抗冰结构的原型测量与分析评价技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋平台是海上石油开采的主要装备。尽管经过了半个多世纪的发展,海洋平台的结构设计理论与技术已经日趋成熟,但是仍不能很好地满足海洋石油的安全与经济性的开发需求,特别是对于极端海洋环境下的特殊海洋工程结构设计,如寒区与深水的海洋平台设计理论仍不成熟。对于复杂海洋工程结构,采用常规的数值模拟与模型实验等方法也无法满足设计分析的需要。利用已经建造的平台进行原型结构测量,可以获得真实的荷载及结构响应信息,为结构的设计与分析研究提供了新的途径。原型结构测量的方法在目前海洋工程结构设计分析中也得到越来越广泛的重视,其不仅可以为结构设计与评价提供信息,也可以指导现役平台的安全保障与风险预警等工作。
     然而,利用现役海洋平台进行原型结构测量并开展结构设计分析,也存在一些理论与技术问题需要解决。比如,如何在实际的平台上安装测量传感器,即进行原型结构测量设计,如何在现场获取连续与完备的数据,如何对实测数据进行分析与评价等。因此开展基于现场原型结构的测量分析,一方面需要综合的的结构分析方法,例如理论分析、数值分析及室内模型实验等辅助方法,才能设计出有针对性的原型测量方案,进而获取有效的测量数据;另一方面,需要借助当今先进的电子、通信与计算机技术,采用先进的监测手段,通过长期不间断的现场原型监测,才能在现场原型结构上获取连续与完备的测量数据;此外对于测量数据进行分析评价,回归到结构设计等问题上,又需要借助数据统计分析、结构数值分析等综合技术。因此,现代结构分析技术与结构监测技术的发展,为基于原型测量方法的特殊结构设计分析方法的发展提供了很大的帮助。实际上,不仅是海洋平台结构,其它工程结构的原型测量方法与技术也是目前研究的热点问题。
     本文重点针对抗冰平台结构设计与运行中所关心的问题:确定冰荷载问题、确定结构冰激振动引起的失效模式、风险预报与预警问题以及新概念抗冰结构的设计性能评价问题,开展了原型结构测量与分析评价的研究。利用渤海辽东湾的多座抗冰平台建立了比较完善的抗冰结构设计与分析评价的研究基地。本文的研究虽然是基于渤海抗冰导管架平台的研究,但同时对其它工程结构的原型测量研究也具有参考价值。本文主要研究内容如下:
     1.抗冰结构原型测量技术研究
     自上世纪九十年代初,我国在渤海建立了十几座导管架式抗冰平台,大连理工大学对其中多个平台进行了冬季抗冰结构的原型测量研究。本人在论文期间,参加了五个冬季的现场监测工作,并对抗冰结构现场监测系统进行了改进与完善;根据抗冰结构所关心的问题,包括冰荷载问题,冰振平台失效风险和安全预警问题以及结构设计评价问题,设计了共享的现场监测系统。所监测的信息包括冰力信息,冰荷载参数信息(冰厚、冰速),结构响应(应变,加速度)信息等,并对测量中的这些关键技术进行了深入的分析和研究,为进一步的面向渤海抗冰结构的原型测量研究的开展奠定了基础。
     2.冰荷载的原型测量研究
     冰荷载是冰区海洋平台结构的控制荷载,也是制约抗冰结构设计的主要不确定因素。由于冰荷载是冰与结构相互作用的破坏过程形成的,目前还缺少成熟的理论进行数值模拟,同样采用模型实验也缺少相似理论为依据。因此利用真实结构的原型测量方法确定冰荷载是目前冰荷载研究的主要手段,得到国际上的广泛重视。本文通过对渤海真实的直立结构和锥体结构的冰荷载的直接测量以及同步的结构响应和海冰参数的原型测量,获得了较为完备的建立动冰力模型的数据;通过冰荷载间接测量方法,获得了较为准确的极值冰力数据。该工作为动冰荷载及极值冰荷载问题的研究奠定了基础。
     3.面向抗冰结构冰振风险的原型测量、分析与预警
     由于冰荷载,特别动冰荷载研究的不成熟,导致了在较长的一段时期内,抗冰结构设计存在诸多的不确定性,包括结构冰振失效模式的不确定,从而导致冰区海洋平台存在较大的风险隐患。本文基于渤海辽东湾的多座抗冰平台,面向抗冰结构的冰振风险问题,进行了原型测量、分析与预警方法的研究。其中设计并建立了的面向冰振失效风险问题的现场原型监测系统;基于监测数据建立了平台冰振响应的预测模型,对渤海在役抗冰平台的风险预警标准及流程进行了探讨,为类似抗冰结构冰振风险分析与预警等相关工作提供了借鉴和参考。
     4.面向新型抗冰平台抗冰设计性能的原型测量、分析与评估
     抗冰结构设计是渤海边际油田开发的研究热点,近些年提出了多种抗冰振平台的设计理念,包括破冰锥改变冰荷载技术,整体隔振技术等。如何检验和评价这些抗冰技术成为一个比较关键的问题。本文基于上述目的,提出了面向抗冰设计性能的原型测量与分析评价的方法,该方法可以很好地弥补数值分析与室内模型试验方法中存在的缺陷和不足,对于抗冰结构设计研究具有很高的参考价值。
     本文对两种新型的抗冰平台的抗冰性能进行了原型测量、分析与评估的研究,包括:①对简易桶基抗冰平台的加锥减振设计进行了原型监测,剖析了加锥减振设计对冰荷载及冰振响应的影响,对减振设计进行了评估;②针对新型的独腿抗冰平台的抗冰性能进行了原型监测系统的设计与现场实施,基于实测数据对该平台的抗冰设计性能进行了分析与评估,对抗冰设计中存在的优缺点进行了探讨。
     最后对全文进行了总结与展望。
The offshore platform is a very important facility in the offshore oil exploitation. There are still many uncertainties in the design of offshore platform, which had induced many security risks in the service period of it, although the design of it has been developing for more than half a century. The offshore platform is a very complex engineering structure which usually suffered from various complex loads. The conventional methods, such as theoretical analysis, numerical simulation and model test, can not solve satisfactorily the existing problems of the offshore platform in service. Thus, the prototype measurement is needed for the real offshore platform in field, through which we not only can get the real load and response information to verify the problems in the design and service process, but also can provide early warning information on the risk of the structures. Therefore, the prototype measurement methods of offshore platform structures have attracted increasing attention widely in recent years.
     However, there are still many theoretical and technical problems in the prototype measurement on a real complex offshore platform, such as how to design the prototype measurement system, how to obtain the desired and complete data in field, how to deal with and use the real measured data and so on. Therefore, the prototype measurement is designed specifically for each project using the theoretical analysis and numerical simulation methods and some experiences. Secondly, we need to solve the measurement technical problems in the prototype measurement according to the realistic conditions. Sometimes, we need to monitor the prototype structure continuously so as to capture the desired information. Finally, analysis and evaluation of the measured data provide a guide of the design and operation of the structures. The modern monitoring technologies and the numerical analysis methods are very helpful to the researches on the prototype measurement method. Actually, researches on the prototype measurement method and related technologies are very hot not only in ocean engineering but also in other engineering.
     This dissertation deals with the prototype measurement method of the service platform for solving some uncertain problems in the design and operation process of the platforms in Bohai. The prototype measurement method has been used for various problems including the ice force problem, ice-induce vibration risks analysis and warning, the evaluation of the ice-resist design. The studies in this dissertation are also useful for other engineering prototype measurement research, although the work is based on the offshore jacket platforms. The main works of this dissertation are as follows:
     1. The research on prototype measurement technologies
     More than a dozen ice-resist offhore jacket platforms were established in Bohai Sea of China since the early 1990s. Much prototype measurement research work had been taken on these platforms by Dalian University of technology. I have joined the prototype monitoring work for five winters and improved the on-site monitoing system. A shared prototype monitoring system was designed for the problems induced by ice, such as ice force problem, ice-induce vibration risks analysis and warning, the evaluation of the ice-resist design and so on. Furthermore, more analysis and research work had been taken on the core technologies of prototype measurement on ice-resist strcutures. These work built a nut foundation for further prototype measurement research on ice-resist strucutres in Bohai Sea.
     2. The research on prototype measurement of ice force
     The ice force is the dominant force for offshore platform in cold regions, and also is the main uncertainties in the ice-resist structure design. The ice force is produced by the ice-structure interaction process. There is not a very well-developed method for numerical simulation and model test of ice force. Therefore, the research of ice force through prototype measurement method is the main primary means in ice force research and widely adopted in many countries. In this chapter, complete measured data for the establishment of dynamic ice force and extremum ice force, were obtained through direct ice force measurement, indirect ice force measurement and ice parameters measurement on the prototype structures in Bohai.
     3. The research on ice-induce vibration risks through prototype measurement method
     Due to the behindhand research on the ice force, especially the dynamic ice force, the offshore platform is very dangerous in cold regions. As there are many uncertainties in the design of the ice-resist platforms including the uncertainty of the failure mode of ice-induced vibration. In this chapter, the failure mode and failure criterion of the platforms in Bohai, are analysed through prototype measurement method. A prototype monitoring system was built in field to evaluate the ice-induce vibration risks; A prediction model was established for ice-induced acceleration forecast, based on the monitoring information; Finally the warning criterion and processes were proposed.
     4. The research on evaluating ice-resist design through prototype measurement method
     The researches on ice-resist design in Bohai are very hot recently. Many methodologies were proposed including the ice-break cone, the isolation technologies and so on. It is a key problem that how to test and evaluate these new methodologies used in ice-resist structures design. This dissertation proposes a method for the first time to evaluate the design through prototype measurement method. It has a very high value for the ice-resist structure design, as it can well compensate the shortcomings of the numerical analysis and the model tests in the laboratory. The main works includes the prototype monitoring on the platforms before and after the adding cone changing; the prototype monitoring on a new design ice-resist platform and the evaluation of the ice-resist design based on measured data.
引文
[1]张振国.中国海洋石油天然气的开发历程和前景[J].中国海洋平台,1996,11(6):243-244.
    [2]宋立元,宋玉普.混凝土海洋平台氯离子侵蚀试验研究[J].混凝土,2004,178:39-41.
    [3]李东升.导管架平台损伤检测及疲劳寿命研究[D].上海:上海交通大学,2006.
    [4]孙树民.海洋平台结构的发展[J].广东造船,2000, (4):32-37.
    [5]施晓春,徐日庆,龚晓南等.桶形基础发展概况[J].土木工程学报,2000,33(4):68-92.
    [6]方辉.海洋平台结构损伤诊断方法研究[D].青岛:中国海洋大学,2005.
    [7]盖会明.海洋平台结构健康监测方法研究[D].北京:北京化工大学,2007.
    [8]刘圆.抗冰海洋平台动力分析与结构选型研究[D].大连:大连理工大学,2006.
    [9]曾恒一.影响我国海洋油气开发的海洋灾害[J].中国海洋平台,1998,15(3):21-24.
    [10]杨国金.海冰工程学[M].北京:石油工业出版社,2000.
    [11]丁德文.工程海冰学概论[M].北京:海洋出版社,1999.
    [12]段梦兰,方华灿.渤海老二号平台被冰推倒的调查结论[J].石油矿场机械,1994,23(3):1-4.
    [13]王琳琳,祁德庆.海洋平台动力响应分析研究进展及展望[J].结构工程师,2008,24(4):132-136.
    [14]Penzien J, KaulM K. Response of offshore towers to strong motion earthquakes [J]. Earthquake Engineering and Structural Dynamics,1972,1:55-268
    [15]Pengzien J, Tseng W. Three dimensional dynamics analysis of fixed offshore platforms [M].Zien Kiewicz 0 C. Numerical Methods in Offshore Engineering. New York:John Wiley and Sons Ltd,1978.
    [16]吴斌,王倩颖.实时子结构实验的研究进展[J].实验力学,2007,22(6):547-555
    [17]苏志勇.混合模型实验中阶段系泊缆动力特性差异研究:(硕士学位论文).上海:上海交通大学.2009.
    [18]苏一华,杨建民,肖龙飞.深海单柱式平台及其系泊系统的截断水深模型试验[J].上海交通大学学报,2007,41(9):1454-1464
    [19]Vanden B H, Koning J, Aalberts P, et al. Offshore Monitoring; Real World Data for Design, Engineering and Operation [C]. Offshore Technology Conference, Houston: TX, U.S. A,2005.
    [20]刘正光,麦惠培,黄启远等.青马大桥的初步监测结果[C].第十三届全国桥梁学术会议论文集,上海,1998.
    [21]陈惠民.加快技术创新,促进我国海洋工程开发[J].中国海洋平台,1999,14(3):4-8
    [22]Loset S, Shkhinek K. Evaluation of existing ice Force prediction methods. Validation of Low Level Ice Forces on Coastal Structures (LOLEIF) [R]. Report No.4. May 1999.
    [23]Loset S, Shkhinek K and Uvarova E. An overview of the influence of structure width and ice thickness on the global ice load [C]. Proc.15th International Conference on Port and Ocean Engineering under Arctic Conditions, Helsinki,1999,1:425-434.
    [24]Wright B. Ice load prediction methods for wide vertically sided structures. Validation of Low Level Ice Forces on Coastal Structures [R]. LOLEIF Report No.2. EU Project-Contract MAS3-CT 97-0098. June 1988.
    [25]Shkhinek K, Uvarova E. Dynamics of the ice sheet interaction with the sloping structure[C]. Proc.16th Int.Conf. Port Ocean Eng.Arctic Conditions (POAC 01). Ottawa, Canada,2001,2:639-648.
    [26]Bjerkas,M. Global design ice loads dependence of failure mode [J]. International Journal of Offshore and Polar Engineering.2004. Vol.14, No.3.
    [27]Sanderson, T. J.0. (1988):Ice Mechanics. Risk to Offshore structures [M].
    [28]Blanchet D, DeFranco S J. Global first-year ice loads:Scale effect and non-simultaneous failure[C]. Proc.13th IAHR Ice Symposium. Beijing,1996:203-214.
    [29]Blanchet D. Ice loads from first-year ice ridges and rubble fields [J]. Can. J. Civ. Eng.1998,25:206-219.
    [30]Wright B, Timco G. A review of ice forces and failure modes on the Molikpaq [C]. Proc.12th Int. Symp. On Ice. Trondheim, Norway,1994,2:816-824.
    [31]Sodhi D S. Non-simultaneous crushing during edge indentation of freshwater ice sheets [J]. Cold Regions Science and Technology,1998,27:179-194.
    [32]Sodhi D S. Crushing failure during ice-structure interaction [J]. Engineering Fracture Mechanics,2001,68:1889-1921.
    [33]郭峰玮.基于实验数据分析的直立结构挤压冰荷载研究[D].大连:大连理工大学.2009.
    [34]Karna T, Qu Y. Pressure-Area relationship based on field data [C]. Proc.18th International Conference on Port and Ocean Engineering under Arctic Conditions. USA,2005.
    [35]中国海洋石油总公司.渤海海域钢质固定平台结构设计规定[M].天津:中国海洋石油总公司企业标准.2002.
    [36]Lau M, et al. Influence of velocity on Ice-Cone interaction [C].IUTAM symposium "scaling laws in Ice Mechanics and Ice Dynamics", June,2000.
    [37]Dmitri G M. Velocity effects on conical structure ice loads[C]. Proceeding of 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway,2002:1-10.
    [38]Karl S, Ekaterina U. Dynamics of the ice sheet interaction with the sloping structure [C]. Proc.16th Int. Conf. Port Ocean Eng. Arctic Cond. Ottawa, Canada, 2001,2:639-648.
    [39]Wessels E, Kato K. Ice forces on fixed and floating conical structures[C]. Proc. Of the 9th International IAHR Symposium on Ice. Sapporo, Japan,1988,2:666-691.
    [40]Edwards R Y, Crosasdale K Y. Model experiments to determine ice forces on conical structures [J]. Symposium of Applied Glaciology International Glaciological Socialty.1976.
    [41]Kato K, Izumiyama K. Simulation of Ice Load on a Conical Shaped Structure: Comparison with Experimental Results[C]. Proceedings of the Seventh International Offshore and Polar Conference,1997:360-367.
    [42]Hirayama K, Obara I. Ice forces on inclined structures[C]. Proc of the 5th International Offshore Mechanicsand Arctic Engineering. Japan,1986:515-520.
    [43]Ralston T D. Plastic Limit Analysis of Sheet Ice Loads Structures[C]. IUTAM Symposium on Physics and Mechanics of Ice. Springer-Verlag, New York,1980:289-308
    [44]Crosadale K R. Ice Forces on Fixed Rigid Structures[R]. Report for the Working Group on Ice Forces on Structures, A state-of-the-art Report, CRREL Special Report, 1980:34-106.
    [45]史庆增,黄焱,宋安等.锥体冰力的试验研究[J].海洋工程,2004,22(1):88-92.
    [46]史庆增,刘波,李勇等.锥体上冰力的实验研究[J].中国海上油气,2005,17(2):119-124.
    [47]史庆增,彭忠.冰力作用下锥体的合理结构形式及在柱体上设计锥体的合理性讨论[J].中国海上油气,2005,17(5):342-346.
    [48]Peyton H R. Sea ice forces. Ice pressures against structures [J]. National research council of Canada. Canada, Technical Memorandum 92,1968:117-123.
    [49]Daley C, Tuhkuri J, Riska K. The role of discrete failures in local ice loads [J]. Cold Regions Science and Technology,1998,27:197-211.
    [50]屈衍.基于现场实验的海洋结构随机冰荷载分析[D].大连:大连理工大学.2006.
    [51]Karna T, Qu Y, and Kuhnlein W. A new spectral method for modeling dynamic ice actions[C]. Proceedings of OMAE04 23rd International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, Canada,2004:953-960.
    [52]Qu Y, Yue Q. J, Bi X. J, et al. Random Ice Forces on Conical Structures [C], Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic Conditions, POAC 03,Trondheim, Norway,2003:259-270.
    [53]Yue Q J, Qu Y, Bi X J, et al. Ice load spectrum on narrow conical structures[C]. Proc.18th International Conference on Port and Ocean Engineering under Arctic Conditions. USA.2005,4-7.
    [54]Qu Y, Yue Q J, Bi X J, et al. A random ice Force model for Narrow conical Structures [J]. Cold Regions Science and Technology,2006,45:148-157.
    [55]Maattanen M. Ice force design and measurement of conical structure[C]. Proc. of 12th International Symposium on Ice (IAHR).Trondheim, Norway,1994,1:401-410.
    [56]Maattanen M, et al. Ice failure and ice loads on a conical structure-Kemi-1 cone full scale ice force measurement data analysis[C]. Proc. of 13th International Symposium on Ice (IAHR).Beijing, China,1996,1:8-17.
    [57]Thomas G B, Maattanen M. Comparison of KEMI-I and Confederation Bridge cone Ice Load Measurement Results[C]. In Proc. IAHR Symposium on Ice, DUNEDIN NEW ZEALAND, 2002,503-514.
    [58]Brown T G. The Confederation bridge-early results from ice monitoring program[C]. In proc. CSCE Annual Conference, Sherbrooke, Canada,1997 (1):177-186.
    [59]Mayne D C, Brown T G. Rubble pile observations[C]. In Proc.10th International Offshore and Polar Engineering Conference, Seattle, USA,2000 (1):596-599.
    [60]Montgomery C J and Lipsett A W. Dynamic test and analysis of a massive pier subjected to ice force [J]. CIV. Eng,1980(7):432-441.
    [61]Izumiyama K, Kitagawa H, Koyama K, Uto S. On the interaction between a conical structure and ice sheet[C]. Proc. of the 11th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), St. John's, Canada, September 24-28,1991, pp:155-166.
    [62]Sodhi D S. Dynamic analysis of failure modes on ice sheets encountering sloping structures[C], Proc.6th Int. Conf. on Offshore Mechanics and Arctic Engineering. Houston.1987, Vol.4, pp.281-284.
    [63]曲月霞,李志军,王永学,李广伟.作用于正倒锥结构上冰力物理模拟试验研究[J].大连理工大学学报.2001,41(3).pp:231-236.
    [64]曲月霞,李广伟,李志军,王永学.正倒锥结构上冰力谱分析实验研究[J].海洋工程.2001,Vol19(3),pp:38-42.
    [65]曲月霞.海冰与近海结构物作用的物理模拟研究[D].大连:大连理工大学.2001.
    [66]Yue qianjin, Bi xiangjun, Ice-induced jacket structure vibrations in Bohai sea[J]. Journal of Cold Regions Engineering, Vol.14 No.2:81~92,2001
    [67]岳前进,毕祥军,于晓等.锥体结构的冰激振动与冰力函数[J].土木工程学报,2003,36(2):16-19.
    [68]Yue Q J, Bi X J, Sun B, Zhang T, Chen X. Full scale force measurement on JZ20-2 platform[C]. Proc. IAHR Ice Symp. (IAHR'96), Beijing,1996:282-289.
    [69]Peyton H R. Sea ice strength[R]. University of Alaska. Geophysical Institute. Report UAG R-182. Alaska,1966.
    [70]Blenkarn K A. Measurements and analysis of ice forces on Cook Inlet structures[C]. Proc. Offshore Technology Conference. Houston, TX, April 22-24,1970. Paper No OTC 1261.
    [71]Engelbrekston A. Dynamic ice loads on lighthouse structures[C], Proc.4th Int.Conf.on Port and Oc. Engrg. under Arctic Conditions, St. John's Canada,1977, 2:654-864.
    [72]Maattanen M. Ice forces and vibration behavior of bottom-founded steel lighthouses[C]. Proc.3rd International Symposium on Ice Problems, USA, 1975:345-354.
    [73]Karna T. A flaking model of dynamic ice-structure interaction[R]. VTT Building Technology 1997
    [74]岳前进,杜小振,毕祥军等.冰与柔性结构作用挤压破坏形成的动荷载[J].工程力学,2004,21(1):202-208
    [75]Yue Q J, Bi X J. Ice-Induced Jacket Strucure Vibrations in Bohai Sea [J]. Journal of Cold Regions Engineering,2000,14 (2):81-92
    [76]屈衍,岳前进,Brister C冰与锥体作用破碎周期及破碎长度分析[J].冰川冻土,2003,25(2):326-329
    [77]Sodhi D S. Vertical penetration of floation ice sheets [J]. International Journal of Solids and Structures,1998,35 (31-32):4275-4297
    [78]Engelbrekston A. Observations of a resonance vibrating lighthouse structure in moving ice[C]. In:Proceedings of the International Conference on Port and Ocean Engineerng under Arctic Conditions (POAC), Helsinki, Finland,1983, Vol.2:855-864
    [79]Reddy D V, Cheema P S, Sundarajan C. Relationship between response specturm and power spectral density analysis of ice-structure analysis[C]. In Proeeedings of 4th International Confer on Port and oeean Engineering under Arctic Conditions. Memorial University of Newfoundland, Canada.26-30 SePte4mber 1977, Vol.2:664-683.
    [80]欧进萍,段忠东,王刚.海冰作用下平台结构自激振动的参数分析与响应的数值计算[J].工程力学,2001,18(5):8-17.
    [81]段梦兰,吴永宁,高照杰.固定石油平台冰激振动的时域与频域响应[J].机械强度,1999,21(1):14-17
    [82]马网扣,唐友刚,宋峥嵘.基于自激冰力的导管架平台冰激振动计算[J].中国海上油气(工程),2003,15(5):16-19.
    [83]刘玉标,申仲翰.冰与结构的耦合振动模型[J].海洋工程,2000,18(4):1-6
    [84]欧进萍,段忠东,肖仪清等.基于实测动冰力时程的海洋平台结构冰振反应分析[J].海洋工程,1999,17(2):71-78
    [85]曲月霞,王永学.海冰对近海结构物作用的随机模型[J].中国海洋平台,2000,15(2):16-19
    [86]Frederking R and Schwarz J. Model test of ice forces on fixed and oscillating cones [J], Cold Regions Science and Technology.1982,61-72.
    [87]Shkhinek K, Kapustiansky, S., Jilenkov, A. Ice loads onto the sloping structures[C]. International Conference on Development and Commercial Utilization of Technologies in Polar Regions,1996, St. Petersburg, Russia,171-178.
    [88]徐田甜,王宁.渤海导管架平台的破冰锥体设计[J].船舶结构.2007.6:33-42.
    [89]Maattanen M. Ten Years of Ice-induced Vibration Isolation in Light-house[C], Proceedings of Offshore Mechanics and Arctic Engineering, Houston, TX, USA.1978, Vol.4, pp.261-266.
    [90]The Sakhalin II Project. Technological design institute of scientific instrument engineering[R]. http://www.tdisie.nsc.ru
    [91]Lee H H. Stochastic Analysis for Offshore Platform with Added Mechanical Dampers [J]. Ocean Engineering.1997.24 (9):817-834.
    [92]欧进萍,段忠东.肖仪清.基于实测冰力时程的海洋平台冰振反应分析[J].海洋工程,1999,17(2):70-78.
    [93]欧进萍,邹向阳等.设置粘弹性耗能器的JZ20-2MUQ平台结构冰振控制[J].海洋工程.2000.18(3):9-14.
    [94]Ou J P, Long X, Li Q S and Xiao Y Q. Vibration control of steel jacket offshore platform structures with damping isolation systems [J]. Engineering Structures. 2007,29,1525-1538.
    [95]欧进萍,龙旭,肖仪清,吴斌.导管架式海洋平台结构阻尼隔振体系及其减振效果分析[J].地震工程与工程振动,2002,22(3):116-122
    [96]杨彪,欧进萍.导管架式海洋平台磁流变阻尼隔震结构的模型试验[J].振动与冲击,2006,25(5):1-6
    [97]张纪刚,吴斌,欧进萍.海洋平台冰振控制试验研究[J].东南大学学报,2005,35(增刊):31-34
    [98]Wu B., Shi P F, Wang Q Y, Guan X C, Ou J P. Performance of an offshore platform with MR dampers subjected to ice earthquake [J]. Structural Control and Health Monitoring,2010, published online in Wiley InterScience
    [99]王翎羽,金明,陈星,靳军.TLD的减振原理及其在JZ20-2MUQ平台减冰振中的应用研究[J].海洋学报,1996,18(6):106-113
    [100]Chen X., Wang L Y. and Xu J Z. TLD technique for reducing ice-induced vibration on platforms[J]. Journal of Cold Regions Engineering,1999,13 (3),139-152.
    [101]Yue Q J, Zhang L, Zhang W S, et al. Mitigating ice-induced jacket platform vibrations utilizing a TMD system[J]. Cold Regions Science and Technology,2009, 56:84-89
    [102]张文首,张力,岳前进.基于加速度反馈的大型复杂结构H∝控制[J].工程力学,2009,26(5):216-220
    [103]张力,岳前进,张文首等.一种调谐质量阻尼器(TMD)等效阻尼力测量方法[J].大连理工大学学报,2010,50(2):162-166
    [104]张剑波.半潜式钻井船典型节点疲劳可靠性分析[J].船舶工程,2006,28(1):36-40.
    [105]熊海贝,李志强.结构健康监测的研究现状[J],结构工程师,22(5):86-90.
    [106]杨智春,于哲峰.结构健康监测中的损伤检测技术研究进展[J],力学进展,34(2):215-222.
    [107]张启伟.大型桥梁健康监测概念与监测系统设计[J].同济大学学报,29(1):65-69.
    [108]Chueng M S, Tadros G S, Brown T G, et al. Field monitoring and research of the Confederation Bridge [J]. Canadian Journal of Civil Engineering,1997,24 (6):951-962.
    [109]静行.基于独立分量分析的结构模态分析与损伤诊断[D].武汉:武汉理工大学,2010.
    [110]熊黎.无线传感器网络在结构工程监测中的数据融合问题研究[D].武汉:武汉理工大学,2007.
    [111]黄方林,王学敏,陈政清等.大型桥梁健康监测研究进展[J].中国铁道科学,2005,26(2):1-7.
    [112]蔡顺德,蔡德所,何薪基等.分布式光纤监测三峡工程大块体混凝土水化热过程分析[J].工程力学,2003,增刊:1747-1754
    [113]杨杰,吴中如.大坝安全监控的国内外研究现状与发展[J].西安理工大学学报,2002,18(1):26-30.
    [114]顾冲时,吴中如.大坝安全监测专家系统的结构及知识工程[J].水利技术监督,1998,6(1):36-40.
    [115]Celebi M, Sanli A, sinclair M, et al. Real-Time eismic monitoring needs of a building owner-and the solution:a cooperative effort [C].13th World Conference on Earthquake Engineering,2004.
    [116]陆濂泉,张文龙.上海金茂大厦主楼结构体系施工监测技术报告书[R].中船勘测设计研究院,1996.
    [117]梁峰.移位结构的安全性研究[D].上海:同济大学,2002.
    [118]姜绍飞,王留生,殷晓志等.结构健康监测中的数据融合技术[J].沈阳建筑大学学报,2005,21(1):18-22.
    [119]Timco G W, Johnston M. Ice loads on the Molikpaq in the Canadien Beaufort Sea[J]. Cold Regions Science and Technology,2003,37:51-68.
    [120]Timco G W, Jonston M. Ice loads on the caisson structures in the Canadian Beaufort Sea[J].Cold Regions Science and Technology,2004,38:185-209.
    [121]Frederking R, Timco G W, Wright B. Ice pressure distributions from first-year sea ice features interacting with the Molikpaq in the Beaufort Sea[C]. Proc.9th Int. Offshore and Polar Eng. Conf., France,1999.
    [122]Jefferies M G, Wright W H. Dynamic response of'Molikpaq'to ice-structure interaction[C]. Proc.7th Int. Conf. on Offshore Mechanics and Arctic Engineering, Houston,1988.
    [123]Sudom D, Frederking R. A preliminary analysis of Molikpaq local ice pressures and ice forces at Amauligak 1-65[C]. Proc.18th Int. Conf. on Port and Ocean Eng. under Arctic Conditions,2005.
    [124]Wright B. Insights from Molikpaq ice loading data. Validation of Low Level Ice Forces on Coastal Structures [R]. LOLEIF Report No.1. EU Project-Contract MAS3-CT 97-0098,1988.
    [125]Engelbrektson A. Dynamic ice loads on a lighthouse structure[C]. Proc.4th Int. Conf. Port and Ocean Engineering. Canada,1977.
    [126]Nordlund 0 P, Karna T, Jarvinen E. Measurements of ice-induced vibrations of channel markers[C]. Proc. IAHR Ice Symposium, Sapporo,1988.
    [127]Engelbrektson A. Ice force studies in the Bothnian Bay 1985-1988[R]. Summary report. VBB Project M7334,1989.
    [128]Engelbrekston A. Observations of a resonance vibrating lighthouse structure in moving ice[C].POAC,1983.
    [129]Maattanen M, Reddy D, Arockiasamy M, et al. Ice-structure interaction studied on a lighghouse in the Gulf of Bothnia using response spectrum and power spectral density function analyses[C]. Proc.4th International Conference on Port and Ocean Engineering under Arctic Conditions, Canads,1977.
    [130]Takeuchi T, Sakai M, Akagawa S, et al. On the factors influencing the scaling of ice forces[C]. IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics, Kluver,200.
    [131]Sodhi D S. Non-simultaneous crushing during edge indentation of freshwater ice sheets [J]. Cold Regions Science and Technology.1998,27:179-195.
    [132]Sodhi D. Absence or size effect in brittle crushing and breakthrough loads of floating ice sheets[C]. IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics, Kluwer,2001.
    [133]Sodhi D S, Takeuchi T, Nakazawa N, et al. Medium-scale indentation tests on sea ice at various speeds[C]. Cold Regions Science and Technology,1998,28:161-182.
    [134]Jochmann P, Schwarz J. Ice Force Measurements at Lighthouse Norstromsgrund[C]. LOLEIF Report No 5. EU Contract MAS-CT-97-0098, Germany,2000.
    [135]Jochmann P, Schwarz J. The influence of individual parameters on the effective pressure on level ice against lighthouse "Norstromsgund"[C]. Proc.18th International Conference on Port and Ocean Engineering under Arctic Conditions. USA,2005.
    [136]Karna T, Jochmann P. Field observations on ice failure modes[C]. Proc.17th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC 03), Norway,2003.
    [137]Schwarz J, Jochmann P. Ice force measurement within the LOLEIF-project[C]. Proc. 16th Int. Conf. on Port and Ocean Engineering under Arctic Conditions, Canada, 2001.
    [138]Jochmann P, Schwarz. Ice force measurements at lighthous Norstomsgrund[R]. LOLEIF Report No 5. Contract No MAS3-CT-97-0098, Hamburg,2000.
    [139]Jochmann P, Schwarz. Ice force measurements at lighthous Norstomsgrund[R]. LOLEIF Report No 9. Contract No MAS3-CT-97-0098, Hamburg,2001.
    [140]Mayne D C, Brown T G. Rubble pile observations[C].10th International Offshore and Polar Engineering Conference, USA,2000.
    [141]Mayne D C, Brown T G. Comparison of Flexural Failure Ice-Force Models[C].OMAE 2000,19th International Conference on OFFSHORE MECHANICS & ARCTIC ENGINEERING, USA,2000.
    [142]岳前进,毕祥军,季顺迎等.平台振动与冰力测量研究报告[R].大连理工大学,2001.
    [143]大连理工大学.JZ20-2平台冰激振动测量与分析、海冰监测与预报[R].大连理工大学,2000.
    [144]大连理工大学.渤海海冰研究及其工程应用[R].重点基金中期研究报告,1999.
    [145]Metge M, Pilkington G R, Strandberg A G, and Blanchet D. A New Sensor for Measuring Ice Forces on Structures:Laboratory Tests and Field Experience[C]. POAC'83, Helsinki,1983, Vol 4, pp 790-801.
    [146]Pilkington G R, Blanchet D, and Metge M. Full-Scale Measurements of Ice Force on an Artificial Island[C]. POAC'83, Helsinki, Vol 4, pp 818-834.
    [147]Frederking R, Masterson D, Wright B, and Spencer P. Ice Load Measuring Panels—The Next Generation[C]. Proc 16th IAHR Int Symp on Ice, Dunedin, New Zealand, pp 450-457.
    [148]Templeton J S. Measurement of Sea Ice Pressures[C]. POAC'79, Trondheim, Vol 1, pp 73-87.
    [149]Chen A C T. Ice Pressure Sensor Inclusion Factors [J]. J Energy Resources Tech, Vol 103, pp 82-86.
    [150]Graham B W, Chabot L G, and Pilkington G R. Ice Load Sensors for Offshore Arctic Structures[C]. POAC'83, Helsinki, Vol 4, pp 547-562.
    [151]Morten B. Review of Measured Full Scale ICE loads to Fixed Structures[C]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering (OMAE2007), USA,2007
    [152]Chezhian M, Mork K, Meling T S. NDP review of state-of-the-art in riser monitoring: lessons learned [C]. Proceedings of Offshore Technology Conference:OTC-17810, USA, 2006.
    [153]Edwards R, Prislin I, Johnson T, et al. Review of 17 Real-time, environment, response, and integrity monitoring systems on floating production platforms in the deep waters of the Gulf of Mexico[C]. Proceedings of Offshore Technology Conference:OTC-17650, USA,2005.
    [154]Van Dijk R, Van den Boom H. Full scale monitoring Marco Polo tension leg platform[C]. Proceedings of 26th International Conference on Offshore Mechanics and Arctic Engineering:OMAE2007-29635, USA,2007.
    [155]Igor P, John H, Frank D. Full-scale measurement of the Oryx Neptune Production Spar Platform Performance[C]. Proceedings of the 1999 Offshore Technology Conference:OTC10952, USA,1999.
    [156]Halkyard H, Liagre P, Tahar A. Full scale data comparison for the Horn Mountain spar[C]. Proceedings of 23th International Conference on Offshore Mechanics and Arctic Engineering:OMAE2004-51629, Canada:Vancouver,2004.
    [157]Tahar A, Finn L, LiagreP, et al. Full scale data comparison for the Horn Mountain spar mooring line tensions during Hurricane Isidore[C]. Proceedings of 24th International Conference on Offshore Mechanics and Arctic Engineering: OMAE2005-67439, Greece:Halkidiki,2005.
    [158]Ricardo F. Understanding the measured viv data of a steel catenary riser installed at P-18 platform in campos basin[C]. Proceedings of 23rd International Conference on Offshore Mechanics and Arctic Engineering:OMAE2004-51177, Canada,2001.
    [159]单成祥.传感器的理由与设计基础及其应用[M].北京:国防工业出版社,1999.
    [160]岳前进,毕祥军,季顺迎,屈衍.梁环式力传感器:中国,CN101089567[P].2007,12,19.
    [161]Izumiyama K, Irani M B and Timco G W. Influence of compliance of structure on ice load[C]. Proc. IAHR Ice Symposium, Trondeim, Norway, Vol.1,1994:pp229-238.
    [162]Izumiyama K. and Uto S. Ice loading on a compliant indentor[C]. Proc.14th Int. Conf. Port and Ocean Engineering under Arctic Cond. (POAC'97). Yokohama, Japan, April 13-17. Vol.4,1997:pp431-436.
    [163]史庆增,宋安.海工低温实验室工艺设计[J].中国海上油气(工程).1990,Vo1.2No.1:p29-35.
    [164]佟建峰,宋安,史庆增.冰激振动及冰荷载动力特性的试验研究[J].海洋工程.2001,Vo1.19 No.4:p34-39,p45.
    [165]史庆增,宋安.海冰静力作用的特点及几种典型结构的冰力模型试验[J].海洋学报.1994,Vo1.16 No.6:p133-141.
    [166]Sodhi D S and Morris C E. Ice forces on rigid, vertical, cylindrical structures[R]. U. S. Army Cold Regions Research and Engineering Laboratory, CRREL Report.
    [167]Toyama Y, Sensu T, Minami M And Yashima N. Model tests on ice-induced self-excited vibration of cylinfrical structures[C]. Proceedings,7th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), Helsinki, Finland, Vol.Ⅱ,1983:pp834-844.
    [168]Tsuchiya M, Kanie S, Ikejiri K, Yoshida A and Saeki H. An experimental study on ice interactions with arctic offshore structures[C]. Proceedings,17th offshore Technology Conference, Houston, TX, USA, OTC 5055,1985:pp321-327.
    [169]Muhonen A, Karna T, Eranti E, Riska K, Jarvinen E & Lehmus E [R]. Laboratory indentation tests with thick freshwater ice, VTT Research Notes 1370.
    [170]Schwarz J and Jochmann P. Ice force measurement within the LOLEIF project[C]. Proc.16th Int. Conf. on Port and Ocean Engineering under Arctic Conditions. Ottawa, Canada, August 1217,2001:pp669-680.
    [171]Hardy M D, Jefferies M G, et al. Molikpaq Ice loading experience[R]. Report to National Energy Board.1996.
    [172]Croasdale K R, Ice Investigations at a Beaufort Sea Caisson[R], Report to National Research Council of Canada,130p.
    [173]Karna T, Qu Y, Kuhnlein W, Yue Q J and Bi X J. A Spectral Model of Ice Forces due to Ice Crushing [J]. Journal of Offshore Mechanics & Arctic Engineering.2007, 129:ppl38-145.
    [174]Brown T G. Analysis of ice event loads derived from structural response [J]. Cold regions science and technology.2007, Vol.47, pp.224-232.
    [175]赵磊Bragg光纤光栅的应力及温度传感特性研究[D].哈尔滨:哈尔滨工程大学,2005.
    [176]Botsis J, Humbert L, Colpo F, Giaccari P. Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials[J]. Optics and Lasers in Engineering.2005,43:pp418-510.
    [177]Wu X D, Cornelia S H, Kay K, et al. Temperature-controlled fiber Bragg grating dynamic strain detection system [J]. Sensors and Actuators.2005,119:pp68-74.
    [178]姚远,易本顺,肖进胜,李朝辉.光纤布拉格光栅传感器的温度补偿研究[J].应用激光,2007, (27):192-200
    [179]Fernandez-valdivielso C, Matias I R, Arregu F J. Simultaneous measurement of strain and temperature using a fiber Bragg grating and a thermochromic material [J]. Sensors and Actuators.2002,101:pp107-116.
    [180]杜小振.冰致柔性直立结构振动的动冰力研究[D].大连:大连理工大学.2003.
    [181]李洪升,岳前进等. 海冰韧脆转变特性的宏微观分析[J].冰川冻土,2000, Vo1.22(1)
    [182]Karna T, Shkhinek K, et al. Ice-structure dynamics[R]. Report, No.8
    [183]Engelbrektson A. and Janson E. Field observations of ice action on concrete structures in the Baltic Sea[C]. Concrete International Conference, August 1985, pp.48-52.
    [184]Maattanen M. Ice forces and vibrational behaviour of bottom-founded steel lighthouses[C]. Proc.3rd International Symposium on Ice Problems, Hanover, NH, USA.1975, pp.345-355.
    [185]岳前进,张大勇,刘圆,佟保林.渤海抗冰导管架平台失效模式分析[J].海洋工程,2008,26(1):18-23
    [186]岳前进,刘圆,屈衍,时忠民.抗冰平台的冰振疲劳分析[J].工程力学,2007,24(6):159-164
    [187]张大勇,岳前进,李刚,周庆.冰振下海洋平台上部天然气管线振动分析[J].天然气工业,2006,26(12):139-141
    [188]岳前进,李辉辉,于学兵.渤海石油平台的冰振及对作业人员的影响[J].中国海洋平台,2005,20(3):35-39
    [189]张大勇.基于性能的抗冰导管架结构风险设计研究[D].大连:大连理工大学.2007.
    [190]岳前进等.抗冰平台的冰荷载研究[R].新型平台抗冰振技术课题研究报告
    [191]Kim J V, Shuhei M. Effect of liquid storage tanks on the dynamic response of offshore platforms [J]. Applied Ocean Research,1979,1 (1)
    [192]Lee H H. Stochastic analysis for offshore structures with added mechanical dampers [J]. Ocean Engineering,1997,24 (9):817-834
    [193]周亚军,赵德有.海洋平台结构控制综述[J].振动与冲击,2004,23(4):40-44
    [194]桂洪斌,金咸定,肖熙.海洋平台振动控制研究综述[J].中国海洋平台,2003,18(5) :19-25
    [195]徐俊,史庆增,宋安.海洋导管架平台抗冰振措施探讨[J].中国造船,2003,44(增刊):367-372
    [196]王翎羽,宋安,陈星.调谐液体阻尼器在冰区导管架平台上应用的初步研究[J].振动工程学报,1994,7(2):144-149
    [197]陆文发,李林普,高明.近海导管架平台[M].北京:海洋出版社,1992.
    [198]龙驭球,包世华.结构力学教程[M].北京:高等教育出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700