模拟失重环境星载天线型面水下摄影测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文根据星载天线失重形变精密测量的迫切需求,利用水的浮力抵消部分重力原理进行地面失重环境的模拟,引入水下摄影测量技术。主要围绕水下近景摄影测量所涉及的理论和技术问题展开研究与试验,并结合星载天线型面的水下精密摄影测量进行了完整的技术验证。
     论文的主要工作和创新点如下:
     1.分析了光学系统中三对基点和基面构成的光学系统基本模型,得出摄影光学系统成像性能主要取决于基点和基面位置的结论;阐述了摄影光学系统与物方和像方所处介质折射率的关系。
     2.以过节点光线所描述的物像关系为基础,利用针孔成像原理诠释了单介质摄影测量“三点共线”理论,分析了单介质摄影测量的物像位置关系和主距大小。
     3.分析了相机镜头前为非空气介质时双介质摄影成像基点位置变化和投影中心位置改变的规律,提出了双介质摄影测量的“三点共线”理论;推导了“水下摄影系统主距近似为同一相机在空气中主距与所在水的折射率乘积”的关系,并通过试验验证了水下摄影测量“三点共线”理论和主距变化关系的正确性。
     4.分析了光在水中传播的特性及其对成像的影响,提出一整套方法和措施保证水下摄影成像质量,并为浅水中摄影测量作业设计、制作了水下摄影相机防护箱,成功应用于水下像片的拍摄。
     5.分析了相机水下摄影时内部参数标定的常用方法和特点,提出了水下相机标定的优化方案,并通过试验验证了该方案的有效性。
     6.分析了水下摄影测量误差主要来源,研究了水下成像系统尤其是相机防护箱对测量精度的影响,以及水下摄影环境与摄影测量网形对测量精度的影响。针对影响精度的关键因素进行了三类测试试验,结果表明摄影测量网形对精度影响较大,相机加防护箱的测量精度在水上和水下基本一致。
     7.提出将星载天线置于水中模拟太空失重环境进行型面变形测量方案,设计了针对1.3m口径柔性自回弹天线型面水下摄影测量的技术方案,成功地进行了水下摄影测量试验。试验结果表明,该天线置于水中所受浮力抵消了一部分重力,天线在水中与在空气中相比存在一定的变形。
With the exigent requirement for precision measurement of the satellite antenna surface, the technology of underwater photogrammetry was introduced with the zero-gravity conditions. The simulated zero-gravity conditions were achieved with the gravity compensation by the flotage of water. Serial theory researches and technical tests were done on the close range underwater photogrammetry. The theory and technology for underwater photogrammetry were validated through the surface measurement of satellite antenna in water.
     Primary coverage of this dissertation and innovation were as following:
     1. The geometry model was analyzed and discussed among three couples of datum marks and planes in one optical system. The optical imaging system mainly depended on its datum marks and planes. The conclusion had been verified that the camera lens system depended on not only its structure but also the refractive indexes of object space and image space.
     2. The collinearity theory with three points was interpreted with the optical rays through the nodal points for one-media photogrammetry. The relation of position were analyzed among object, image and the principal distance f 0 of camera in one-media photogrammetry.
     3.Based on the variable projection center and principal distance of camera, the collinearity theory with three points was advanced of underwater photogrammetry. The conclusion had been drawn that the principal distance of underwater camera was magnified with a factor of water refractive index by the one in air. All those were validated by one test of underwater photogrammetry.
     4.The characteristics of underwater rays transmission and the effects on imaging were analyzed. Some methods and steps were recommended to improve underwater imaging quality. An equipment was designed and manufactured in order to protect camera from watering in underwater photogrammetry shallowly. And the equipment was performed successfully to take underwater photos.
     5.The common methods of underwater camera calibration and its characteristics were analyzed. One optimal scheme of underwater camera calibration was put forward. Experiment results have shown that this scheme was effective and successful.
     6.The error factors of underwater close-rang photogrammetry were analyzed. The influence on measurement precision was discussed, including the equipment of protecting camera, underwater environment and measurement network. The practical ways were taken out to reduce the influence of these factors. Three types of precision measurement tests were carried out. The results have shown that measurement network was more prominent than the others for precision. And the measurement precision for camera with protection equipment was accordant between underwater and on-top water of photogrammetry.
     7.The technical scheme and the method were presented for the underwater surface measurement of a 1.3m caliber Spring-Back antenna. The experiment was implemented successfully. The experiment results have shown that the flotage of water could proportionally compensate the gravity and the antenna surface in water was slightly distorted comparing with that in air.
引文
[1]沈凌敏.水下摄像系统的设计与研究[D].北京:中国科学院研究生院,2009.
    [2]王宗义.线结构光视觉传感器与水下三维探测[D].黑龙江哈尔滨:哈尔滨工程大学,2005:38-106.
    [3]LI Rong-xing,TAO Chuang,ZOU Wei-hong.An Underwater Digital Photogrammetric System For Fishery Geomatics[C].Vienna,1996.
    [4]冯文灏.工业测量方法及其选用的基本原则[J].武汉大学学报信息科学版,2001,26(4).
    [5]宋青.水下非均匀光场光源波长特性研究[D].山东青岛:中国海洋大学,2008.
    [6]李一平.水下机器人——过去、现在和未来[J].自动化博览,2002(3).
    [7]Jules S.Jaffe,John M.Lean,Michael P.Strand,Karl D.Moore. Underwater Optical Imaging:Status and Prospects[J].Oceanography,2001,14(3).
    [8]田辉平.水下图像测量过程中构像信息的获取[D].广州:华南理工大学,2005:32-53.
    [9]王有年,韩玲,王云.水下近景摄影测量试验研究[J].测绘学报,1988.
    [10]邵锡惠.军事工程摄影测量[M].北京:解放军出版社,1991.
    [11]王之卓.摄影测量原理[M].北京:测绘出版社,1979.
    [12] Elfick M,Fryer J.Mapping in Shallow Water[J].International Archives of Photogrammetry and Remote Sensing,1984:240-247.
    [13]Baldwin R. A.Underwater Photogrammetric System for Structure Investigation[C].IAPRS,Volume 25 Commission V,1984.
    [14]David Eriekson,Matt Ceh,Dale Anderson et al.Mini-RNV:a response to LED threat[C].Proc.SPIE Int.Soc.OPt.Eng.6538,2007.
    [15]Wayne Chung,Valentino CresPi,George Cybenko et al.Distributed sensing and UAV seheduling for surveillance and tracking of unidentifiable targets[C]. Proc.SPIE Int.Soc.Opt.Eng.5778,226,2005.
    [16]K.S.Thyagarajan,Kline David,Jain Arjun. An EO surveillance system for harbor security[C].Proc.SPIE Int.Soc.Opt.Eng.6696,66960C,2007.
    [17]Lundberg Carl,Reinhold Roger,I.Christensen Henrik.Evaluation of robot deployment in live missions with the military,police,and fire brigade[C].Proc. SPIE Int.Soc.Opt.Eng.6538,6538OR,2007.
    [18]Weidemann Alan,R.Foumier Georges,Forand Lue et al. In harbor underwater threat detection/ identification using active imaging[C].Proc.SPIE Int.Soc.Opt.Eng.5780,59,2005.
    [19]汤德伟.水下专用照相机水下摄影保护装置[J].照相机,2004(8):25-27.
    [20]LI Rong-xing , LI Haihao , ZOU Wei-hong , Robert G. Smith, Terry A. Curran. Quantitative Photogrammetric Analysis of Digital Underwater Video Imagery[J]. IEEE Journal of Oceanic Engineering,1997,22(2):364-375.
    [21]J.G. Fryer,C.S.Fraser. On the calibration of underwater cameras[J].Photogrammetric Record,1986,67(12):73-85.
    [22]Andrew Hogue,Michael Jenkin. Development of an Underwater Vision Sensor for 3D Reef Mapping [J]. Proceedings of the 2006 IEEE/RSJ,2006:5351-5356.
    [23]Kenneth Edmundson,Giuseppe Ganci,Park Chan-Hong.Underwater photogrammetric verification of nuclear fuel assembles via natural feature measurement[J].The Journal of the CMSC,2007,2(1).
    [24]Rinner.K. Abbildungsgesetz und Orientierungsaufgaben in der Zweimedienphotogrammetrie[J]. ?sterrische Zeitschrift für Vermessungswesen, Sonderheft Nr. 1948(5).
    [25]Konecny G,Masry S. New Programs for the Analytical Plotter[J].Photogrammetric Engineering and Remote Sensing,1970(36):1269-1276.
    [26]Okamoto A , H?hle J. Allgemeines analytisches Orientierungsverfahren in der Zwei- undMehrmedien-Photogrammetrie und seine Erprobung[J]. Bildmessung und Luftbildwesen,1972:2-3.
    [27]Wrobel B. Mehrmedien-Photogrammetrie - ein aktuelles Bet?tigungsfeld der Photogrammetrie[J]. Vermessungswesen und Raumordnung,1975,37(1).
    [28]Gili Telem,Sagi Filin.Photogrammetric modeling of underwater environments[J].ISPRS Journal of Photogrammetry and Remote Sensing,2010.
    [29] Shmutter B,Bonfiglioli L.Orientation problem in two-medium photogrammetry[J].Photogrammetric Engineering,1967,33(12):1421-1428.
    [30]Okamoto A.Wave Influences in Two-Media Photogrammetry. Photogrammetric Engineering and Remote Sensing[J].1982,48(9):1487-1499.
    [31]Ferreira R,Costeira J.P.Using stereo image reconstruction to survey scale models of rubble-mound structures[C].Porto,Portugal,2006:1-10.
    [32] Fryer J.G,Fraser C.S.On the calibration of underwater cameras[C].1986:73-85.
    [33]Maas H.New developments in Multimedia Photogrammetry[C].Wichmann Verlag,Karlsruhe:1995:.
    [34] Lavest J.M,Rives G,Lapreste J.T.Underwater Camera Calibration[J].ECCV 2000,2000:654-668.
    [35]Vander Zwaan.S , Bernardino A . Visual station keeping for floating robots in unstructured environments[J].Robotics and Autonomous Systems,2002,39(3):145-155.
    [36] Pizarro O, Eustice R.Large area 3d reconstructions from underwater surveys[C].Japan:2004:678-687.
    [37]Singh H,Roman C,Pizarro O.Advances in high resolution imaging from underwater vehicles[C].2005:430-448.
    [38]Gracias N,Santos-Victor J.Underwater video mosaics as visual navigation maps[J].Computer Vision and Image Understanding,2000,79(1):66-91.
    [39] Pessel N,Opderbecke J.Camera self-calibration in underwater environment[C].Plzen - Bory,Czech Republic:2003:104-110.
    [40]Harvey E.S,Cappo M,Shortis M.R.Design and calibration of an underwater stereovideo system for the monitoring of marine fauna populations[C].1998:792-799.
    [41]Gründig L,Moncrieff E,Schewe H.The CoSMoLUP project for the improvement of fishfarm pen design using computational structural modeling and large-scale underwater photogrammetry[C].1999:20-24.
    [42]Canciani M,Gambogi P,Romano F.G.Low cost digital photogrammetry for underwater archaeological site survey and artifact insertion. The case study of the Dolia wreck in secche della meloria-livornoitalia[J].International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2003,34(Part 5/W12):95-100.
    [43]Harvey E.S,Cappo M,Shortis M.R.The accuracy and precision of underwater measurements of length and maximum body depth of southern bluefin tuna (Thunnus maccoyii) with a stereo-video camera system[J].Fisheries Research,2003,63(3):315-326.
    [44]Shortis M.R,Harvey E.S.A review of the status and trends in underwater videometric measurement[C].In: SPIE Conference 6491,Videometrics IX,IS&T/SPIE Electronic Imaging,San Jose,CA,USA,2007.
    [45]Drap P,Seinturier J.Photogrammetry for virtual exploration of underwater archeological sites[A].In: Proc. XXIth CIPA International Symposium, Athens, Greece,2007:1-6.
    [46]Shortis M.R,Seager J.W,Williams A. A towed body stereo-video system for deep water benthic habitat surveys[C].ETH Zurich, Switzerland,2007:150-157.
    [47]常本义.双介质摄影测量基本公式[J].测绘学报,1991(4):288-294.
    [48]常本义.关于双介质摄影测量立测方程有关问题的讨论[J].测绘学院学报,1992(4).
    [49]单杰.双介质摄影测量的相对定向[J].测绘学院学报,1993(3).
    [50]郑国星.海洋水下摄影测量技术近期成果[J].国际学术动态,1991(5):85-86.
    [51]姚玉朝.水下摄影测量技术研究[J].1993.
    [52]谭显裕.水下成像的现状和发展动向[J].红外与激光工程,1996(3).
    [53]邵滨.水下摄影常见影象质量问题的原因及其改善方法[D].辽宁大连:海军舰艇学院,.
    [54]王晓霞,张涤新,成永军,赵澜,赵光平.空间真空测量技术研究[J].真空与低温,2006,12(2):116-119.
    [55]韦娟芳,赵人杰,关富玲.星载天线结构的发展趋势[J].空间电子技术,2002(1):49-54.
    [56] Lin Tze Tan.Design & Manufacture of Stiffened Spring-Back Reflector Demonstrator[C].46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Austin Texas,2005.
    [57]罗鹰,段宝岩.星载可展开天线结构现状与发展[J].电子机械工程,2005,21(5).
    [58]韦娟芳.卫星天线展开过程的零重力环境模拟设备[J].空间电子技术,2006(2).
    [59]柏宏武,马小飞,宋燕平,马小飞,郑士昆.柔性自回弹天线反射器及其优化设计[J].电子机械工程,2005.
    [60]陈庚超.柔性天线反射面调整技术[J].机械设计与制造,2003(6):67-68.
    [61]宋燕平.轻型卫星天线反射器[J].空间电子技术,2002(2).
    [62]柏宏武,马小飞,宋燕平.柔性自回弹天线反射器结构厚度的优化[J].空间电子技术,2005.
    [63]路波.零重力环境模拟气动悬挂系统的关键技术研[D].浙江杭州:浙江大学,2009.
    [64] Zhi-zhuo W A.Principles of Photogrammetry[M].Surveying and Mapping Press,1990.
    [65]江延川.解析摄影测量学[M].河南郑州:测绘学院,1991.
    [66]朱肇光,孙护,崔炳光.摄影测量学[M].北京:测绘出版社,1995.
    [67]沙占祥.摄影镜头的性能与选择[M].北京:中国摄影出版社,2004:65-69.
    [68]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,2001.
    [69]母国光,战元令.光学[M].北京:人民教育出版社,1978.
    [70]姚启钧.光学教程[M].北京:人民教育出版社,1981.
    [71]约翰S,卡罗尔(胡宏伟,戴勇书译).摄影实践与处方[M].北京:测绘出版社,1984.
    [72]上海市饮食服务公司编.摄影技术[M].北京:中国财政经济出版社,1980.
    [73]王之卓.摄影测量原理[M].北京:测绘出版社,1979.
    [74] L.E.默顿斯(张闻迪,关福民等译).水中摄影学[M].北京:科学出版社,1979.
    [75]钦桂勤,黄桂平,卢成静.V-STARS数字摄影三坐标测量系统的精度测试及应用[J].计量学报,2008,29(4A).
    [76]黄桂平.数字近景工业摄影测量关键技术研究与应用[D].天津:天津大学,2005.
    [77]谢正茂,董晓娜,何俊华.水下微光摄影物镜的设计和研究[J].应用光学,2009(1).
    [78]杨顶田.光学浅水底质摄影系统的设计[J].仪器仪表学报,2008(4).
    [79]谢正茂,董晓娜,陈良益,余义德,何俊华.大视场大相对孔径水下专用摄影物镜的设计[J].光子学报,2009(4).
    [80]翟学锋,董晓娜,王国富,陈良益.水下变焦镜头的设计[J].应用光学,2007(4).
    [81]蒋安之,程志虎.水下摄影与电视摄象技术[J].无损检测,1998(1).
    [82]王琦.水下摄影(下)[J].影像材料,2004(1).
    [83]郭铁成.水下数码摄影[J].照相机,2006(10).
    [84]张杰.关于水下摄影[J].新闻爱好者,2009.
    [85]范生宏.工业数字摄影测量中人工标志的研究与应用[D].河南郑州:解放军信息工程大学测绘学院,2006.
    [86]冯其强.数字工业摄影测量技术研究与实践[D].河南郑州:解放军信息工程大学测绘学院,2010.
    [87]张巍.水下图像的目标检测与定位研究[D].湖北武汉:华中科技大学,2007.
    [88]王琦.水下摄影(上)[J].影像材料,2003(6).
    [89]Codrin Gruie Cantemir,Gabriel Ursescu,Lorenzo Serrao.Concept design of a new generation militaryvehicle[C].Pro.SPIE Int. Soc.Opt.Eng.,2006.
    [90]朱耘.国外水下成像系统的发展[J].舰船电子工程,1999(3).
    [91]董建顺.基于电视图像的水下非接触测量系统[D].上海:交通部海洋水下工程科学研究院,2002.
    [92]陈远明,叶家玮,吴家鸣.水下拖曳体运动轨迹摄影测量的数据处理[D].广州:华南理工大学,.
    [93]张建新.双目立体视觉技术在工业检测中的应用研究[D].天津:天津大学,1996.
    [94]Tsai R. Y.A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J].IEEE Journal of Robotics and Automation,1987,3(4):323-344.
    [95]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报,2000(1):43-55.
    [96]郑逢杰,余涛,袁国体.相机几何标定方法综述[J].太原科技,2010(2):72-73.
    [97]Weng J,Huang T.S, Ahuja N.Motion and structure from two perspective views:algorithms,error analysis and error estimation[J].IEEE Trans on PAMI-11,1989:451-476.
    [98]Caprile B,Torre V.Using Vanishing Points for Camera Calibration[J].1990,4(2):127-140.
    [99]Wei G,Ma S.Two-plane calibration:a unified model[J].Proc. CVPR'91,1991:133-138.
    [100]李明哲,张爱武,胡少兴.基于计算机视觉的板材3维测量系统[J].中国机械工程,2002,13(14):1177-1180.
    [101]Field R.H.The calibration of air cameras in Canada[J].IBID,1946,12(2):142-146.
    [102]Clarke T.A,Fryer J.G. The development of camera calibration methods and models[J].Photogrammetric record,1998,16(9):51-66.
    [103]冯文灏.近景摄影测量[M].湖北武汉:武汉大学出版社,2001.
    [104]Fraser C.S . Photogrammetric camera component calibration: a review of analytical techniques[J].Springer Pub,2001:95-122.
    [105]冯文灏,商浩亮,侯文广.影像的数字畸变模型[J].武汉大学学报:信息科学版,2006,31(2):99-103.
    [106]李德仁,袁修孝.误差处理与可靠性理论[M].湖北武汉:武汉大学出版社,2002.
    [107]Tecklenburg W,Luhmann T,Hastedt H.Camera modelling with image-variant parameters and finite elements[C].Heidelberg:2001.
    [108] Kavzoglu T,Karsli F.Calibration of a Digital Sigle Lens Reflex(Slr) Camera Using Artificial Neural Networks[J].IAPRS, 2008,2008,36(B5):27-32.
    [109] Brown D C.Close-range camera calibration[J].Photogrammetric engineering,1971,37(8):855-866.
    [110] Kavzoglu T ,Karsli F. Calibration of a Digital Sigle Lens Reflex(Slr) Camera Using Artificial Neural Networks[J]. IAPRS,2008,Vol.36(B5): 27-32.
    [111]王元汉,李丽娟,李银平.有限元法基础与程序设计[M].2000.
    [112]陈新.非量测型彩色数码相机测量精度研究[D].郑州:解放军信息工程大学测绘学院,2010.
    [113]詹总谦,张祖勋,张剑清.基于LCD平面格网和有限元内插模型的相机标定[J].武汉大学学报:信息科学版,2007,32(5):394-397.
    [114]Li X.PHOTOGRAMMETRIC INVESTIGATION INTO LOW-RESOLUTION DIGITAL CAMERA SYSTEMS[D].New Brunswick: the University of New Brunswick,1999.
    [115]Lichti D,Chapman M.A.Constrained FEM Self-Calibration[J].Photogrammetric Engineering & Remote Sensing,1997,63(9):1111-1119.
    [116] AGruen,TSHuang.Calibration and orientation of cameras in computer vision[M].Berlin:Springer Pub,2001:95-122.
    [117] Fraser C.S.Digital camera self-calibration[C].1997:149-159.
    [118]Kavzoglu T,Karsli F.Calibration of a digital sigle lens reflex(SLR) camera using artificial neural networks[J].IAPRS,2008,36(B5):27-32.
    [119]黄桂平,李小勇,钦桂勤.数码相机内参数的实验场法标定[J].测绘学院学报,2005,22(3).
    [120]吴斌,薛婷,朱继贵,叶声华.一种立体视觉测量高精度标定新方法[J].光电工程,2005.
    [121]李春艳,王立,卢欣,陈继华,范生宏.一种双目立体视觉相机标定方法[J].空间控制技术与应用,2010(3).
    [122]于宁锋.数字摄影测量系统中非量测CCD相机标定算法[J].辽宁工程技术大学学报,2007(4).
    [123]杨化超,张书毕,刘超.基于灭点理论和平面控制场的相机标定方法研究[J].中国图象图形学报,2010(8).
    [124]高立志,方勇,林志航.立体视觉测量中摄像机标定的新技术[J].电子学报,1999(2).
    [125]姜大志,宋闵,刘淼,姜梅,丁秋林.数码相机标定方法研究[J].南京航天航空大学学报,2001(1).
    [126]杨雪荣,张湘伟,成思源,黄曼惠.视觉测量中的相机标定方法进展研究[J].机械设计与制造,2009(3).
    [127]Fraser C.S et al.Metric exploitation of still video imagery[J].Photogrammetric record,1995,15:107-122.
    [128]隋立芬,宋力杰.误差理论与测量平差基础[M].北京:解放军出版社,2004.
    [129]郭志宏,熊盛青,周坚鑫等.航空重力重复线测试数据质量评价方法研究[J].地球物理学报,2008,51(5):1538-1543.
    [130]乔瑞亭,孙和利,李欣.摄影与空中摄影[M].湖北武汉:武汉大学出版社,2008.
    [131]Rieke-zapp D.H,Tecklenburg W,Peipe J et al. Performance Evaluation of Several High-Quality Digital Cameras[J]. IAPRS,2008, Vol.37(B5):7-12.
    [132]Labelle R.D,Garvey S.D.Introduction to High Performance CCD Cameras[C].USA,1995:301-305.
    [133]李小亭,胡金敏.计量光学[M].北京:中国计量出版社,2003.
    [134]Shortis M.R,Robson S,Beyer H.A. Principal Point Behaviour and Calibration Parameter Models for Kodak Dcs Cameras[J]. Photogrammetric Record,1998 Vol.16(92):165-186.
    [135]Li X. Photogrammetric Investigation Into Low-Resolution Digital Camera Systems[D]. New Brunswick: the University of New Brunswick,1999.
    [136]Behrens A,Lasseur C,Mergelkuhl D.New developments in close range photogrammetry applied to large physiks detectors[R].Geneva,CERN,2004.
    [137]Hastedt H,Luhmann T,Tecklenburg W.Image-variant interior orientation and sensor modelling of high quality digital cameras[J].International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,2002,34(5):27-32.
    [138]Shortis M. R,Beyer H. A. Calibration Stability of the Kodak Dcs420 and 460 Cameras[J]. Proc. SPIE,1997,Vol.3 174(Videometrics V): 94-105.
    [139]Habib A , Morgan M . Stability analysis and geometric calibration of off-the-shelf digital cameras[J].Photogrammetric Engineering & Remote Sensing,2005,71(6):733-741.
    [140]Fraser C. S.Close range photogrammetry and machine vision[J].Aithness,1996.
    [141]高宏.非正交系坐标测量系统的原理、检定及应用研究[D].河南郑州:解放军信息工程大学测绘学院,2003.
    [142]Mason S.Conceptual model of the convergent multistation network configuration task[C].1995:277-299.
    [143]冯文灏,李欣.近景摄影测量的标志与坐标传递件[J].测绘信息与工程,2000(3):20-24.
    [144]冯文灏.回光反射标志的性能与使用[J].测绘通报,1993(4):12-14.
    [145] Wabon G,郑文革.几种碳纤维的弹性系数和热膨胀系数[J].新型炭材料,1990(1):32-34.
    [146]黄桂平,范生宏,钦桂勤.大型星载网状天线型面检测技术与工程实践[J].红外与激光工程,2008(S1).
    [147]黄桂平,钦桂勤,卢成静.数字近景摄影大尺寸三坐标测量系统V-STARS的测试与应用[J].宇航计测技术,2009(2):5-9.
    [148]卢成静,黄桂平,李广云.V-STARS工业摄影三坐标测量系统精度测试及应用[J].红外与激光工程,2007 (z1):513-517.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700