馆藏文物纹理重建与组织关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文物是人类社会活动中遗留下来的具有历史、艺术、科学价值的遗物和遗迹。馆藏文物纹理重建与组织关键技术研究对于文物的传承、鉴赏和保护管理具有重要的理论意义和应用价值
     目标的三维重建包括几何重建和纹理重建两部分,本文针对纹理重建,假设已有馆藏文物对象的结构光扫描点云、扫描同步影像和单反相机拍摄的高分辨率影像,目的是基于这些数据完成馆藏文物的高质量、高保真的纹理重建、组织与展示工作。其中,本文完成的研究工作包括:
     1)结构光系统扫描点云的三维构网。在众多几何重建手段中,基于结构光扫描系统或激光扫描系统是获取重建对象表面密集点云的最稳健的方法之一。然而几何重建的最终目标是物体的几何模型,对于扫描获取的点云数据,还需要进行离散点表面重建。本文总结分析了现有的三维构网方法,选择了其中七种算法进行了详细的对比试验,最终选择了泊松构网方法对扫描点云进行表面重建。
     2)基于结构光系统扫描同步影像的高分辨率影像的配准。结构光方法本质上仍是一种基于影像的测量方法,所以其测量的过程中能同步采集扫描对象的影像。经过点云拼接,这些影像的外方位元素只要相应的进行相似变换,就能得到其相对于最终几何模型的外方位元素。利用这些已知方位元素的同步影像完成高分辨影像的自动配准是本文选择结构光系统进行重建的最重要原因。本文以扫描同步影像为参考基准,使用匹配加光线投射的方法在高分辨率影像与几何模型间自动寻找同名点,最后采用稳健后方交会的方法完成配准,整个过程几乎不需要人干预,精度和可靠性高。
     3)多张影像的无缝纹理映射。当完成了多张高分辨率影像与几何模型的配准,由于影像间不可避免的色彩、光照等差异,在最终的纹理图集上总是存在纹理接缝。本文回顾总结了现有的无缝纹理处理方法,基于泊松影像编辑和色彩变换技术,提出了一种新的以面为处理单元的无缝纹理辐射处理方法。理论分析和试验证明了相比标准的像素级泊松影像编辑方法,本文方法更适合于三维模型的纹理重建。
     4)纹理组织与纹理模型的简化。随着硬件设备的发展,扫描点云越来越密集,数码相机的分辨率也逐年提高。因此高效率的组织纹理数据和高质量的简化纹理模型对数据传输、保存和展示都意义重大。在纹理组织上,本文在现有的贪婪法纹理打包基础上,增加了纹理块矩形融合,进一步提高了效率和稳健性。在模型简化问题上,针对纹理模型的简化后的纹理恢复问题,本文首次提出了一条完整而高质量的纹理重采样解决方案,不但丰富了纹理模型的简化方法,在和现有方法的对比上,本文方法也表现出了不同的特点和优势。
     5)纹理重建应用。本文开发了一套结合结构光系统的纹理重建软件,进行了大量的馆藏文物、工艺品等纹理重建工作。而随着移动设备和互联网的发展,当前三维模型的展示已经不限于PC设备。本文基于OGRE开源三维引擎,开发了一套iPad三维模型浏览软件用于移动设备的展示。最后,本文基于重建的纹理模型,提出了一种新的真正射影像采集方法,该方法采集的真正射影像,不仅无需镶嵌,而且是无缝的。
Cultural Relics are the heritages with historical, art and scientific values. The3D digital reconstruction, which is an important method to record, preserve, inherit and appreciate the cultural relics, is now becoming more significant and challenging.
     The3D reconstruction for targets includes two steps of geometric and texture reconstruction. Aiming at the texture reconstruction, this paper proposed a complete solution for the cultural relics in museums. The input data of our method is the point clouds with synchronous images from structure-light scanning system and the high resolution images from SLR cameras. Our method has the merits of high quality, high fidelity and high efficiency, in which the major contributions include:
     1.3D surface reconstruction from scanning point clouds. Among the general-used methods in3D measurement, structure-light scanning system is one of the most stable ways to gain the dense and uniform points from objects'surface. But as the final result of geometric reconstruction should be the mesh model, it needs to construct the triangular mesh from the point clouds. After summarizing the existing surface reconstruction methods, we chose7approaches to carry through the real data experiments. And finally, due to the superiority in handling noise and non-uniform samplings, Poisson surface reconstruction method is chosen to do geometric reconstruction for the point clouds from structure-light system.
     2. The automatic registration between high resolution images to geometric model. Since the structure-light system is still an image-based measurement method, it can capture a synchronous image during one scan. These synchronous images can be registered easily to the final geometric model along with the point clouds alignment. First, we regard these synchronous images with known parameters as the reference. Then the corresponding point pairs between high resolution images and geometric model are calculated through image matching and ray casting techniques. At last, the exterior parameters of high resolution images are accurately estimated through robust resection. The whole process is automatic and efficient, and experiments proved our method.
     3. Seamless texture mapping from multi-view images. After registering sufficient high resolution images, seamless texture mapping is another challenge, due to the inevitable differences between images in color, illuminance etc. First, we reviewed the existing methods in removing texture seams. Then we proposed a new photometric processing method of face-wise Poisson blending for removing photometric discrepancy on seam-lines, which is based on standard Poisson image editing approach combined with color transfer techniques. Compared with the existing methods, theoretical analysis and experiments proved that our method is more appropriate for3D seamless texturing.
     4. Optimizing texture maps and simplifying the texture model. As the development of hardware, the density of scanning points and the resolution of images become increasingly higher. For reducing the redundancy of texture maps, we reformed the existing texture packing methods by texture block merging. And then, we proposed a complete and high quality solution to resampling the texture for the simplified geometric model from the original texture maps. Our method not only enriches the simplification methods for texture models, but also shows advantages in comparison to the existing methods.
     5. The application of texture reconstruction. We developed a set of software for texture reconstruction, and do a lot of3D reconstruction for cultural relics in museums, art and crafts etc. And for the exhibition on mobile platforms, we developed an iPad App based on the OGRE3D graphics engine. At last, we proposed a true-ortho photo generation method based on the result of texture reconstruction.
引文
[1]Aiger D, N J Mitra, D Cohen-Or.4-points congruent sets for robust pairwise surface registration, in ACM SIGGRAPH 2008 papers.2008, ACM:Los Angeles, California, pp. 1-10.
    [2]Allene C, J P Pons, R Keriven. Seamless image-based texture atlases using multi-band blending[C]. in Pattern Recognition,2008. ICPR 2008.19th International Conference on. 2008.
    [3]Amenta N, M Bern, M Kamvysselis. A new Voronoi-based surface reconstruction algorithm[C]. in Proceedings of the 25th annual conference on Computer graphics and interactive techniques.1998. ACM.
    [4]Amenta N, S Choi, T K Dey, et al. A simple algorithm for homeomorphic surface reconstruction[C]. in Proceedings of the sixteenth annual symposium on Computational geometry.2000. ACM.
    [5]Amenta N, S Choi, R K Kolluri. The power crust, unions of balls, and the medial axis transform[J]. Computational Geometry,2001.19(2):pp.127-153.
    [6]Attene M, M Spagnuolo. Automatic surface reconstruction from point sets in space[C]. in Computer Graphics Forum.2000. Wiley Online Library.
    [7]Bajaj C L, F Bernardini, G Xu. Automatic reconstruction of surfaces and scalar fields from 3D scans[C]. in Proceedings of the 22nd annual conference on Computer graphics and interactive techniques.1995. ACM.
    [8]Baker S, T Kanade. Shape-from-silhouette across time part i:Theory and algorithms[J]. International Journal of Computer Vision,2005.62(3):pp.221-247.
    [9]Bannai N, R B Fisher, A Agathos. Multiple color texture map fusion for 3D models[J]. Pattern Recognition Letters,2007.28(6):pp.748-758.
    [10]Baumberg A. Blending images for texturing 3D Models[C]. in British Machine Vision Conference.2002.
    [11]Bernardini F, J Mittleman, H Rushmeier, et al. The ball-pivoting algorithm for surface reconstruction[J]. Visualization and Computer Graphics, IEEE Transactions on,1999.5(4): pp.349-359.
    [12]Bernardini F, IM Martin, H Rushmeier. High-quality texture reconstruction from multiple scans[J]. Visualization and Computer Graphics, IEEE Transactions on,2001.7(4):pp. 318-332.
    [13]Besl P J, N D McKay. A Method for Registration of 3-D Shapes[J]. IEEE Trans. Pattern Anal. Mach. Intell,1992.14(2):pp.239-256.
    [14]Boissonnat J-D. Geometric structures for three-dimensional shape representation[J]. ACM Transactions on Graphics (TOG),1984.3(4):pp.266-286.
    [15]Boykov Y, O Veksler, R Zabih. Fast approximate energy minimization via graph cuts[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2001.23(11):pp. 1222-1239.
    [16]Burt P J, E H Adelson. A multiresolution spline with application to image mosaics[J]. ACM Trans. Graph.,1983.2(4):pp.217-236.
    [17]Callieri M, P Cignoni, M Corsini, et al. Masked photo blending:Mapping dense photographic data set on high-resolution sampled 3D models[J]. Computers & Graphics, 2008.32(4):pp.464-473.
    [18]Carr J C, R K Beatson, J B Cherrie, et al. Reconstruction and representation of 3D objects with radial basis functions[C]. in Proceedings of the 28th annual conference on Computer graphics and interactive techniques.2001. ACM.
    [19]Chen C C, J H Chuang. Texture adaptation for progressive meshes[C]. in Computer Graphics Forum.2006. Wiley Online Library.
    [20]Cignoni P, C Montani, C Rocchini, et al. Preserving attribute values on simplified meshes by resampling detail textures[J]. The Visual Computer,1999.15(10):pp.519-539.
    [21]Cleju I, D Saupe. Stochastic Optimization of Multiple Texture Registration Using Mutual Information, in Pattern Recognition[M], F. Hamprecht, C. Schnorr, and B. Jahne, Editors. 2007, Springer Berlin Heidelberg, pp.517-526.
    [22]Cohen J, M Olano, D Manocha. Appearance-preserving simplification, in Proceedings of the 25th annual conference on Computer graphics and interactive techniques.1998, ACM. pp.115-122.
    [23]Coll N, T Paradinas. Accurate Simplification of Multi-Chart Textured Models[C]. in Computer Graphics Forum.2010. Wiley Online Library.
    [24]Corsini M, M Dellepiane, F Ponchio, et al. Image-to-Geometry Registration:a Mutual Information Method exploiting Illumination-related Geometric Properties[J]. Computer Graphics Forum,2009.28(7):pp.1755-1764.
    [25]Corsini M, M Dellepiane, F Ganovelli, et al. Fully Automatic Registration of Image Sets on Approximate Geometry[J]. International Journal of Computer Vision,2012:pp.1-21.
    [26]Corsini M, M Dellepiane, F Ganovelli, et al. Fully automatic registration of image sets on approximate geometry[J]. International Journal of Computer Vision,2013:pp.1-21.
    [27]Curless B, M Levoy. A volumetric method for building complex models from range images[C]. in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques.1996. ACM.
    [28]Dey T K, S Goswami. Tight cocone:a water-tight surface reconstructor[C]. in Proceedings of the eighth ACM symposium on Solid modeling and applications.2003. ACM.
    [29]Dey T K, S Goswami. Provable surface reconstruction from noisy samples[J]. Computational Geometry,2006.35(1):pp.124-141.
    [30]Dey T K, K Li, E A Ramos, et al. Isotopic reconstruction of surfaces with boundaries[C]. in Computer Graphics Forum.2009. Wiley Online Library.
    [31]Edelsbrunner H, D Kirkpatrick, R Seidel. On the shape of a set of points in the plane[J]. Information Theory, IEEE Transactions on,1983.29(4):pp.551-559.
    [32]Edelsbrunner H, E P Mucke. Three-dimensional alpha shapes[J]. ACM Transactions on Graphics (TOG),1994.13(1):pp.43-72.
    [33]Edelsbrunner H, M A Facello, P Fu, et al. Wrapping 3D scanning data[C]. in Photonics West'98 Electronic Imaging.1998. International Society for Optics and Photonics.
    [34]Fischler M A, R C Bolles. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J][J]. Commun. ACM,1981. 24(6):pp.381-395.
    [35]Fletcher G Y, T Gloth, H Edelsbrunner, et al. Methods, apparatus and computer program products that reconstruct surfaces from data point sets.2006, Google Patents.
    [36]Floater M S, K Hormann. Surface parameterization:a tutorial and survey, in Advances in multiresolution for geometric modelling[M],2005, Springer, pp.157-186.
    [37]Furukawa Y, J Ponce. Accurate, dense, and robust multiview stereopsis[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2010.32(8):pp.1362-1376.
    [38]Gal R, Y Wexler, E Ofek, et al. Seamless Montage for Texturing Models[J]. Computer Graphics Forum,2010.29(2):pp.479-486.
    [39]Garland M, P S Heckbert. Surface simplification using quadric error metrics, in Proceedings of the 24th annual conference on Computer graphics and interactive techniques. 1997, ACM Press/Addison-Wesley Publishing Co. pp.209-216.
    [40]Garland M, P S Heckbert. Simplifying surfaces with color and texture using quadric error metrics[C]. in Visualization'98. Proceedings.1998.
    [41]Ge Y, B Yin, Y Sun, et al.3D face texture stitching based on Poisson Equation, in Intelligent Computing and Intelligent Systems (ICIS),2010 IEEE International Conference on.2010:Xiamen pp.29-31 Oct.2010
    [42]Goldluecke B, D Cremers. Superresolution texture maps for multiview reconstruction[C]. in Computer Vision,2009 IEEE 12th International Conference on.2009.
    [43]Gopi M, S Krishnan, C T Silva. Surface reconstruction based on lower dimensional localized Delaunay triangulation[C]. in Computer Graphics Forum.2000. Wiley Online Library.
    [44]Gortler S J, R Grzeszczuk, R Szeliski, et al. The lumigraph, in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques.1996, ACM. pp. 43-54.
    [45]HABIB A, M GHANMA, M MORGAN, et al. Photogrammetric and lidar data registration using linear features[J]. Photogrammetric engineering and remote sensing,2005.71(6):pp. 9.
    [46]Habib A, K Bang, M Aldelgawy, et al. Integration of photogrammetric and LiDAR data in a multi-primitive triangulation procedure[C]. in ASPRS 2007 Annual Conference.2007. Tampa, Florida.
    [47]Hernandez C, G Vogiatzis, R Cipolla. Multiview photometric stereo[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2008.30(3):pp.548-554.
    [48]Heymann S, B Frohlich, F Medien, et al. SIFT implementation and optimization for general-purpose gpu, in WSCG'2007.2007:Campus Bory, Plzen-Bory, Czech Republic.
    [49]Hoppe H, T DeRose, T Duchamp, et al. Surface reconstruction from unorganized points[M]. Vol.26.1992:ACM.
    [50]Hoppe H. Progressive meshes[C]. in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques.1996. ACM.
    [51]Hoppe H. New quadric metric for simplifiying meshes with appearance attributes, in Proceedings of the conference on Visualization'99:celebrating ten years.1999, IEEE Computer Society Press:San Francisco, California, USA. pp.59-66.
    [52]Kazhdan M, M Bolitho, H Hoppe. Poisson surface reconstruction, in Proceedings of the fourth Eurographics symposium on Geometry processing.2006, Eurographics Association: Cagliari, Sardinia, Italy, pp.61-70.
    [53]Kazhdan M, H Hoppe. Screened Poisson surface reconstruction[J]. ACM Trans. Graph, 2013.32(1).
    [54]Kolluri R, J R Shewchuk, J F O'Brien. Spectral surface reconstruction from noisy point clouds[C]. in Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing.2004. ACM.
    [55]Lempitsky V, D Ivanov. Seamless Mosaicing of Image-Based Texture Maps[C]. in Computer Vision and Pattern Recognition,2007. CVPR'07. IEEE Conference on.2007.
    [56]Lensch H P A, W Heidrich, H P Seidel. Automated texture registration and stitching for real world models[C]. in Computer Graphics and Applications,2000. Proceedings. The Eighth Pacific Conference on.2000.
    [57]Lensch H P A, W Heidrich, H-P Seidel. A Silhouette-Based Algorithm for Texture Registration and Stitching[J]. Graphical Models,2001.63(4):pp.245-262.
    [58]Leung J Y, T W Tam, C Wong, et al. Packing squares into a square[J]. Journal of Parallel and Distributed Computing,1990.10(3):pp.271-275.
    [59]Levin D. Mesh-independent surface interpolation, in Geometric modeling for scientific visualization[M].2004, Springer, pp.37-49.
    [60]Levy B, S Petitjean, N Ray, et al. Least squares conformal maps for automatic texture atlas generation[C]. in 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH'02, July 23,2002-July 26,2002.2002. San Antonio, TX, United states:Association for Computing Machinery.
    [61]Lewis J. Lifting detail from darkness[J]. SIGGRAPH 2001 Sketch,2001.
    [62]Lindstrom P, G Turk. Image-driven simplification[J]. ACM Trans. Graph.,2000.19(3):pp. 204-241.
    [63]Liu L, I Stamos. Automatic 3D to 2D registration for the photorealistic rendering of urban scenes[C]. in Computer Vision and Pattern Recognition,2005. CVPR 2005. IEEE Computer Society Conference on.2005.
    [64]Lowe D. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision,2004.60(2):pp.91-110.
    [65]Lu Z, Y-W Tai, F Deng, et al. A 3D Imaging Framework Based on High-Resolution Photometric-Stereo and Low-Resolution Depth[J]. International Journal of Computer Vision,2013.102(1-3):pp.18-32.
    [66]Maes F, A Collignon, D Vandermeulen, et al. Multimodality image registration by maximization of mutual information[J]. Medical Imaging, IEEE Transactions on,1997. 16(2):pp.187-198.
    [67]Maruya M. Generating a Texture Map from Object-Surface Texture Data[C]. in Computer Graphics Forum.1995. Wiley Online Library.
    [68]Mikolajczyk K, C Schmid. A performance evaluation of local descriptors[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2005.27(10):pp.1615-1630.
    [69]O'Rourke J, H Booth, R Washington. Connect-the-dots:a new heuristic[J]. Computer Vision, Graphics, and Image Processing,1987.39(2):pp.258-266.
    [70]Ohtake Y, A Belyaev, M Alexa, et al. Multi-level partition of unity implicits[C]. in ACM SIGGRAPH 2005 Courses.2005. ACM.
    [71]Perez P, M Gangnet, A Blake. Poisson image editing[J]. ACM Trans. Graph.,2003.22(3): pp.313-318.
    [72]Pluim J P W, J B A Maintz, M A Viergever. Mutual-information-based registration of medical images:a survey[J]. Medical Imaging, IEEE Transactions on,2003.22(8):pp. 986-1004.
    [73]Reinhard E, M Adhikhmin, B Gooch, et al. Color transfer between images[J]. Computer Graphics and Applications, IEEE,2001.21(5):pp.34-41.
    [74]Rocchini C, P Cignoni, C Montani, et al. Multiple textures stitching and blending on 3D objects, in Proceedings of the 10th Eurographics conference on Rendering.1999, Eurographics Association:Granada, Spain, pp.119-130.
    [75]ROUX M. Registration of Airborne LaserData with One Aerial Image, in ISPRS Congress. 2004.
    [76]Salvi J, S Fernandez, T Pribanic, et al. A state of the art in structured light patterns for surface profilometry[J]. Pattern recognition,2010.43(8):pp.2666-2680.
    [77]Sander P V, J Snyder, S J Gortler, et al. Texture mapping progressive meshes[C]. in Computer Graphics Annual Conference (SIGGRAPH 2001), August 12,2001-August 17, 2001.2001. Los Angeles, CA, United states:Association for Computing Machinery.
    [78]Soucy M, G Godin, M Rioux. A texture-mapping approach for the compression of colored 3D triangulations[J]. The Visual Computer,1996.12(10):pp.503-514.
    [79]Szeliski R. Image alignment and stitching:a tutorial[J]. Found. Trends. Comput. Graph. Vis.,2006.2(1):pp.1-104.
    [80]Szeliski R. Computer Vision:Algorithms and Applications[M].2010.
    [81]Tarini M, P Cignoni, R Scopigno. Visibility based methods and assessment for detail-recoyery[C]. in Proceedings of the 14th IEEE Visualization 2003 (VIS'03).2003. IEEE Computer Society.
    [82]Uyttendaele M, A Eden, R Skeliski. Eliminating ghosting and exposure artifacts in image mosaics[C]. in Computer Vision and Pattern Recognition,2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on.2001.
    [83]Veltkamp R C.3D computational morphology[C]. in Computer Graphics Forum.1993. Wiley Online Library.
    [84]Viola P, W Wells Iii. Alignment by Maximization of Mutual Information[J]. International Journal of Computer Vision,1997.24(2):pp.137-154.
    [85]Vlasic D, P Peers, I Baran, et al. Dynamic shape capture using multi-view photometric stereo[C]. in ACM Transactions on Graphics (TOG).2009. ACM.
    [86]Williams N, D Luebke, J D Cohen, et al. Perceptually guided simplification of lit, textured meshes[C]. in Proceedings of the 2003 symposium on Interactive 3D graphics.2003. ACM.
    [87]Xiao X, L Ma. Color transfer in correlated color space, in Proceedings of the 2006 ACM international conference on Virtual reality continuum and its applications.2006, ACM: Hong Kong, China, pp.305-309.
    [88]Yu-Wing T, J Jiaya, T Chi-Keung. Local color transfer via probabilistic segmentation by expectation-maximization[C]. in Computer Vision and Pattern Recognition,2005. CVPR 2005. IEEE Computer Society Conference on.2005.
    [89]Zhao H-K, S Osher, B Merriman, et al. Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method[J]. Computer Vision and Image Understanding,2000.80(3):pp.295-314.
    [90]Zheng S, R Huang, Y Zhou. Registration of optical images with lidar data and its accuracy assessment[J]. Photogrammetric Engineering and Remote Sensing,2013.79(8):pp, 731-741.
    [91]王青,王融清,鲍虎军等.散乱数据点的增量快速曲面重建算法[J].软件学报,2000.11(9):pp.1221-1227.
    [92]王密,潘俊.面向无缝影像数据库应用的一种新的光学遥感影像色彩平衡方法[J].国土资源遥感,2006(04):pp.10-13+79.
    [93]江刚武,姜挺,王勇等.基于单位四元数的无初值依赖空间后方交会[J].测绘学报,2007.36(2):pp.169-175.
    [94]李德仁.利用选择权迭代法进行粗差定位[J].武汉大学学报:信息科学版,1984.9(1):pp.46-68.
    [95]杜全叶.无地面控制的航空影像与LiDAR数据自动高精度配准[D].武汉:武汉大学,2010.
    [96]狄红卫,刘显峰.基于结构相似度的图像融合质量评价[J].光子学报,2006.35(5):pp.766-771.
    [97]肖甫,吴慧中,肖亮等.一种光照鲁棒的图像拼接融合算法[J].中国图象图形学报,2007(09):pp.1671-1675.
    [98]肖伟器,缪勇武.空间对象数据库的网格索引机制[J].计算机学报,1994.17(10):pp.736-742.
    [99]周朗明,郑顺义,黄荣永.旋转平台点云数据的配准方法[J].测绘学报,2013.1:pp.013.
    [100]花海洋,赵怀慈.保持地形特征的网格模型简化算法[J].计算机辅助设计与图形学学 报,2011.04:pp.594-599.
    [101]侯文广,陈大为,丁明跃.一种基于多重影像实现真实感人脸三维重建的方法[J].电子学报,2008(04):pp.661-666.
    [102]侯文广,丁明跃.基于流形学习的三维空间数据网格剖分方法[J].电子学报,2009.11:pp.039.
    [103]姚春静.机载LIDAR点云数据与遥感影像配准的方法研究[D].武汉:武汉大学,2010.
    [104]胡良梅,高隽,何柯峰.图像融合质量评价方法的研究[J].电子学报,2004.32(12):pp.218-221.
    [105]高建,谢伟,涂志刚等.使用泊松方程插值方法进行遥感影像融合[J].武汉大学学报(信息科学版),2012(12):pp.1448-1451.
    [106]郭力真,吴恩华.多边形模型简化算法综述[J].计算机应用研究,.2005.22(8):pp.20-23.
    [107]郭力真,费广正,王文成等.结合纹理特征的模型简化误差度量算子[J].计算机学报,2005.28(6):pp.1054-1061.
    [108]童伟华,冯玉瑜,陈发来.基于隐式T样条的曲面重构算法[J].计算机辅助设计与图形学学报,2006.18(3):pp.358-365.
    [109]翟瑞芳.激光点云和数字影像结合的小型文物重建研究[D].武汉:武汉大学,2006.
    [110]潘志庚,郑星,张明敏.多分辨率模型生成中颜色和纹理属性的处理[J].系统仿真学报,2002.14(11):pp.1506-1508.
    [111]薛冰,王莉莉,沈哲.基于网格分割的带纹理模型细节保持化简方法[J].计算机辅助设计与图形学学报,2010(012):pp.2111-2118.
    [112]冯翔,周明全.带纹理的三维模型简化算法[J].计算机辅助设计与图形学学报,2009.21(6):pp.842-846.
    [113]卢威,曾定浩,潘金贵.支持外观属性保持的三维网格模型简化[J].软件学报,2009.20(3):pp.713-723.
    [114]张永军,熊小东,沈翔.城区机载LiDAR数据与航空影像的自动配准[J].遥感学报,2012.16(3):pp.579-595.
    [115]张帆,黄先锋,李德仁.激光扫描与光学影像数据配准的研究进展[J].测绘通报,2008(2):pp.7-10.
    [116]张帆.激光扫描数据三维建模中高保真度纹理重建研究[D].武汉:武汉大学,2009.
    [117]张帆,黄先锋,方伟等.基于兴趣边缘优化的壁画影像与激光扫描数据非刚性配准[J].中国科学:信息科学,2012.42(4):pp.493-503.
    [118]张祖勋,张剑清.城市建模的途径与关键技术[J].世界科技研究与发展,2003.25(3):pp.23-29.
    [119]张祖勋,张剑清.广义点摄影测量及其应用[J].武汉大学学报(信息科学版),2005.30(1):pp.1-5.
    [120]张丽艳,周儒荣,唐杰等.带属性的三角网格模型简化算法研究[J].计算机辅助设计与图形学学报,2002.14(3):pp.199-203.
    [121]张亚萍,熊华,姜晓红等.大型网格模型简化和多分辨率技术综述[J].计算机辅助设计与图形学学报,2010(004):pp.559-568.
    [122]张剑清,贺少军,苏国中.三维模型重建中影像纹理重组织方法研究[J].武汉大学学报(信息科学版),2005.30(2):pp.115-117.
    [123]赵煦,周克勤,闫利等.基于激光点云的大型文物景观三维重建方法[J].武汉大学学报(信息科学版),2008.33(7):pp.684-687.
    [124]邓非.数据与数字影像的配准和地物提取[D].武汉:武汉大学,2006.
    [125]郑顺义,黄荣永,郭宝云等.附约束条件的立体相机标定方法[J].测绘学报,2012.41(6):pp.877-885.
    [126]钟成,李卉,黄先锋等.利用6元组松弛法自动配准LIDAR数据与航空影像[J].武汉大学学报(信息科学版),2009.34(12):pp.1426-1430.
    [127]钟剑龙,花向红,陈华安TIN DEM线性内插不确定性的随机过程模型[J].武汉大学学报:信息科学版,2010(2):pp.193-196.
    [128]陈杰,方源敏,李国柱等.参数控制下使用独立点集对模型并行简化的研究[J].武汉大学学报(信息科学版),2013.1:pp.027.
    [129]黄先锋.利用机载LIDAR数据重建3D建筑物模型的关键技术研究[D].武汉:武汉大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700