2):336-352.
    [86] DEBEVEC P E, TAYLOR C J, MALIK J. Modeling and rendering architecturefrom photographs: a hybrid geometry-and image-based approach, ProceedingSIGGRAPH '96Proceedings of the23rd annual conference on Computer graphicsand interactive techniques,1996[C]. ACS,1996,11-20.
    [87] DEBEVEC P, YU Y, BORSHUKOV G. Efficient view-dependent image-basedrendering with projective texture-mapping [M]. in: Eurographics RenderingWorkshop,1998.
    [88] LEVOY M, HANRAHAN P. Light field rendering. Proceeding SIGGRAPH '96Proceedings of the23rd annual conference on Computer graphics,1996[C], ACM,1996,31-42.
    [89] GORTLER S J, GRZESZCZUK R, SZELISKI R, COHEN M F, The lumigraph.Proceeding SIGGRAPH '96Proceedings of the23rd annual conference onComputer graphics,1996[C], ACM,1996,43-54
    [90] BUEHLER C, BOSSE M, MCMILLAN L, GORTLER S, COHEN M.Unstructured lumigraph rendering, Proceeding SIGGRAPH '01Proceedings of the28th annual conference on Computer graphics and interactive techniques,2001[C],ACM,2001,425-432.
    [91] CHEN E, WILLIAMS L, View interpolation for image synthesis. ProceedingSIGGRAPH '93Proceedings of the20th annual conference on Computer graphicsand interactive techniques,1993[C], ACM,1993,279-288.
    [92] SEITZ S, DYER C. Toward image-based scene representation using viewmorphing. Pattern Recognition,1996, Proceedings of the13th InternationalConference on, Vienna.25-29Aug1996[C].1996,1:21-30.
    [93] JAWAHAR C, NARAYANAN P. Generalised correlation for multi-featurecorrespondence [J]. The Journal of the Pattern Recognition Society, PR,2002,35(6):1303-1313.
    [94] HIRSCHMULLER H, SCHARSTEIN D. Evaluation of stereo matching costs onimages with radiometric differences [J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, PAMI,2009,31(9):1582-1599.
    [95] MORAVEC H. Obstacle Avoidance and Navigation in the Real World by a SeeingRobot Rover[D], Thesis, University of Carnegie Mellon, CMU, Pittsburgh, UnitedStates,1980.
    [96] ASCHWANDEN P, GUGGENBUL W. Experimental results from a comparativestudy on correlation type registration algorithms [J]. Robust computer vision:Quality of Vision Algorithms, Wichmann, Karlsruhe, Germany,1992,268–282.
    [97] COX G. Template Matching and Measures of Match in Image Processing[R],Research report, University of Cape Town, South Africa (July1995).
    [98] KANADE T, YOSHIDA A, ODA K, KANO H, TANAKA M. A StereoMachinefor Video-rate Dense Depth Mapping and Its New Applications, Computer Visionand Pattern Recognition,1996. Proceedings CVPR '96,1996IEEE ComputerSociety Conference on, San Francisco, CA.18-20Jun1996[C]. IEEE1996, pp.196-202.
    [99] OKUTOMI M, KANADE T. A Multiple-Baseline Stereo [J], Pattern Analysis andMachine Intelligence, IEEE Transactions on, PAMI,199315(4):358-363.
    [100]吉洪诺夫,阿尔先宁.不适定问题的解法[M].地质出版社出版,1979年12月北京第一版.
    [101] MILED W, PESQUET C J and PARENT M. Disparity map estimation using atotal variation bound. Proceeding of the3rd Canadian Conference on Computerand Robot Vision. Quebec, Canada,07-09June2006[C],2006,48-55.
    [102] COMBETTES P L. A block iterative surrogate constraint splitting method forquadratic signal recovery [J]. IEEE Trans. Signal Proc,1997,51(7):1771-1782.
    [103] COMBETTES P L. Convex set theoretic image recovery by Extrapolated iterationsof parallel subgradient projection [J]. IEEE TRANSACTONS ON IMAGEPROCESSING.1997,6(4):493-506.
    [104] RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noiseremoval algorithms [J]. Physica D: Nonlinear Phenomena,1992,60(1-4):259-268.
    [105] FUSIELLO A, TRUCCO E, and VERRI A. A compact algorithm for rectificationof stereo pairs [J]. Machine Vision and Applications,2000,12(1):16-22.
    [106] COMBETTES P L, PESQUET J C. Image Restoration Subject to a Total VariationConstraint [J]. IEEE Transactions on image processing,2004,13(9):1213-1222.
    [107] COMBETTES P L and LUO J. An adaptive level set method for nondifferentiableconstrainted image recovery. IEEE Signal Processing Society.2002,11(11):1295-1304.
    [108] THOMAS P, THOMAS S, GOTTFRIED G, HORST B and DANIEL C. A convexformulation of continuous multi-label problems. ECCV2008, Part III, LNCS.Springer.2008[C],5304:792-805.
    [109] ZHAO Y, ZHU C, CHEN Z Z, etc. Boundary Artifact Reduction in View Synthesisof3D Video: From Perspective of Texture-Depth Alignment [J]. IEEETRANSACTIONS ON BROADCASTING,2011,57(2):510-522.
    [110] Philipp Merkle, Jordi Bayo Singla, Karsten Muller, etc. Correlation histogramanalysis of depth-enhanced3D video Coding. Image Processing (ICIP),201017thIEEE International Conference on. Hong Kong,26-29Sept.2010[C]. IEEE,2010,2605-2608.
    [111]付文秀,王世刚,刘占声.基于四叉树分割视频对象的可伸缩编码算法[J].吉林大学学报(信息科学版增刊),2003年,21(5):1-6.
    [112]毕厚杰,王健.新一代视频压缩编码标准-H.264/AVC(第二版).人民邮电出版社,北京.2009.11.
    [113] DE SILVA D V S, FERNANDO W A C, KODIKARAARACHCHI H, S.T. Worralland KONDOZ A M. Adaptive sharpening of depth maps for3D-TV [J].ELECTRONICS LETTERS.2010,46(23):1546-1548.
    [114] GLENN V W, SEBASTIAAN V L, JAN D C, FONS B, and RIK V D W.3D VideoCompression Based on High Efficiency Video Coding [J], IEEE Transactions onConsumer Electronics,2012,58(1):137-145.
    [115] CHEN Y, PANDIT P, YEA S, etc.“Draft reference software for MVC”. ITU-TJVT-AE207,2009.
    [116] WEIGAND T, SULLIVAN G J, BJONTEGARD G, and Luthra A. Overview of theH.264/AVC video coding standard [J]. IEEE Trans. Circuits Syst. Video Technol.2003,13(7):560-576.
    [117] MERKLE P, SMOLIC A, MüLLER K, etc. Efficient prediction structures formultiview video coding [J]. IEEE Trans. on CSVT,2007,17(11),1461-1473.
    [118] ISO/IEC MPEG&ITU-T VCEG, Survey of algorithms used for multi-view videocoding (MVC). Doc. N6909,2005.
    [119] TANIMOTO M, FUJII T, and SUZUKI K, View synthesis algorithm in viewsynthesis reference software3.0(VSRS3.0), Tech.Rep. Document M16090[R],ISO/IEC JTC1/SC29/WG11,2009.
    [120] Shinya Shimizu, Masaki Kitahara, Hideaki Kimata, etc: View Scalable MultiviewVideo Coding Using3-D Warping with Depth Map [J]. IEEE TRANSACTIONSON CIRCUITS AND SYSTMES FOR VIDEO TECHNOLOGY,2007.17(11):1485–1495.
    [121]张艳,蔡灿辉.灵活的多视点视频编码预测结构[J].中国图象图形学报,2012,17(6):730-735.
    [122] HOLSCHNEIDER M, KRONLAND-MARTINET R, MORLET J, TCHAMIT-CHIAN P. A real-time algorithm for signal analysis with the help of the wavelettransform[J]. SpringerVerlag,1989.
    [123] FATTAL R. Edge-avoiding wavelets and their applications. ACM Special Interest
    Group on Computer Graphics and Interactive Techniques.2009[C].2009,28(2):
    1151-1159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700