基于大量程光学相干层析成像的人眼前节调节的实时测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     构建大量程光学相干层析成像系统(ultra-long scan depth optical coherence tomography,UL-OCT),对整个眼前节实时成像,检验其在不同调节状态测量的重复性和可靠性,并用于调节时眼前节各生物参数的测量和比较。方法
     构建基于迈克耳逊干涉仪的UL-OCT系统,该系统的光源采用中心波长为840nm,带宽为50 nm的超发光二级管SLD,利用特殊设计的参考臂上两个反射镜的转换,改变了零光程位置,再将两次干涉取得的信号图像叠加,实现了一次扫描得到眼前节的完整图像。该方法不仅保留了较高的分辨率而且成功补偿了单幅图性性噪比的下降。本系统光输出功率为1.0 mW,受CCD相机像素大小的制约扫描速度为4KHz;成像深度为12.055mm;轴向和横向分辨率分别约为11.0μm和20μm。用构建的UL-OCT对41例(41眼)平均年龄33.5±6.9岁,平均等效球镜度-2.5±2.6(D)的正常人在最小和最大调节状态下的眼前节进行重复成像,并用自行设计的软件对图像进行矫正和测量。测量参数包括:中央角膜厚度、前房宽度和深度、瞳孔直径、晶状体前后的曲率半径、晶体厚度、晶状体中心位置和眼前节长度。
     运用SPSS 16.0对数据进行统计分析。所有参数以平均数±标准差显示,以配对t检验比较同一调节状态下两次重复检查间和不同调节状态下的区别,以重复性系数和组内相关系数来表示测量的重复性和可靠性。
     结果
     在最大和最小生理调节状态下两次检查间的所有参数无显著性差别(p,0.05)。因此,将两次检查的平均值作为其各自调节状态的测量值以用于不同调节状态间的比较。在最小调节和最大调节状态下中央角膜厚度、前房宽度和深度、晶体厚度、晶状体中心位置和眼前节长度测量的可重复系数极好,在1.23%~3.59%之间;瞳孔直径测量的可重复系数较高,在最小和最大调节状态分别为18.90%和21.63%;水平方向晶状体前后的曲率半径测量的可重复性中等至相当,为34.86%~42.70%。在最小和最大调节状态中央角膜厚度、前房深度、晶体厚度、晶状体中心位置和眼前节长度测量的组内相关系数极佳,为0.969~0.998;瞳孔直径和前房宽度测量的相当高,为0.874~0.925;而晶状体前后的曲率半径的则中等至相当,为0.251~0.669。最大调节时瞳孔直径、前房深度、晶状体前后表面的曲率半径和晶状体中心位置明显减小,晶状体厚度和眼前节长度明显增大(均P<0.01),而中央角膜厚度和前房宽度无明显变化(P=0.0602,0.8345)。
     结论
     本研究构建的UL-OCT可对调节时整个眼前节包括角膜至晶状体后表面实时成像,该系统在人眼调节眼前节生物参数的测量中具有很好的重复性和可靠性。调节时晶状体厚度增加,前后表面变凸,整个晶状体中心位置前移,同时伴随有前房变浅和瞳孔缩小。
Purpose
     To measure by ultra-long scan depth optical coherence tomography (UL-OCT) dimensional changes in the anterior segment of human eyes during accommodation.
     Methods
     Utilizing a fiber-based Michelson interferometer, the UL-OCT system was constructed with a superluminescent diode laser-based light source with center wavelength of 840 nm and full-width at half maximum bandwidth of 50 nm. An alternative placement of the zero-delay line on the top and bottom in the reference arm was specially designed to acquire multiple images in one scan. Image enhancement was realized by overlapping the two acquired images. This method was used to compensate the drop of signal-to-noise ratio through the entire image depth. The light was focused on the anterior segment, and the total exposure power at the surface of the cornea was 1.10 mW. The scan speed was set to 4,000 A-scans/sec, a limitation imposed by the charged-couple device (CCD) line scan camera. The scan depth of the system was 12.055 mm. The resolution of the UL-OCT system was measured as 11.Oμm axially and approximately 20μm transversely for 2,048 pixels in the eye.
     UL-OCT was used to image the cornea to the back surface of the crystalline lens. 41 right eyes of healthy subjects with a mean age of 33.5±6.9 years (range,22-41 years) and a mean refraction of-2.5±2.6 diopters (D) (range,+0.50D~-7.00D)were imaged in two repeated measurements at minimal and maximal accommodation. Custom software corrected the optical distortion of the images and yielded the measurements. The dimensional results included central corneal thickness (CCT), anterior chamber depth and width (ACD, ACW), pupil diameter (PD), horizontal radii of the lens anterior and posterior surface curvatures (LAC, LPC), lens thickness (LT), lens central position (LCP) and anterior segment length (ASL).
     Statistical Procedures for the Social Sciences 16.0 was used for descriptive statistics and data analysis. All data were presented as means±standard deviations. Paired t-tests were for comparisons between repeated measures of the same accommodative state and between the two different accommodative states. Coefficient of repeatability (COR) and the intraclass correlation coefficient (ICC) were calculated to evaluate the repeatability and reliability.
     Results
     For all anterior segment dimensions, there were no significant differences between the two repeated measurements of the same accommodative state (paired t-tests, all p-values> 0.05). The average of the two measurements for each accommodative state was used to determine if there were differences between two states. The CORs for CCT, ACW, ACD, LT, LCP, and ASL were excellent, ranging from 1.23% to 3.59% in the minimal and maximal accommodative states. The CORs for PD were relatively high, 18.90% and 21.63% in minimal and maximal accommodative states respectively. The CORs for LAC and LPC ranged from 34.86% to 42.70% in both accommodative states. The ICCs for CCT, ACD, LT, LCP, and ASL were very high, varying between 0.969 and 0.998. They were slightly lower for PD and ACW,0.874 to 0.925, and showed moderate and fair reliability for LAC and LPC (0.251 to 0.669). Compared to minimal accommodation, PD, ACD, LAC, LPC and LCP decreased and LT and ASL increased significantly at maximal accommodation (P< 0.01), while CCT and ACW did not change (P= 0.0602,0.8345)
     Conclusions
     UL-OCT system successfully imaged accommodative change of the whole anterior segment from the cornea to the back surface of the crystalline lens in vivo. UL-OCT measured changes in anterior segment dimensions during accommodation with good repeatability and reliability. During accommodation, the anterior and posterior surface of the crystalline lens became steeper as the lens moved forward, with decrease of the anterior chamber depth and constriction of the pupil.
引文
1. Finchaam EF. The proportion of ciliary muscular force required for accommodation. J Physiol 1955;128:99-112.
    2. Schachar RA. The mechanism of accommodation and presbyopia. Int Ophthalmol Clin 2006;46:39-61.
    3. Bacskulin A, Gast R, Bergmann U, Guthoff R. Ultrasound biomicroscopy imaging of accommodative configuration changes in the presbyopic ciliary body. Ophthalmologe 1996;93:199-203.
    4. Mathews S. Scleral expansion surgery does not restore accommodation in human presbyopia. Ophthalmology 1999;106:873-877.
    5. Cleary G, Spalton DJ, Marshall J. Anterior chamber depth measurements in eyes with an accommodating intraocular lens:agreement between partial coherence interferometry and optical coherence tomography. J Cataract Refract Surg 2010;36:790-798.
    6. Vilupuru AS, Glasser A. Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry. Optom Vis Sci 2003;80:383-394.
    7. Rosales P, Dubbelman M, Marcos S, van der HR. Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging. J Vis 2006;6:1057-1067.
    8. Koretz JE, Strenk SA, Strenk LM, Semmlow JL. Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study. J Opt Soc Am A Opt Image Sci Vis 2004;21:346-354.
    9. Zhou C, Wang J, Jiao S. Dual channel dual focus optical coherence tomography for imaging accommodation of the eye. Opt Express 2009;17:8947-8955.
    10. Izatt JA, Hee MR, Swanson EA, Lin CP, et al. Schuman JS, Puliafito CA, Fujimoto JG Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol 1994;112:1584-1589.
    11. Radhakrishnan S, Goldsmith J, Huang D, Westphal V, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol 2005;123:1053-1059.
    12. Nolan WP, See JL, Chew PT, Friedman DS, et al. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology 2007;114:33-39.
    13. Goldsmith JA, Li Y, Chalita MR, Westphal V, et al. Anterior chamber width measurement by high-speed optical coherence tomography. Ophthalmology 2005;112:238-244.
    14. Baikoff G, Lutun E, Wei J, Ferraz C. An in vivo OCT study of human natural accommodation in a 19-year-old albino. J Fr Ophtalmol 2005;28:514-519.
    15. Baikoff G, Jitsuo JH, Bourgeon G. Measurement of the internal diameter and depth of the anterior chamber: IOLMaster versus anterior chamber optical coherence tomographer. J Cataract Refract Surg 2005;31:1722-1728.
    16. Richdale K, Bullimore MA, Zadnik K. Lens thickness with age and accommodation by optical coherence tomography. Ophthalmic Physiol Opt 2008;28:441-447.
    17. Sarunic MV, Asrani S, Izatt JA. Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. Arch Ophthalmol 2008;126:537-542.
    18. Gotzinger E, Pircher M, Leitgeb R, Hitzenberger C. High speed full range complex spectral domain optical coherence tomography. Opt Express 2005;13:583-594.
    19.陆豪,李海生.眼光学相干断层扫描成像术原理和临床应用.上海,世界图书出版公司,2008;1-15.
    20. Brett E.Bouma, Guillermo J.Tearney. Handbook of optical coherence tomography[M]. New York:Marcel Dekker 2002;1-:335-337.
    21. American National Standards Institute. ANSI Z136.1-2007, American Nationa/ Standard for safe use of lasers. Washington:American National StandardsInstitute Inc; 2007.
    22. Yang Liu, Wang Chuan, Ding Zhihua, Hong Wei, et al. Image Reconstruction in Dioptric Media for Spectral Domain Optical Coherence Tomography. Chinese Journal of Lasers 2011;38:0504001.
    23. Mohamed S, Lee GK, Rao SK, Wong AL, et al. Repeatability and reproducibility of pachymetric mapping with Visante anterior segment-optical coherence tomography. Invest Ophthalmol Vis Sci 2007;48:5499-5504.
    24. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-310.
    25. Garcia-Martin E, Pueyo V, Pinilla I, Ara JR, et al. Fourier-domain OCT in multiple sclerosis patients:reproducibility and ability to detect retinal nerve fiber layer atrophy. Invest Ophthalmol Vis Sci 2011;52:4124-4131.
    26. Chen Q, Wang J, Shen M, Cui L, et al. Tear menisci and ocular discomfort during daily contact lens wear in symptomatic wearers. Invest Ophthalmol Vis Sci 2010.
    27. Chen HJ, Xia YJ, Zhong YY, Song XL, et al. Anterior segment optical coherence tomography measurement of flap thickness after myopic LASIK using the Moria one use-plus microkeratome. J Refract Surg 2010;26:403-410.
    28. Gora M, Karnowski K, Szkulmowski M, Kaluzny BJ, et al.Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt Express 2009;17:14880-14894.
    29. Potsaid B, Baumann B, Huang D, Barry S, et al. Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express 2010;18:20029-20048.
    30. Furukawa H, Hiro-Oka H, Satoh N, Yoshimura R, et al. Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging. Biomed Opt Express 2010;1:1491-1501.
    31. Baumann B, Pircher M, Gotzinger E, Hitzenberger CK. Full range complex spectral domain optical coherence tomography without additional phase shifters. Opt Express 2007;15:13375-13387.
    32. Grulkowski I, Gora M, Szkulmowski M, Gorczynska I, et al. Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. Opt Express 2009;17:4842-4858.
    33. Shen M, Wang MR, Yuan Y, Chen F, et al.. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthalmic Surg Lasers Imaging 2010;41 Suppl:S65-S69.
    34. Du C, Zhu D, Shen M, Li M, et al. Novel optical coherence tomography for imaging the entire anterior segment of the eye. Invest Ophthalmol Vis Sci 2011;52;ARVO E-Abstract 3023, Fort Lauderdale
    35. Sanjeev K, Markwell EL, Atchison DA, Pope JM. MRI study of the changes in crystalline lens shape with accommodation and aging in humans. J vis 2011;11:1-16.
    36. Dubbelman M, Van der Heijde GL, Weeber HA. Change in shape of the aging human crystalline lens with accommodation. Vision Res 2005;45:117-132.
    37. Rosales P, Wendt M, Marcos S, Glasser A. Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys. J Vis 2008;8:18-12.
    38. Sheppard AL, Evans CJ, Singh KD, Wolffsohn JS, et al.Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation. Invest Ophthalmol Vis Sci 2011.
    39. Baikoff G, Lutun E, Wei J, Ferraz C. Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino. J Cataract Refract Surg 2004;30:696-701.
    40. Yan PS, Lin HT, Wang QL, Zhang ZP. Anterior segment variations with age and accommodation demonstrated by slit-lamp-adapted optical coherence tomography. Ophthalmology 2010;117:2301-2307.
    41. Glasser A, Kaufman PL. The mechanism of accommodation in primates. Ophthalmology 1999;106:863-872.
    42. Beauchamp R, Mitchell B. Ultrasound measures of vitreous chamber depth during ocular accommodation. Am J Optom Physiol Opt 1985;62:523-532.
    43. Coleman DJ. Unified model for accommodative mechanism. Am J Ophthalmol 1970;69:1063-1079.
    44. Tsorbatzoglou A, Nemeth G, Szell N, Biro Z, et al. Anterior segment changes with age and during accommodation measured with partial coherence interferometry. J Cataract Refract Surg 2007;33:1597-1601.
    1. Huang D, Swanson EA, Lin CP, Schuman JS, et al. Optical coherence tomography. Science 1991;254:1178-1181.
    2.陆豪,李海生.眼光学相干断层扫描成像术原理和临床应用.上海,世界图书出版公司,2008;1-15.
    3. Izatt JA, Hee MR, Swanson EA, Lin CP, et al.. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol 1994;112:1584-1589.
    4. Koop N, Brinkmann R, Lankenau E, Flache S, et al. Optical coherence tomography of the cornea and the anterior eye segment. Ophthalmologe 1997;94:481-486.
    5. Brett E.Bouma, Guillermo J.Tearney. Handbook of optical coherence tomography[M]. New York:Marcel Dekker 2002;1-:335-337.
    6. Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography - a review. Clin Experiment Ophthalmol 2009;37:81-89.
    7. American National Standards Institute. ANSI Z136.1-2007, American National Standard for safe use of lasers. Washington:American National Standardslnstitute Inc;2007.
    8. Mueller M, Schulz-Wackerbarth C, Steven P, Lankenau E, et al. Slit-lamp-adapted fourier-domain OCT for anterior and posterior segments: preliminary results and comparison to time-domain OCT. Curr Eye Res 2010;35:722-732.
    9. Simpson T, Fonn D. Optical coherence tomography of the anterior segment. Ocul Surf 2008;6:117-127.
    10. Maeda N. Optical coherence tomography for corneal diseases. Eye Contact Lens 2010;36:254-259.
    11. Leite MT, Rao HL, Zangwill LM, Weinreb RN, et al. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology 2011;118:1334-1339.
    12. Christopoulos V, Kagemann L, Wollstein G, Ishikawa H, et al. In vivo corneal high-speed, ultra high-resolution optical coherence tomography. Arch Ophthalmol 2007;125:1027-1035.
    13. Wang J, Thomas J, Cox I. Corneal light backscatter measured by optical coherence tomography after LASIK. J Refract Surg 2006;22:604-610.
    14. Li Y, Shekhar R, Huang D. Corneal pachymetry mapping with high-speed optical coherence tomography. Ophthalmology 2006;113:792-799.
    15. Li Y, Netto MV, Shekhar R, Krueger RR, et al. A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography. Ophthalmology 2007;114:1124-1132.
    16. Tang M, Chen A, Li Y, Huang D. Corneal power measurement with Fourier-domain optical coherence tomography. J Cataract Refract Surg 2010;36:2115-2122.
    17. Ambrosio R Jr., Alonso RS, Luz A, Coca Velarde LG. Corneal-thickness spatial profile and corneal-volume distribution: tomographic indices to detect keratoconus. J Cataract Refract Surg 2006;32:1851-1859.
    18. Khurana RN, Li Y, Tang M, Lai MM, et al. High-speed optical coherence tomography of comeal opacities. Ophthalmology 2007;114:1278-1285.
    19. Srivannaboon S, Chotikavanich S, Chirapapaisan C, Kasemson S, et al. Precision analysis of posterior corneal topography measured by Visante Omni: repeatability, reproducibility, and agreement with Orbscan II. J Refract Surg 2012;28:133-138.
    20. O'Brien TP, Awwad ST. Phakic intraocular lenses and refractory lensectomy for myopia. Curr Opin Ophthalmol 2002;13:264-270.
    21. Goldsmith JA, Li Y, Chalita MR, Westphal V, et al. Anterior chamber width measurement by high-speed optical coherence tomography. Ophthalmology 2005;112:238-244.
    22. Kohnen T, Thomala MC, Cichocki M, Strenger A. Internal anterior chamber diameter using optical coherence tomography compared with white-to-white distances using automated measurements. J Cataract Refract Surg 2006;32:1809-1813.
    23. Baikoff G, Lutun E, Wei J, Ferraz C. Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino. J Cataract Refract Surg 2004;30:696-701.
    24. Fukuda S, Kawana K, Yasuno Y, Oshika T. Repeatability and reproducibility of anterior ocular biometric measurements with 2-dimensional and 3-dimensional optical coherence tomography. J Cataract Refract Surg 2010;36:1867-1873.
    25. Wirbelauer C, Karandish A, Haberle H, Pham DT. Noncontact goniometry with optical coherence tomography. Arch Ophthalmol 2005;123:179-185.
    26. Radhakrishnan S, Goldsmith J, Huang D, Westphal V, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol 2005;123:1053-1059.
    27. Nolan WP, See JL, Chew PT, Friedman DS, et al. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology 2007;114:33-39.
    28. Sakata LM, Lavanya R, Friedman DS, Aung HT, et al. Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. Ophthalmology 2008;115:769-774.
    29. Sakata LM, Lavanya R, Friedman DS, Aung HT, et al. Assessment of the scleral spur in anterior segment optical coherence tomography images. Arch Ophthalmol 2008;126:181-185.
    30. Usui T, Tomidokoro A, Mishima K, Mataki N, et al. Identification of Schlemm's canal and its surrounding tissues by anterior segment fourier domain optical coherence tomography. Invest Ophthalmol Vis Sci 2011;52:6934-6939.
    31. Memarzadeh F, Li Y, Francis BA, Smith RE, et al. Optical coherence tomography of the anterior segment in secondary glaucoma with corneal opacity after penetrating keratoplasty. Br J Ophthalmol 2007;91:189-192.
    32. See JL, Chew PT, Smith SD, Nolan WP, et al. Changes in anterior segment morphology in response to illumination and after laser iridotomy in Asian eyes: an anterior segment OCT study. Br J Ophthalmol 2007;91:1485-1489.
    33. Leung CK, Yick DW, Kwong YY, Li FC, et al. Analysis of bleb morphology after trabeculectomy with Visante anterior segment optical coherence tomography. Br J Ophthalmol 2007;91:340-344.
    34. Baikoff G, Bourgeon G, Jodai HJ, Fontaine A, et al. Pigment dispersion and Artisan implants:crystalline lens rise as a safety criterion. J Fr Ophtalmol 2005;28:590-597.
    35. Baikoff G, Lutun E, Wei J, Ferraz C. Contact between 3 phakic intraocular lens models and the crystalline lens:an anterior chamber optical coherence tomography study. J Cataract Refract Surg 2004;30:2007-2012.
    36. Baikoff G. Anterior segment OCT and phakic intraocular lenses:a perspective. J Cataract Refract Surg 2006;32:1827-1835.
    37. Bechmann M, Ullrich S, Thiel MJ, Kenyon KR, et al. Imaging of posterior chamber phakic intraocular lens by optical coherence tomography. J Cataract Refract Surg 2002;28:360-363.
    38. Koivula A, Kugelberg M. Optical coherence tomography of the anterior segment in eyes with phakic refractive lenses. Ophthalmology 2007;114:2031-2037.
    39. Schmidinger G, Lackner B, Pieh S, Skorpik C. Long-term changes in posterior chamber phakic intraocular collamer lens vaulting in myopic patients. Ophthalmology 2010;117:1506-1511.
    40. Baikoff G, Lutun E, Wei J, Ferraz C. An in vivo OCT study of human natural accommodation in a 19-year-old albino. J Fr Ophtalmol 2005;28:514-519.
    41. Baikoff G, Jitsuo JH, Bourgeon G. Measurement of the internal diameter and depth of the anterior chamber: IOLMaster versus anterior chamber optical coherence tomographer. J Cataract Refract Surg 2005;31:1722-1728.
    42. Richdale K, Bullimore MA, Zadnik K. Lens thickness with age and accommodation by optical coherence tomography. Ophthalmic Physiol Opt 2008;28:441-447.
    43. Yan PS, Lin HT, Wang QL, Zhang ZP. Anterior segment variations with age and accommodation demonstrated by slit-lamp-adapted optical coherence tomography. Ophthalmology 2010;117:2301-2307.
    44. Sheppard AL, Davies LN. In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia. Invest Ophthalmol Vis Sci 2010;51:6882-6889.
    45. Sheppard AL, Davies LN. The effect of ageing on in vivo human ciliary muscle morphology and contractility. Invest Ophthalmol Vis Sci 2011;52:1809-1816.
    46. Drexler W, Morgner U, Ghanta RK, Kartner FX, Schuman JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 2001;7:502-507.
    47. Drexler W. Ultrahigh-resolution optical coherence tomography. J Biomed Opt 2004;9:47-74.
    48. Ruggeri M, Wehbe H, Jiao S, Gregori G, et al. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2007;48:1808-1814.
    49. Fine JL, Kagemann L, Wollstein G, Ishikawa H, et al. Direct scanning of pathology specimens using spectral domain optical coherence tomography:a pilot study. Ophthalmic Surg Lasers Imaging 2010;41 Suppl:S58-S64.
    50. Wang J, Jiao S, Ruggeri M, Shousha MA, Chen Q. In situ visualization of tears on contact lens using ultra high resolution optical coherence tomography. Eye Contact Lens 2009;35:44-49.
    51. Gonzalez-Meijome JM, Cervino A, Carracedo G, Queiros A, et al. High-resolution spectral domain optical coherence tomography technology for the visualization of contact lens to cornea relationships. Cornea 2010;29:1359-1367.
    52. Chen Q, Wang J, Tao A, Shen M, et al. Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses. Invest Ophthalmol Vis Sci 2010;51:1988-1993.
    53. Kojima T, Ishida R, Dogru M, Goto E, et al. A new noninvasive tear stability analysis system for the assessment of dry eyes. Invest Ophthalmol Vis Sci 2004;45:1369-1374.
    54. Du C, Wang J, Cui L, Shen M, et al. Vertical and Horizontal Corneal Epithelial Thickness Profiles Determined by Ultrahigh Resolution Optical Coherence Tomography. Cornea 2012.
    55. Mutapcic L, Karp C, Haft P. Ultra-high resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations. Ophthalmology 2012.
    56. Shousha MA, Perez VL, Wang J, Ide T, et al. Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet's membrane in Fuchs' dystrophy. Ophthalmology 2010;117:1220-1227.
    57. Hurmeric V, Yoo SH, Fishler J, Chang VS, et al. In vivo structural characteristics of the femtosecond LASIK-induced opaque bubble layers with ultrahigh-resolution SD-OCT. Ophthalmic Surg Lasers Imaging 2010;41 Suppl:S109-S113.
    58. Suh LH, Shousha MA, Ventura RU, Kieval JZ, et al. Epithelial ingrowth after Descemet stripping automated endothelial keratoplasty: description of cases and assessment with anterior segment optical coherence tomography. Cornea 2011;30:528-534.
    59. Sarunic MV, Asrani S, Izatt JA. Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. Arch Ophthalmol 2008;126:537-542.
    60. Gora M, Karnowski K, Szkulmowski M, Kaluzny BJ, et al. Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt Express 2009;17:14880-14894.
    61. Potsaid B, Baumann B, Huang D, Barry S, et al. Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express 2010;18:20029-20048. 62. Furukawa H, Hiro-Oka H, Satoh N, Yoshimura R, et al. Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging. Biomed Opt Express 2010;1:1491-1501. 63. Baumann B, Pircher M, Gotzinger E, Hitzenberger CK. Full range complex spectral domain optical coherence tomography without additional phase shifters. Opt Express 2007;15:13375-13387. 64. Grulkowski I, Gora M, Szkulmowski M, Gorczynska I, et al.Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. Opt Express 2009;17:4842-4858.
    65. Zhou C, Wang J, Jiao S. Dual channel dual focus optical coherence tomography for imaging accommodation of the eye. Opt Express 2009;17:8947-8955.
    66. Shen M, Wang MR, Yuan Y, Chen F, et al. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthalmic Surg Lasers Imaging 2010;41 Suppl:S65-S69.
    67. Du C, Zhu D, Shen M, Li M, et al. Novel optical coherence tomography for imaging the entire anterior segment of the eye. Invest Ophthalmol Vis Sci 2011;52;ARVO E-Abstract 3023, Fort Lauderdale

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700