分数傅里叶变换在数字图像处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将分数傅里叶变换(FRFT,Fractional Fourier Transform)用于数字图像处理领域中是图像技术发展的一个新方向。由于FRFT与光学成像有着内在的联系,可用它来描述光学成像衍射过程,因而它非常适合于数字图像处理。
     本文在分析了FRFT的数学、光学特性和FRFT与数字图像关系基础上,提出了基于FRFT变换域的数字图像处理算法。这些算法主要集中于图像复原和数字图像信息安全两个方向,内容包括以下三个方面:
     首先依据FRFT与光学衍射成像系统的内在联系,利用FRFT分析和解释了光学成像过程中的散焦模糊现象,进而构建FRFT散焦成像模型。FRFT散焦成像模型完全不同于传统的点传播模型PSF,它揭示了光学成像系统中散焦图像的模糊本质是在于连续FRFT过程导致图像的幅度、相位发生改变。由此本文提出了基于FRFT散焦成像模型图像复原算法,它可以提高散焦模糊图像的清晰度、改善图像质量,解决了数字图像中散焦模糊问题。最后将FRFT散焦图像复原方法与传统PSF模型散焦复原方法进行对比实验,结果显示FRFT散焦复原法的恢复效果优于传统方法。
     在数字版权安全保护中,依据FRFT的光学衍射成像系统的内在联系,本文并将当前流行的CDMA扩频通信技术原理融入到水印系统中,由此提出了基于CDMA扩频的FRFT域数字图像水印实现算法。将水印数据分解成一些片断,每个片断代表不同的CDMA用户数据,每个片断数据用不同的正交Gold码调制成CDMA扩频水印数据,而后将这些CDMA水印数据嵌入到图像的FRFT域的低频系数中。FRFT图像水印同时具有空域水印系统和频域水印系统的特性,CDMA技术能改善水印系统的鲁棒性和安全性、增加水印信息容量。
     在数字图像加密保护中,利用FRFT的多样性和混沌序列的复杂性、伪随机性和对初值敏感性,本文提出基于FRFT域和空域混沌序列的双重图像加密算法,它能显著提高加密图像的抗攻击性。另外本文研究了基于非对称FRFT域的双重随机相位图像加解密实现过程。
     除了在图像复原与图像安全保护中应用外,FRFT也可应用于数字图像处理领域的其它方向如模式识别、图像边缘检测等。随着FRFT理论技术的发展,FRFT在数字图像处理的应用会更加深入广泛。
Introducing FRFT into digital image processing field is a new direction of image technology development. The FRFT is closely connected with optical system and can describe all diffraction process of optical imaging system. Therefore, it is very suitable for digital image processing.
     According to mathematic and optical charactertics of FRFT and internal relations between FRFT and digital image, we have proposed several digital image processing arithmetic based on FRFT domain, which are used to two directions: image restoring and digital image security. The researches mainly include the following three aspects.
     Considering the mutual connects between FRFT and optical diffraction process, a defocused imaging model based on FRFT is established to explain the blur phenomenon of defocusing image on the basis of the internal connections of FRFT and optical diffract imaging system. The defocused imaging model is greatly different from the traditional PSF model, which enables to uncover the blur nature of non-focus image: the continuous FRFT process lead to redistributions of magnitude and phase of image. An image restoration approaches using the novel model are given to handle the blurred defocused image, which can make the image sharp and improve quality of image. The experiments demonstrate that FRFT restoring method is superior to the convenient PSF restoring method.
     In the field of digital copyright protection, we adopted the current popular CDMA technology to our digital watermark system and purposed a CDMA spread spectrum digital watermark schema based on FRFT domain. The watermarking image is divided into many segments. By utilizing different orthogonal Gold codes, every segment of watermarking image is independently modulated into the CDMA watermarking data which is embedded the low frequency magnitude coefficients of FRFT of host image. The CDMA technique not only can enhance the robustness of watermark but also can compress the data of the modulated watermark for increasing data hiding capacity. Moreover, the FRFT domain watermarking system has the property of spatial-domain and frequency-domain watermarking system.
     In digital image encrypting protection system, a new method based on the variety of the FRFT and pseudo- randomness, complexity of chaotic sequences for encrypting image using encoding both space domain and FRFT domain is proposed, which can improve system security. Finally, we have studied double-random phase encrypting method in FRFT domain for the optical image security system.
     In additional to image restoration and image security protection, the FRFT are also applied to other digital image processing fields such as pattern recognization, brim detection. With the development of FRFT theory and technology, the application in digital image processing will be more wide and deep.
引文
[1] Condon E.U. Immersion of the Fourier transform in a continous group of functional transformation. Acad Sci USA, 1937, 23(1):158~164.
    [2] Bargmann V. On a hilbert space of analytic functions and an associtated integral transforms. Part I, Commun Pure and Appl Math, 1961, 14:187~214.
    [3] Namias V. The fractinal order Fourier transform and its application to quantum mechanics. Inst Math Appl, 1980, 25:241~265.
    [4] McBride A. C., Kerr F. H. On Namias’fractional Fourier transforms. Appl Math, 1987, 39:159~175.
    [5] Ozaktas H. M., Mendlovic D. Fractional Fourier transforms and their optical implement- ation (II). Opt Sco AM A, 1993, 10(12): 2522~2531.
    [6] Lohmann A. W. A fake zoom lens for fractional Fourier experiments. Opt Commun. 1995 ,115 :437~443.
    [7] Pellat F.P. Fresnel diffraction and the fractional order Fourier transform. Opt Lett, 1994, 19(18) :1388~1390.
    [8] Ozaktas H.M., Kutay M.A, Zalevsky Z. The Fractional Fourier Transform with Applications in Optics and Signal Processing. New York: John Wiley & Sons, 2000
    [9] Ozaktas H.M., Kutay M.A., Bozdagi G. Digital computation of the fractional Fourier transform.IEEE Trans. Sig. Proc. 1996, 44:2141~2150.
    [10]杨虎,李万松.分数傅里叶变换的无透镜光学实现.激光杂志,1999, 20(1):15~18.
    [11]孙晓兵,保铮.分数阶Fourier变换及其应用.电子学报,1996, 24(12):60~65.
    [12] Bernardo L.M., Soates O.D. Fractional Foruier transforms and imaging. J.Opt. Soc. Am.A, 1994, 11:2622~2186.
    [13] Ozakta H. M., Aytur O. Fractional Fourier Domains. IEEE.Signal Processing, 1995, 46: 119~124.
    [14] Lee S. Y, Szu H. H. Fractional Foruier transforms, wavelet transforms and adaptive neural networks. Opt.Engineering, 1994, 33:2326~2330.
    [15] Ying Huang, Sute B. Fractional wave packet transform. IEEE 1994 Digital Signal Processing Workshop Proceedings, 1996. 413~415.
    [16] Folland G. B., Nikias C. L. A new position time-frequency distribution. Proc.IEEE 1994, 4:301~304.
    [17] Lohmann A. W. Image rotation, Wigner rotation, and fractional Fourier transform. Opt.Soc.Am.A, 1993, 10(10):2181-2186.
    [18] Ozakta H. M., Barshan B.Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms. Opt.Soc.Am.A, 1993, 11(2):547-559
    [19] Akay O., Boudreaux-Bartels G. F. Linear fractionally invariant systems: fractional filtering and correlation via fractional operations. in: Signals Systems & Computers, Coference Record of the Thirty-First Aslomar Conference, 1997, 2:2~5.
    [20]张子云,曹玉茹.单透镜分数傅里叶变换全息图.合肥工业大学学报(自然科学版) 2006, 29(5):36~39
    [21] Kerr F. H. Namias’s fractional Fourier transforms on L2 and applications to differential equations. Math and Applic, 1988,136:404~418.
    [22] Mustard D. Lie group imbeddings of the Fourier transform and a new family of uncertainy principles. In: Proc Miniconf Harmonic Analysis Operator Algebras. Canberra: Australian National University, 1987. 211~222.
    [23]邓兵,陶然,齐林等.分数阶Fourier变换与时频滤波.系统工程与电子技术, 2004,26(10):1357~1359.
    [24] Erden M. F., Kutay M. A., Ozaktas H M. Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration. IEEE Tran Signal Processing, 1999, 47(5): 1458~1462.
    [25] Kutay M. A., Ozaktas H. M., Arikan O., et al. Optimal filtering in fractionalFourier domains. IEEE Tran Signal Processing, 1997, 45(5): 1129~1143.
    [26] Jang S., Choi W., Sarkar T. K., et al. Exploiting early time response using the fractional Fourier transform for analyzing transient radar returns. IEEE Tran Antennas and Propagation, 2004, 52(11): 3109~3121.
    [27] Jouny I. I. Radar Backscatter analysis using fractional Fourier transform. In: IEEE Antennas and Propagation Society symposium. NJ: IEEE, 2004. 2115~2119
    [28] Ertosun M. G., Atli H., Ozaktas H. M, et al. Complex signal recovery from two fractional Fourier transform intensities order and noise dependence. Optics Communications, 2005, 244(1~6): 61~70.
    [29] Zhang F., Bi G. A., Chen Y Q. Tomography time-frequency transform. IEEE Tran Signal Processing, 2002, 50(6): 1289~1297.
    [30]陈光化,马世伟,曹家麟,等.基于分数阶傅里叶变换的自适应时频表示.系统工程与电子技术,2001, 23(4): 69~71.
    [31]陶然,齐林,王越.分数阶Fourier变换的原理与应用.第一版.北京:清华大学出版社, 2004.
    [32] Ozaktas H.M., Arikan O., Kutay M.A. et al. Digital computation of the fractional Fouriertransform, IEEE Trans. Signal Proc. 1996, 44(9):2141~2149.
    [33] Candan C., Kutay M.A., Ozaktas H.M. The discrete fractional Fourier transform. IEEETrans. Signal Proc. 2000,48(5):1329~1337.
    [34] Dikinson B. W., Steiglitz K. Eigenvector and functions of the discrete Fourier transform.IEEE Trans.Acoust Speech Signal processing,1982,30(1): 25~31.
    [35] McClellan J. H., Parks T. W. Eigenvalue and Eigenvector decomposition of the discrete Fourier transform. IEEE Trans. Audio Electroacoust, 1972, 20:66~74.
    [36] Pei S.C., Discrete Fractional Fourier Transform Based on Orthogonal Projections. IEEETrans. on signal processing, 1999, 47(5):1335~1348.
    [37] Tao Ran, Ping Xianjun. A novel discrete fractional Fourier transform,Radar.2001 CIE International Conference on,Proceedings. 2001:1027~1030.
    [38]赵兴浩,邓兵,陶然.分数阶傅里叶变换数值计算中的量纲归一化.北京理工大学学报, 2005, 25(4):360~364
    [39]穆晓敏,王娟锋,杨守义,齐林.基于分数阶Fourier变换的图像分析. http://www.gotoread.com
    [40] Bernardo L. M, Soates O. D. Fractional Foruier transforms and optical system. J.Opt.Comm., 1994, 110:517~520.
    [41] James E. , Steven Z. Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Analysis and Machine Intelligence, 1998, 20(7):699~716.
    [42] Kayargadde V., J. Martens B. Estimation of edge parameters and image blur from local derivatives. Journal on Communications, 1994, 10:33~34.
    [43] Savakis A., Trussell H.J.Blur identification by residual spectral matching. IEEE Tans. Image Processing, 1993, 2(2):141~151.
    [44] Savakis A., Trussell H.J. On the accuracy of psf representation in image restoration.IEEE Tans. Image Processing, 1993, 2(2): 141~151.
    [45] Gu B., Yang G., On the phase retrieval problem in optical and electronic microscopy. Acta Opt. Sin, 1981, 1:517~522.
    [46] Yang G., Dong B., B. Gu, et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Appl Opt. 1994, 33:209~218.
    [47] Zalevsky Z., Mendlovic D., Dorsch R. G. Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain. Opt. Lett. 1996, 21:842~844.
    [48] Gerchberg R. W., Saxton W. O. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik (Stuttgart), 1972, 35: 237~246.
    [49] Cai L.Z., Wang Y.Q. Optical implementation of scale invariant fractional Fourier transform of continuously variable orders with a two-lens system. Optics & Laser Technology, 2002, 34: 249~252.
    [50] Gerrard A., Burch J.M. Introduction to matrix method in optics. New York: Wiley,1975.
    [51] Collins S.A. Lens system distraction integral written in terms of matrix optics.Opt Soc Am, 1970, 60:1168~77.
    [52] Cai L.Z, Yang X.L. Collins formulae in both space and frequency domains for ABCDoptical systems with small deformations. Mom Opt, 2001, 48:1389~1396.
    [53]陈家璧,苏显渝.光学信息技术原理及应用.第一版.北京:高等教育出版社, 2002. 40~47.
    [54] Teague M. R. Deterministic phase retrieval: a Green function solution. Opt.Soc.Am, 1983, 73:1434~1441.
    [55] Alieva T., Bastiaans M. J. On fractional Fourier transform moments. IEEE SignalProcess. Lett, 2000, 7:320~323.
    [56] Gonzalez R. C., Woods R E. Digital Image Processing. NewYork, Pearson Education, 2003.
    [57] Koch E., Rindfrey J., J.Zhao. Copyright Protection for Multimedia Data. Proc. of the International Conference on Digital Media and Electronic Publishing, 1994,12:6~8.
    [58] Charles G., Boncelet J. Hiding information in images. In: Ramchandran, K., ed. Proceedings of the International Conference on Image Processing. Chicago: 1998. 396~398.
    [59] Fridrich J., Baldoza A.C., Simard R.J. Robust digital watermark based on key-dependent basis functions. Proc. of Information Hiding’98, 1998. 143~157.
    [60] Craver S. On public-key steganography in the presence of an active warden. Proc. of Information Hiding’98, 1998. 355~368.
    [61] Craver S., Memon N., Yeo B.L. Yeung M.M. Resolving rightful ownerships with invisible watermarking techniques: Limitations, attacks, and implications. IEEE Journal on Selected Areas in Communications, 1998, 16(4):573~586.
    [62] Hartung F., Kutter M. Multimedia watermarking techniques. Proc. of IEEE, 1999,87(7):1079~1107.
    [63] Petitcolas F.A.P., Anderson R.J., M.G.Kuhn. Information hiding– a survey, To appear in Proc of the IEEE, special issue on protection of multimedia content, May 1999.139~142
    [64] Cox I.J., Miller M.L. A Review of Watermarking and importance of Perceptual Modeling Human Vision&Electronic Imaging II, 1997,3016:92~99.
    [65] Cox I.J.数字水印.第一版.王颖译.北京:电子工业出版社,2003.7~25.
    [66] Ruanaidh J J K.O., Csurka G. A Bayesian approach to spread spectrum watermark detection and secure copyright protection for digital image libraries. IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Fort Collins, USA:1999.
    [67] Pickholtz R., Schilling D., Milstein L. Theory of spread-spectrum communications -a tutorial. IEEE Transactions on Communications, 1982, 30 (5):855~884.
    [68] An Introduction to Direct-Sequence Spread-Spectrum Communications . http://www.maxim-ic.com/an1890
    [69] Shen Yun-shan. Spread Spectrum Technology. Beijing: Publishing House of Defense Industry, 1995. 124~130
    [70] McWilliams, F.J., Sloane, N.J.A. Pseudo-Random sequences and arrays. Proceedings of the IEEE, 1976, 64(12):1715~1729.
    [71] Dekorsy A., Fischer S., Kammeyer K.D. Maximum likelihood decoding of M-ary orthogonal modulated signals for multi-carrier spread-spectrum systems. In: The Ninth IEEE International Symposium on Personal. Indoor and mobile Radio Communications (Pimrc’98). Boston,Massachusetts: 1998, 2:538~543.
    [72] Iskander C. D., Mathiopoulos P. T. Performance of multicode DS/CDMA with noncohe-rent M-ary orthogonal modulation in multi-path fading channels. IEEE Trans. On Wireless Communications, 2004, 3(1):209~223.
    [73] Lee yong-Hwan, Kim seung-Jun. Sequence acquisition of DSCDMA systememploying GOLD sequence. IEEETransactiononVehicular Technology, 2000, 49 (6):2397~2404.
    [74] Stankovic S., Djurovic I., Pitas I.Watermarking in the Space/Spatial-Frequency Domain Using Two-Dimensional Radon-Wigner Distribution.IEEE Trans on Image Processing, 2001,10( 4):650~658.
    [75]张峰,穆晓敏,杨守义等基于FRFT盲检测Chirp类数字水印算法.计算机工程与应用,2006,27:57~60.
    [76]黄晓生.数字图像安全技术研究进展.华东交通大学学报,2006 , 23(1):82~85.
    [77]李昌刚,韩正之.图像加密进展技术新进展.信息与控制, 2003, 32(4):340-343.
    [78]丁伟,齐东旭.数字图像变换及信息隐藏与伪装技术.计算机学报, 1998, 21 (9): 838~843.
    [79] Schwartz C. A new graphical method for encryption of computer data. Cryptology, 1991, 15(1): 43~46.
    [80] Bourbakis N., Alexopoulos C., Picture data encryption using SCAN patterns. Pattern Recognition, 1992, 25(6):567~581.
    [81] Chang C.C. A new encryption algorithmfor image crypto systems. The Journal of Systems and Software, 2001, 58(7) :83~91.
    [82] Kuo C.J. Novel image encryption technique and its application in progressive transmission. Electron. Imaging , 1993, 2(4) :345~351.
    [83] Chang H.K., Liou J I. An image encryption scheme based on quadtree compression scheme. Proceedings of the International Computer Symposium. Taiwan:2001. 230~237.
    [84] Bateni H.,Mcgillem C.D. A chaotic direct-sequence spread-spectrum communi- cation system. IEEE Transactions on Communication, 1994, 42:1524~1527.
    [85]李赵红,侯建军,张煜等.基于级联混沌映射的图像加密算法.北京交通大学学报, 2005, 29(2):100~102.
    [86]纪震,肖薇薇,王建华等.基于混沌序列的多重数字图像水印算法.计算机学报,2003,26(1):1555~1561.
    [87] Kohda T., Tsuneda A. Statistics of chaotic binary sequences. IEEE Transactions on Information Theory , 1997,6(43):104~112.
    [88]何俊发,李俊,王红霞等.不对称离散分数傅里叶变换实现数字图像的加密变换.光学技术,2005,31(3):410~412.
    [89] Javidi B., Ahouzi E. Optical security system with Fourier plane encoding. Appl Opt, 1998 ,37(26):6247~6255.
    [90] Tan X., Matoba O., Shimura T., et al. Secure optical storage that uses fully phase encryption. Appl Opt, 2000,39(35):6689~6694.
    [91] Mogensen P.C., Glückstad J. Phase only optical encryption. Opt Lett, 2000, 25(8):566~568.
    [92] Mogensen P.C.,Glückstad J. Phase only optical encryption of a fixed mask. Appl Opt, 2001 ,40(8):1226~1235.
    [93] UnniKrishnan G., Joseph J., Singh K. Optical encryption by double random phase encoding in the fractional Fourier domain. Opt Lett, 2000, 25(12):887~889.
    [94] Hennelly B., Sheridan J. T. Optical image encryption by random shifting in fractional Fourier domains. Opt Lett, 2003, 28(4):269~271.
    [95] UnniKrishnan G., Joseph J., Singh K. Fractional Fourier domain encrypted holo- graphic memory by use of an anamorphic optical system. App Opt, 2001, 40(2): 299~306.
    [96] Sahin A., Ozaktas H.M., Mendlovic D. Optical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions. Optics Communications, 1995, 120(3):134~138.
    [97]林睿.采用变形分数傅里叶变换的光学图像加密.重庆工商大学学报(自然科学版), 2006,23(3):289~292.
    [98] Lugt A.V. Signal detection by complex spatial filtering. IEEE Tans Info Theory IT.1964, 10 (1):139~145.
    [99] Weaver C. S., Goodman J. W. A technique for optically convolving two functions. Appl Opt, 1966, 5(5):1248~1249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700