虚拟现实中若干图像关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞行模拟器是航空工业的必要装备,是飞行员训练、考核的基本地面训练设备。与传统模拟机相比,基于虚拟现实的轻型飞行模拟器体积小巧,价格低廉,具有巨大的应用潜力。本文围绕“轻型飞行模拟器原型系统”课题,为进一步完善轻型飞行模拟器系统以满足高端需要,对虚拟现实中,特别是虚拟视景构建和虚拟环境交互操作中的图像关键技术进行了研究。论文的主要研究内容包括:
     (1)不同于传统模拟机,轻型飞行模拟器采用头盔式视景显示设备,舱内视景也需要由计算机生成,同时戴上头盔后飞行员无法看到舱内实景,造成交互操作困难。根据飞行模拟器视景特点和交互要求,设计了轻型飞行模拟器虚拟现实环境系统的体系结构。其中,采用传统几何建模方法生成舱内视景,便于实现交互;利用基于图像绘制技术构建舱外视景,提高真实感。并提出半虚拟现实座舱方案进一步完善虚拟现实系统手部人机交互性能。
     (2)图像特征信息提取是虚拟现实环境构建过程中涉及的基本和重要的图像处理技术。通过对图像边缘特性的分析,本文选择边缘信息进行特征提取,以减少冗余,提高图像处理技术的实时性和鲁棒性。传统微分算法对噪声敏感,对此提出一种基于方向信息抗干扰性边缘检测算法,并通过实验证明该算法在定位精度和抗噪性方面优于传统方法。同时对边缘中常用的直线特征,针对Hough变换只能精确到像素级的不足,提出一种基于Hough变换直线检测改进算法,在保持较高抗噪性的同时,提高检测精度,为后续得到更加准确和鲁棒的图像处理结果提供基础。
     (3)摄像机标定结果对舱外视景构建和手部交互定位都有指导意义。本文通过对现有摄像机标定技术进行归纳总结,在传统标定方法基础上提出了两种摄像机标定新方法。其中,基于消隐点的摄像机标定改进方法只利用2个方向消隐点确定摄像机内参数和方位,提高了利用消隐点进行标定的实用性;基于矩形的标定方法由矩形的四个顶点的像构造无穷远平面上绝对二次曲线的像ω的约束方程标定摄像机内参数。两种标定方法完全摆脱了三维空间点与二维图像点的匹配,简化了标定过程,同时无需进行特征匹配计算图像和空间平面间的单应矩阵,直接利用消隐点和矩形顶点就可确切的求出旋转矩阵和平移量,不会丢失摄像机外参数,可以准确定位摄像机,对手指定位具有重要意义。模拟和真实图像实验结果证明了两种标定方法的正确性和可行性。
     (4)舱外全景图构建过程中,图像拼接是关键技术之一。图像拼接的主要问题是确定相邻图像间的对应关系,即图像匹配。考虑Hausdorff距离易于计算,容错率高,采用修正后的Hausdorff距离构造相似性测度,提出了一种基于方向信息的鲁棒型Hausdorff距离的匹配方法。实验表明,该方法加快了匹配过程,提高了抗噪性能,并能够准确匹配含有遮挡和伪边缘点的图像,从而解决了基于传统Hausdorff距离匹配方法因噪声点、伪边缘点和出格点而造成的误匹配问题。
     (5)现有虚拟现实交互设备价格昂贵,而且无法提供逼真的触觉等丰富感知。为实现自然的人机交互方式,提出半虚拟现实座舱方案,设计了基于摄像机标定原理的戒指式视频测量手指定位技术和基于计算机视觉的虚拟现实手指定位技术两种技术方案。手部跟踪定位的首要任务是从摄像机拍摄的视频序列中进行运动目标(手部)检测,为此提出一种基于梯度方向信息的运动目标检测算法。实验结果表明,该算法克服了传统帧差算法不能准确定位目标的缺点,在室内外背景下均能准确的提取完整的运动目标轮廓。
Flight simulators are essential pilot training-and-checking equipments in aviation industry. Compared with traditional flight simulators, Virtual reality based light flight simulators, i.e. VR simulators, have great potentialities in the applications for compact structure and relatively low price. Along with the project of“Prototype of Light Flight Simulator System”, several key technologies of image processing for virtual reality, especially for virtual scene generation and human-machine interaction of the light flight simulator, are studied to meet the high-end demands. The contributions of this dissertation are mainly summarized as follows:
     Firstly, the light Flight Simulator is equipped with Head Mount Display (HMD) to display virtural scene. The pilot with HMD does not see the real environment inside the cockpit,which needs to be generated in VR scene. Moreover, it is difficult to interact between human and machine. According to the specialties of virtual scene and the demand for interaction in light flight simulator, the structure of light flight simulator’s virtual environment is constructed. GBMR and IBR are respectively used to generate the inside and outside scenes of the cockpit. The concept of semi-virtual reality cockpit is proposed to achieve a natural human-machine interaction.
     Secondly, the pre-processing method of extracting feature from image is the basis image processing included in VR. In order to improve the real-time and robustness and reduce redundancy for image processing, this dissertation extracts edge feature for image pre-processing. For avoiding being sensitive to noise as traditional edge detectors, a direction-based edge detection method is put forward. Experiments prove that it has the superiority in removing noise and detecting edge accurately. Furthermore, considering Hough transform line detection only can locate in the range of pixel, an improved method of line detection based on Hough transform is proposed to enhance the precision of line detection. Experiments show that it improves the detection accuracy while maintaining efficient capability of anti-noise. It is also the base and prerequisite for some key problems,e.g. camera calibration and image registration.
     Thirdly, camera calibration plays an important role in image registration and finger-tracking. Two new camera calibrations are provided in this disseration. One is vanishing point (VP)-based calibration, the other is rectangle-based calibration. VP-based calibration directly obtains all camera parameters only by two vanishing points. Compared with classical VP-based calibration, it enhances the practical application of VP-based calibration. In rectangle-based calibration, linear constrains on camera intrinsic parameters are set up via the absolute conic imageωand the images of rectangle vertexes. Compared with existing methods, the two proposed avoid complex image matching, which simplifies the calibration process and decreases the computational complexity. What is more important, the two calibrations get all camera extrinsic parameters without computing homography of planes between image and space. Extensive tests with real and synthetic images show that two proposed approaches are both accurate and robust.
     Fourthly, image stitching is one of the important techniques to the study on cylindrical panoramic image mosaic. The main problem of imagestitching is correspondence, that is image matching. Considering the low computational complexity and high fault tolerance of Hausdorff distance, a new image matching method using direction-based robust hausdorff distance (DRHD) is presented. DRHD constructs a similarity measure based on the proposed improved Hausdorff distance. The experimental results show that the proposed algorithm speeds up the matching process and it improves the resistance to noise. In addition, this method matches the image occlusions correctly and overcomes the mismatching problems that induced by noise, spurious edge segments and outlier points, which demonstrate that the proposed method is feasible and effective.
     Finally, existing interaction equipments are expensive and do not provide realistic and rich sense, such as touch and force. To satisfy natural interaction in VR system, semi-virtual reality cockpit is put forward. In addition, two finger-tracking techniques are provided. One is the ring type video measure base on camera calibration; the other is finger tracking based on computer vision. For the demand of real-time in finger-tracking system, a gradient direction based detection algorithm is provided to detect moving object (hand) from a video image sequence,. Experimental results show that the proposed algorithm overcomes the shortcoming of not correctly detecting moving object of traditional frame difference algorithms and can effectively and accurately extract moving object contour from indoor and outdoor environments
引文
[1]张茂军.虚拟现实系统.北京:科学出版社, 2001
    [2]汪成为,高文,王行仁.灵境(虚拟现实)技术的理论、实现及应用.北京:清华大学出版社,1996.
    [3] Durnad F. A multidisciplinary survey of visibility. ACM SIGGRAPH course notes on Visibility, 2000.
    [4] Zhang H S,Manocha D,Hudson T, et al. Visibility culling using hierarchical occlusion maps. In: Proceedings of ACM SIGGRAPH 1997, Los Angeles, USA, 1997, 31(3): 7-88.
    [5] Paul Debevec. What is Image-Based Modeling and Rendering and what is Image-Based Lighting? SIGGRAPH 99 Course 39, Image-Based Modeling, Rendering, and Lighting, 1999
    [6] Cohen J,Varshney A,Manocha D,et al. Simplification envelops. In: Proceedings of ACM SIGGRAPH 1996, New Orleans, USA, 1996: 119-128.
    [7] Reeves W. Approximate and probabilistic algorithms for shading and rendering structured particle systems. ACM SIGGRAPH Computer Graphics, 1985: 313- 322
    [8]童若锋,陈凌钧.烟雾的快速模拟.软件学报, 1999, 10(6) : 647 - 651.
    [9]张芹,谢隽毅,吴惠中,等.火焰、烟、云等不规则物体的建摸方法研究综述.中国图象图形学报, 2000,5(3):186-190.
    [10] Unbescheiden Matthias, Trembilski Andrzej. Cloud Simulation in Virtual Environments. In: IEEE Proceedings Virtual Reality Annual International Symposium, 1998:98-104.
    [11] Oppenheimer P E. Real time design and animation of fractal plants and trees. Computer Graphics, 1986, 20 (4) : 55- 64
    [12]胡瑞安,胡纪阳,徐树公等.分形的计算机图象及其应用.北京:中国铁道出版社, 1995.
    [13] Chen S. QuickTimeVR: An image-based approach to virtual environment navigation. In: Proceedings of ACM SIGGRAPH 1995, Los Angeles, USA, 1995: 29-38
    [14] Thomas G. Zimmerman, Jaron Lanier, Chuck Blanchard, Steve Bryson,Young Harvill . A hand gesture interface device. Proceedings of the SIGCHI/GI conference on Human factors in computing systems and graphics interface.Toronto, Ontario, Canada, 1987: 189 - 192
    [15] S. S. Fisher, M. McGreevy, J. Humphries, W. Robinett. Virtual environment display system. Proceedings of the 1986 workshop on Interactive 3D graphics. Chapel Hill, North Carolina, United States, 1987: 77 - 87
    [16] Sturman D J, Zeltzer D. A survey of glove-based input. IEEE Transaction on Computer Graphics and Applications. 1994, 14(1): 30-39
    [17]王家顺、王田苗、魏军等,一种面向遥操作的新型数据手套研制.机器人. 2000, 22(3): 201-206
    [18] http://www.cgsd.com/TOPIT.html
    [19]常红、王涌天、华宏等,基于计算机视觉技术的手形手位跟踪方法.北京理工大学学报. 1999, 19(6): 739-743.
    [20]高文,陈熙霖.计算机视觉-算法与系统原理,北京:清华大学出版社,1999
    [21] James D F. Getting there: the ten top problems left. IEEE Computer Graphics and Application, 2000, 20(1): 66-69
    [22] Adelson E H,Bergen, J R. The plenoptic function and the elements of early vision. In: Computational Models of Visual Processing, Landy and Movshon, Eds. MIT Press, Cambridge, Massechusetts, 1991: 3-20
    [23] McMillan I, Bishop G. Plenoptic Modeling: An Image-based Rendering System. In: Proceedings of ACM SIGGRAPH 1995, LosAngeles, California, 1995.
    [24] Levey, M., Hanrahan, P. Light field rendering. In: Proceedings of ACM SIGGRAPH 1996, New Orleans, USA, 1996:31-42.
    [25] Gortler, S J, Grzeszczuk R, Szeliski, R, et al. The Lumigraph. In: Proceedings of ACM SIGGRAPH 1996, New Orleans, USA, 1996, 43-54
    [26] Heung-Yeung Shum Li-Wei He. Rendering with Concentric Mosaics. In: Proceedings of ACM SIGGRAPH 1999, Los Angeles, USA, 1999:299-306
    [27] Szeliski R,Shum H Y. Creating Full View Panoramic Image Mosaics and Environment Maps. In: Proceedings of ACM SIGGRAPH 1997, Los Angeles, USA, 1997: 251-258
    [28] http://www.naimark.net/projects/aspen.html
    [29] http://activex.microsoft.com/activex/controls/museum/survid.htm
    [30]张茂军,钟力. HVS:一种基于实景图像的虚拟现实系统.小型微型计算机系统. 1999. 20(7):490-495
    [31]赵沁平. DVENET分布式虚拟现实应用系统运行平台与开发工具.科学出版社. 2005
    [32]傅晟,彭群生.一个桌面型虚拟建筑环境实时漫游系统的设计与实现.计算机学报. 1998. 21(9):793-799
    [33]余松煜,周源华,张瑞.数字图像处理.上海交通大学出版社, 2007.
    [34]张广军.机器视觉.科学出版社.北京, 2005
    [35]章毓敏.图象处理和分析.北京:清华大学出版社, 1999
    [36]章毓敏.图象分割.北京:科学出版社, 2001
    [37] Sharifi M, Fathy M, Mahmoudi M T. A Classified and Comparative Study of Edge Detection Algorithms. In: Proceedings of International Conference on Information Technology: Coding and Computing, Las Vegas, USA, 2002:117-120
    [38] Zhang Guobao, Liu Quan. Robust edge detection based on stationary wavelet transforms. Journal of Southeast University (English Edition). 2006, 22(2): 218 - 221
    [39]吴剑锋林强.一种图像边缘检测的新算法.福州大学学报. 2000, 28(4):26-28
    [40]杨枝灵王开. Visual C++数字图像获取、处理与实践应用.北京:人民邮电出版社,2003:553-572.
    [41] Hough P V C. A methods and means for recognizing complex patterns. USA , United States Patent , 3069654 , 1962
    [42] Hare A R, Sandler M B. Improved performance randomised Hough transform. Electronics Letters, 1992,Vol.28, No.18: 1678-1680.
    [43] Pan Yi. A more efficient constant time algorithm for computing the Hough transforms. Parallel Processing Letters, 1994, 4:45-52
    [44] Nagata N, Maruyama T. Real-time detection of line segments using the line Hough transforms. In: International Conference on Filed-Programmable Technology, Piscataway, USA, 2004: 89-96
    [45] Pan Yi, Li Keqin, Hamdi M. An improved constant-time algorithm for computing the radon and Hough transforms on a reconfigurable mesh. IEEE Transactions on Systems, Man and Cybernetics, 1999, 29(4): 417-421
    [46] Chen Ling, Chen Hongjian, Pan Yi, et al. A fast efficient parallel Hough transforms algorithm on LARPBS. The Journal of Supercomputing, 2004, 29(2):185-195
    [47] Hanahara K, Maruyama T, Uchiyama T. A real time processor for the Hough transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(1): 121-125
    [48] Nakanishi, M, Ogura, T. Real-time line extraction using a highly parallel Hough transform board. In: Proceedings of International Conference on Image Processing, Washington, DC ,USA, 1997: 582-585
    [49] Ying Xianghua and Zha Hongbin. Linear Approaches to camera calibration from sphere images or active intrinsic calibration using vanishing Points. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05). Beijing, China, 2005: 596-603
    [50] Li H, Zhang Huaifeng, Wu F C, A new linear camera self-calibration technique. In: Proceedings of the 5th Asian Conference on Computer Vision. Melbourne, Australia, 2002:676- 681
    [51]吴福朝,王光辉,胡占义.由矩形确定摄像机内参数与位置的线性方法.软件学报, 2005, 14(3): 703-712.
    [52] Triggs B. Auto-calibration and the absolute quadric. In: IEEE Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico, 1997, 609-614
    [53]王年,韦惠,范益政,梁栋.一种求解摄像机内参数的非线性方法.中国图象图形学报. 2005,10(4): 505~509
    [54] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22(11): 1330-1334
    [55] Masashi BABA, Masayuki MUKUNOKI, Naoki ASADA. A Unified Camera Calibration Using Geometry and Blur of Feature Points. In: 18th International Conference on Pattern Recognition (ICPR'06). Hong Kong, China, 2006, 816-819
    [56] Meng X Q, Li H, Hu Z Y. A new camera calibration technique based on circular points. In: Proceedings of British Machine Visio Conference. Bristol, UK, 2000: 496-505.
    [57] Yasuhiro Katayama. Camera Calibration with a Transparent Calibration Tool Using Color Filters: Application to Stereo Camera Calibration for a Distant Object. In: Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, 2006
    [58] Cipolla R, Drummond T W, Robertson D. Camera Calibration fromVanishing Points in Images of Architectural Scenes. In: The British Machine Vision Conference. Nottingham, UK. 1999: 382-391.
    [59] Reza Hassanpour, Volkan Atalay. Camera auto-calibration using a sequence of 2D images with small rotations. Pattern Recognition Letters. 2004, 25(9): 989-997
    [60] Faugeras O D, Luong Q. Maybank S J. Camera Self Calibration: Theory and Experiments. In: Proceeding of the Second EuroPean Conefrence on Computer Vision, Berlin, Germany, 1992: 321-334
    [61]李博,王孝通,徐晓刚,王健.摄像机线性三步定标方法研究.中国图象图形学报. 11(7),2006: 928-932
    [62] Hakan Bacakoglu, Mohamed S. Kame. A Three-Step Camera Calibration Method. IEEE Trans. on Instrumentation and Measurement, 1997, 46(5): 1 165-1172
    [63] Heikkil J,Silvn O. A four-step Camera Calibration Procedure with Implicit Image Correction. Asian Conefrence on Computer Vision, Melbourne, Australia , 2002, 521~526
    [64] Hartley R. Estimation of relative camera positions for uncalibrated cameras. In: Proceeding of the European Conference on Computer Vision, Santa Margherita Ligure, Italy, 1992: 579-587.
    [65] Faugeras O D, Luong Q T, Maybank S J. Camera self-calibration: Theory and experiments. In: Proceeding of the European Conference on Computer Vision. Berlin, Germany, 1992: 321-334
    [66]雷成,吴福朝,胡占义. Kruppa方程与摄像机定标.自动化学报,2001, 27(5): 621-630
    [67]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述.自动化学报,2001, 26(1): 43-55
    [68] Tsai R Y. An efficient and accurate camera calibration technique for 3D machine vision. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 1986, 364-374
    [69]孟晓桥,胡占义.一种新的基于圆环点的摄像机自标定方法.软件学报. 2002, 13(5): 957~965
    [70] Caprile B, Torre V. Using Vanishing Points for Camera Calibration. The International Journal of Computer Vision, 1990, 4(2): 127-140
    [71]全红艳,张田文.一种新的利用模板进行摄像机自标定的方法.电子学报. 2005, 33(11): 1941-1945
    [72]祝海江,吴福朝,胡占义.基于两条平行线段的摄像机标定.自动化学报. 2005, 31(6): 853-864
    [73] Klaus Strobl, Wolfgang Sepp, Stefan Fuchs, Cristian Paredes, Klaus Arbter. Camera Calibration Toolbox for Matlab, www.vision.caltech.edu/ bouguetj/calib_doc/
    [74] Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, Michael Cohen. Unstructured Lumigraph Rendering. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH'01, Los Angels, California, 2001: 425-432
    [75] Stein G. Accurate internal camera calibration using rotation with analysis of sources of error. In: Proceedingsof th 5th International Conferenceon Computer Vision(I CCV'95), Cambridge, 1995: 230-236
    [76]席学强,王润生.基于直线特征的图像-模型匹配算法.国防科技大学学报. 2000, 22(6): 70-74
    [77]周骥,石教英,赵友兵.图像特征点匹配的强壮算法.计算机辅助设计与图形学学报. 2002, 14(8): 754-777
    [78] Averbuch A, Keller Y. FFT based image registration. In: Proceedings of 2002 IEEE International Conference on Acoustics, Speech and Signal Processing. Florida, USA, 2002: 3608-3611.
    [79] Castro E D, Morandi C. Registration of translated and rotated images using finite Fourier transform, IEEE Trans. Pattern Analysis and Machine Intelligence. 1987, 9: 700-703.
    [80] D.P. Huttenlocher, G. Klanderman, and W.J. Rucklidge. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15: 850-863.
    [81] Dubuisson M P, Jain A K. A modified Hausdorff distance for object matching. In: Proceedings of 12th International Conference on Pattern Recognition, Jerusalem, Israel, 1994, 566-568.
    [82] Sim D G, Kwon O K, Park R H. Object matching algorithm using robust Hausdorff distance measures. IEEE Transactions on Image Processing, 1999, 8(3): 425-429.
    [83] Chyuan-Huei Thomas Yang, Shang-Hong Lai, Long-Wen Chang. Reliable image matching via modified Hausdorff distance with normalized gradient consistency measure. In: 3rd International Conference on Information Technology: Research and Education, 2005, 158-161.
    [84]汪亚明.图像匹配的鲁棒性Hausdorff方法.计算机辅助设计与图形学学报, 2002, 14(3): 238-241.
    [85] Sim D G, Park R H. Two-Dimensional Object Alignment Based on the Robust Oriented Hausdorff Similarity Measure. IEEE Transactions on Image Processing, 2001, 10(3): 475-483.
    [86] Clark F. Olson, Danniel P. Huttenlocher. Automatic Target Recognition by Matching Oriented Edge Pixels. IEEE Transactions on Image Processing. 1997, 6(1): 103-113.
    [87] Held K A, Arelli C. Towards a Hierarchical Contour Description via Dominant Point Detection. IEEE Transactions on Systems, Man and Cybernetics 1994, 24(11): 942-949.
    [88] Choi Wai-Pak, Lam Kin-Man, Siu Wan-Chi, Robust Hausdorff distance for shape matching, In: Proceedings of the SPIE - The International Society for Optical Engineering, 2002: 793-804.
    [89] Zhang Jian-Wei, Han Guo-Qiang, Wo Yan. Image Registration Based on Generalized and Mean Hausdorff distance. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics. GuangZhou, China, 2005: 5117-5121.
    [90] Srisuk S, Kurutach W. A New Hausdorff distance-based Face Detection. In: Proc. of International Conference on Artificial Intelligence in Science and Technology, 2000, 203-208.
    [91] Albert Pujol, Juan Jose Vilianueva. A Supervised modification of the Hausdorff distance for Visual Shape Classification. International Journal of Pattern Recognition and Artificial Intelligence 2002, 16(3): 349~359.
    [92]冯志全、孟祥旭、李学庆、王锐,基于单目体系的可见手重构算法研究.计算机学报. 2006, 29(3): 448-455
    [93]祝远新,徐光佑,黄浴.基于表观的动态孤立手势识别.软件学报. 2000, 11(1): 54-61
    [94] Wu Ying, Lin John, Huang T.S.. Capturing natural hand articulation. In: Proceedings of the ICCV’01, Vancouver, Canada, 2001, 426~432
    [95] John Y Lin, Ying Wu, Thomas. 3D Model-Based Hand Tracking Using Stochastic Direct Search Method. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition,Seoul, Korea, 2004
    [96] Zou Wei, Yuan Kui, Liu Jindong, Luo Bencheng. A method for handtracking and motion recognizing in Chinese sign language. In: International Conferences on Info-tech and Info-net, Beijing, China, 2001:543-549
    [97] Shan Lu, Dimitris Metaxas, Dimitris Samaras. Using Multiple Cues for Hand Tracking and Model Refinement. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, USA, 2003: 443-450
    [98] James M R. Visual Analysis of High DOF Articulated Objects with Application to Hand Tracking. Carnegie Mellon University, PHD, 1995
    [99] Stenger B, Thayananthan A, Torr P H S, Cipolla R. Model-based hand tracking using a hierarchical Bayesian filter. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9): 1372-1384
    [100] Wai-Wah Martin Tsang, Kong-Pang Pun. A Finger-Tracking Virtual Mouse Realized in an Embedded System. In: Proceedings of 2005 International Symposium on Intelligent Signal Processing and Communication Systems, Hong Kong, China, 2005:781-784
    [101] Wayne Piekarski, Ross Smith, Grant Wigley, Bruce Thomas, David Kearney. Mobile Hand Tracking Using FPGAs for Low Powered Augmented Reality. In Proceedings of the Eighth International Symposium on Wearable Computers (ISWC’04), Arlington, USA, 2004: 190-191
    [102] Maggioni C. A Novel Gestural Input Device for Virtual Reality. Virtual Reality Annual International Symposium, North Carolina, USA, 1993:118-124
    [103] Claudia Nolker, Helge Ritter. Visual Recognition of Continuous Hand Postures. IEEE Transaction on neural netwoeks, 2002, 13(4): 983-994
    [104] Lee J, Kunii T L. Model-based analysis of hand posture. IEEE Computer Graphics and Applications, 1995, 15(5):77-86
    [105] Heap T, Hogg D. Towards 3D hand tracking using a deformable model. In: Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, Killington, Vermont, USA, 1996:140-145
    [106] Caifeng Shan, Yucheng Wei, Tieniu Tan, Frédéric Ojardias. Real time hand tracking by combining particle filtering and mean shift. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition (FGR’04), Seoul, Korea, 2004: 669-674
    [107] Jerome Martin, Vincent Devin, James L. Crowley. Active hand tracking. In: Third IEEE International Conference on Automatic Face and GestureRecognition, ,Washington D C, USA, 1998: 573-578
    [108] Sylvia M Dominguez, Trish Keaton, Ali H. Sayed. A robust finger tracking method for multimodal wearable computer interfacing. IEEE Transaction on multimedia, 2006, 8(5): 956-972
    [109]潘春洪、马颂德,基于区域的手指三维运动跟踪.中国图象图形学报. 2003, 8A(10): 1205-1210
    [110]王睿,李欣,张广军.单目主动视觉无人机导引中摄像机内参数标定的线性方法.航空学报. 2006, 27 (4): 676-681
    [111] C. Wren, A. Azarbayejani, T. Darrell, A. Pentland, Pfinder. Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785.
    [112] C. Stauffer, W. E. L. Grimson, Adaptive background mixture models for real-time tracking. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, Colorado, USA, 1999: 246-252.
    [113] Valera M, Velastin SA. Intelligent distributed surveillance systems: a review. IEE Proceedings - Vision, Image, and Signal Processing, 2005, 152(2):192-204.
    [114] Elgammal A., Duraiswami R, Harwood D, Davis L S, Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. of the IEEE, 2002, 90(7): 1151-1163.
    [115]陈睿,邓宇,向世明,李华.结合强度和边界信息的非参数前景/背景分割方法.计算机辅助设计与图形学学报. 2005, 7(6); 1278-1284.
    [116] Zhao Mingying, Zhao Jun, Zhao Shuguang, Wang Yuan. A Novel Method for Moving Object Detection in Intelligent Video Surveillance Systems. In: International Conference on Computational Intelligence and Security. Guangzhou, China, 2006, 1797-1800.
    [117]魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法.电子学报. 2005, 33(12): 2261-2264.
    [118]沈海浪,平西建,周利莉,许志勇.一种基于差分图象的多运动目标检测方法.中国图象图形学报. 2003, 8(A):702~705.
    [119]杨莉,李玉山,刘洋,张大朴.复杂背景下多运动目标轮廓检测.电子与信息学报. 2005, 27(2):306~309.
    [120] Masayuki Yokoyama, Tomaso Poggio. A contour-based moving object detection and tracking. In: IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, SanDiego, CA, 2005. 271-276.
    [121] Kiratiratanapruk K, Dubey P, Siddhichai S. A gradient-based foreground detection technique for object tracking in a traffic monitoring system. In: IEEE Conference on Advanced Video and Signal Based Surveillance. Como, Italy, 2005: 377-381.
    [122] Nagel H H. Image Sequence Server [DB/OL]. http://i21www.ira.uka.de/image_sequences/.
    [123] Ali A T, Dagless E L. Alternative practical methods for moving object detection. In: IEEE International Conf. on Image Processing and its Application, Maastricht, Netherlands. 1992; 77-80.
    [124] Monnet A, Mittal A, Paragios N, Ramesh V. Background modeling and subtraction of dynamic scenes. In: Proceedings of the International Conference on Computer Vision, Nice, France, 2003: 1305-1312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700