基于原子力显微镜的高效率DNA纳米操纵系统设计与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分析了目前在基于原子力显微镜的纳米操纵,尤其是DNA单分子操纵中,影响效率和精度的主要因素。通过设计有针对性的解决方案,实现了高效率高精度的单分子纳米操纵,并提出了一种智能化的操纵策略。在此基础上,本论文对DNA纳米操纵的机制进行了初步探索,通过建立DNA操纵过程模型,为解释实验中遇到的各种现象提供了依据。
     纳米操纵技术是上世纪80年代末期随着扫描探针显微技术的发展而发展起来的新兴科学技术,它使得真正意义上的单原子/分子研究成为可能,在半导体、材料、化学、医学等领域都展现出了巨大的前景和价值。其中,原子力显微镜由于其对样品和环境条件几乎没有限制,并且能够对样品施加多种相互作用,成为单分子纳米操纵的主要工具。在生物医学领域,传统的生化分析方法通常是基于大量分子的统计信息,失去了“空间分辨率”。原子力显微镜能够实现单分子分析,在纳米尺度上直接观测生物分子及其相互作用,对于揭示各种重要生命过程的本质以及促进新一代个性化医疗方法具有重要的意义。例如对DNA分子的纳米操纵有助于单分子序列信息的研究,通过机械力拉伸操纵能够研究DNA分子折叠结构的力学信息,对DNA的机械力操纵还有助于了解机械力对于特定序列突变的诱导等等。
     然而,目前原子力显微镜纳米操纵的效率还比较低,其原因主要是:
     (1)原子力显微镜针尖既是成像工具又是操纵工具。因此在操纵过程中需要不断的在操纵模式和成像模式之间切换,耗费大量的操作和时间;此外原子力显微镜栅格扫描模式本身也存在成像速度较慢的问题;
     (2)设备本身存在热漂移。热漂移是设备部件由于温度波动导致的微小形变(膨胀/收缩),是一种普遍存在的现象。在宏观环境中,热漂移的影响并不明显,但在纳米操纵过程中,热漂移对操纵准确性的影响不可忽略,必须发展快速有效的热漂移的补偿方法,提高操纵的精度。
     (3)纳米操纵过程中,针尖与分子的相互作用非常复杂,包括范德华力、毛吸力、静电力、斥力、甚至化学键作用,使得通过模型进行定量分析相当困难,无法将已有的自动化技术直接应用于纳米操纵过程;例如,针尖拾取纳米颗粒是依靠非特异性的吸附力,主要是范德华力和毛细力。这两种力均与环境的湿度条件密切相关,但是环境湿度如何影响吸附力还没有一个明确的理论可供参照。
    
     针对上述问题,本论文的研究内容主要可以分为以下几个方面:
     (1)根据不同的操纵目的,如DNA操纵、纳米颗粒操纵和纳米刻蚀,分别设计了高效率的针尖移动方式,结合原子力显微镜设备提供的开放接口,实现了大范围成像与小范围(局域化)操纵兼容的问题,有效消除了操纵过程中扫描范围的切换,从而简化连续操纵的步骤,提高操纵的效率。
     (2)发展了一套基于“图像配准”的原子力显微镜热漂移补偿技术,并通过引入最小二乘估计和卡尔曼滤波器等方法实现了软件方式的亚像素精度热漂移补偿,提高了操纵的精度。此外,该方法还能够用于校正由热漂移引起的原子力显微镜图像失真,提高图像测量的准确性。
     (3)发展了一套针对低信噪比原子力显微镜图像的图像识别改进算法并成功应用于DNA和纳米颗粒的操纵,进一步提高了操纵的效率,为自动化及智能化的纳米操纵提供了一种可行的策略。
     (4)结合一些较为公认的纳米尺度相互作用模型对原子力显微镜纳米操纵,尤其是DNA分子操纵的物理过程和机制进行了初步的探讨,并分析了适用于纳米操纵的APTES衬底的性质,为解释实验中的各种现象提供了依据。
     基于原子力显微镜的高效率纳米操纵的研究目前尚处于起步阶段,对于生物单分子高效率操纵的研究更不多见。本论文在大量实验总结的经验基础上,对提高基于原子力显微镜的DNA纳米操纵效率和精度做出了有益的尝试。文中涉及的研究内容和发展的方法策略有助于原子力显微镜在生物大分子操纵领域的广泛应用,对单分子水平上DNA、RNA、病毒颗粒的研究具有重要意义。
The thesis focuses on improving the efficiency and precision of nano-manipulation, especially single DNA manipulation, with Atomic Force Microscope (AFM). A high efficiency nano-manipulation system has been realized, and an intelligent manipulation strategy has been developed. For the explanation of experimental results, models of DNA manipulation processes have also been developed, and the manipulation mechanics therein have been discussed.
     Nano-manipulation technique was introduced with the development of Scanning Probe Microscopy (SPM) in 1980s. It enables‘true’single atoms/molecules research for the first time, and shows great potential in the fields of semi-conductors, materials, chemistry, medical etc. Among the SPM family, the AFM has become the most popular tool for single molecule manipulation applications, as there are almost no limitation for samples and environment conditions. For example, in bio-medical researches, traditional biochemical analysis is based on statistic information of large amount of molecules, losing the“spacial resolution”. The atomic force microscope could observe and manipulate directly single molecules and their interactions, thus essential for revealing important life secrets and accelerate next-generation“personalized medical care”. Such as the mechanical properties of DNA folding structures could be studied by nano stretching, and mechanical interaction induced mutation could be systematically analyzed.
     However, current efficiency of AFM manipulation is not satisfactory, mainly because of the following reasons:
     (1) The AFM tip is not only for imaging but also for manipulation. Therefore, during manipulation, one has to frequently switch between imaging mode and manipulation mode, costing a lot of time and operations. Besides, the AFM scanning is inherently slow due to the raster scanning pattern.
     (2) There are thermal drifts. Thermal drift is the small deformation of instruments due to thermal fluctuations. It is not obvious in the macro world, however, it matters in the nano scale, and must be compensated during manipulation for high precision.
     (3) The tip-sample interactions during manipulation are complicated. There are van der Waals force, capillary force, electrostatic forces, chemistry force etc., making the understanding of manipulation process very difficult.
     To address above issues, the main topics of the thesis includes the following aspects:
     (1) To improve manipulation efficiency. Designed high efficiency tip movements according to different manipulation purposes. Simplified the manipulation processes by eliminating mode switching through localized manipulation.
     (2) To improve manipulation precision. Developed a thermal drift compensation method based on image registration. Realized sub-pixel compensation precision by introducing Least Square Estimation and Kalman Filter Estimaiton. Besides, this compensation method could also be used to calibrate AFM image distortion caused by thermal drift during scanning.
     (3) To further improve the efficiency. Developed an image recognition algorithm for low signal-to-noise ratio AFM images, e.g. DNA image, and successfully applied in nano-manipulation, providing an automatic and intelligent manipulation stragetgy.
     (4) Developed models of DNA manipulation processes. Discussed important factors in nano-manipulation.
     Though the nano-manipulation with AFM has demonstrated great potential, there are few studies on improving the manipulation efficiency, especially for biomolecule manipulations. The developed methods and models in the thesis could shed some lights for high efficiency AFM manipulation, thus facilitating the application of this single molecule manipulation strategy. Keywords: Atomic Force Microscopy, DNA, Nano-manipulation, Automatization
引文
[1] R. Feynman, There's Plenty of Room at the Bottom, Caltech Engineering and Science, 1960, Pg 22;
    [2] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Tunneling through a controllable vacuum gap, Appl. Phys. Lett.,1982, Vol 40, Pg 178;
    [3] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Surface Studies by Scanning Tunneling Microscopy, Phys. Rev. Lett., 1982, Vol 49, Pg 57;
    [4] Gordon E. Moore, Cramming more components onto integrated circuits, Electronics Magazine, 1965, Pg 4;
    [5] Zhihong Chen, Joerg Appenzeller, Yu-Ming Lin, Jennifer Sippel-Oakley, Andrew G. Rinzler, Jinyao Tang, Shalom J. Wind, Paul M. Solomon, Phaedon Avouris, An Integrated Logic Circuit Assembled on a Single Carbon Nanotube, Science, 2006, Vol 311, Pg 1735;
    [6] Lyshevski, S.E., Carbon-based Nanoelectronics: NanoICs with fullerenes, 4th IEEE Conference on Nanotechnology, 2004, Pg 382;
    [7] T. Kanbara, K. Shibata, S. Fujiki, Y. Kubozono, S. Kashino, T. Urisu, M. Sakai, A. Fujiwara, R. Kumashiro and K. Tanigaki, N-channel field effect transistors with fullerene thin films and their application to a logic gate circuit, Chem. Phys. Lett., 2003, Vol 379, Pg 223;
    [8] Scott Robert C, Crabbe Deborah, Krynska Barbara, Ansari Ramin, Kiani Mohammad F, Aiming for the heart: targeted delivery of drugs to diseased cardiac tissue, Expert Opinion on Drug Delivery, 2008, Vol 5, Pg 459;
    [9] Schroeder Avi, Honen Reuma, Turjeman Keren, Gabizon Alberto, Kost Joseph, Barenholz Yechezkel, Ultrasound triggered release of cisplatin from liposomes in murine tumors, Journal of Controlled Release, 2009, Vol 137, Pg 63;
    [10] Scott Robert C, Wang, Bin, Nallamothu Ramakrishna, Pattillo Christopher B, Perez-Liz Georgina, Issekutz Andrew, Valle Luis Del, Wood George C, Targeted delivery ofantibody conjugated liposomal drug carriers to rat myocardial infarction, Biotechnology and Bioengineering, 2007, Vol 96, Pg 795;
    [11] Wang Bin, Rosano Jenna M, Cheheltani Rabe'e, Achary Mohan P, Kiani Mohammad F, Towards a targeted multi-drug delivery approach to improve therapeutic efficacy in breast cancer, Expert Opinion on Drug Delivery, 2010, Vol 7, Pg 1159;
    [12] Geeta M Patel, Gayatri C Patel, Ritesh B Patel, Jayvadan K Patel and Madhabhai Patel, Nanorobot: A versatile tool in nanomedicine, Journal of Drug Targeting, 2006, Vol 14, Pg 63;
    [13] Adriano Cavalcanti, Bijan Shirinzadeh, Robert A Freitas Jr and Tad Hogg, Nanorobot architecture for medical target identification, Nanotechnology, 2008, Vol 19, Pg 015103;
    [14] Menciassi A., Sinibaldi E., Pensabene V., Dario P., From miniature to nano robots for diagnostic and therapeutic applications, 2010 Annual International Conference on EMBC, 2010, Pg 1954;
    [15] Adriano Cavalcanti, Bijan Shirinzadeh, Luiz C. Kretly, Medical nanorobotics for diabetes control, Nanomedicine, 2008, Vol 4, Pg 127;
    [16] Chworos A, Severcan I, Koyfman AY, Weinkam P,Oroudjev E, Hansma HG, Jaeger L, Building programmablejigsaw puzzles with RNA, Science, 2004, Vol 306, Pg 2068;
    [17] Rothemund P.W.K., Folding DNA to create nanoscale shapes and patterns, Nature, 2006, Vol 440, Pg 297;
    [18] Y. Shirai, A. J. Osgood, Y. Zhao, K. F. Kelly, and J. M. Tour, Directional Control in Thermally Driven Single-Molecu Nanocars, Nano Lett., 2005, Vol 5, Pg 2330;
    [19] D.M. Eigler and E.K. Schweizer, Positioning Single Atoms with a Scanning Tunnelling Microscope, Nature, 1990, Vol 344, Pg 524;
    [20] P. Zeppenfeld, C. P. Lutz and D. M. Eigler, Manipulating Atoms and Molecules With a Scanning Tunneling Microscope, Ultramicroscopy, 1992, Vol 42, Pg 128;
    [21] M.F. Crommie, C.P. Lutz and D.M. Eigler, Confinement of Electrons to Quantum Corrals on a Metal Surface, Science, 1993, Vol 262, Pg 218
    [22] B.C. Stipe, M.A. Rezaei, and W. Ho, Inducing and Viewing the Rotational Motion of a Single Molecule, Science, 1998, Vol 279, Pg 1907
    [23] H.J. Lee and W. Ho, Single Bond Formation and Characterization with a Scanning Tunneling Microscope, Science, 1999, Vol 286, Pg 1719
    [24] A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, B. Wang, X. Xiao, J. Yang, J. G. Hou, and Q. Zhu, Controlling the Kondo Effect of an Adsorbed Magnetic Ion Through Its Chemical Bonding, Science,2005, Vol 309, Pg 1542;
    [25] Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett., 1986, Vol 11, Pg 288;
    [26] D.G. Grier, A revolution in optical manipulation, Nature, 2003, Vol 424, Pg 810;
    [27] M.D. Wang, H. Yin, R. Landick, J. Gelles and S.M. Block, Stretching DNA with optical tweezers, Biophys. J, 1997, Vol 72, Pg 1335;
    [28] G.J. Wuite, S.B. Smith, M. Young, D. Keller and C. Bustamante, Single-molecule studies of the effect of template tension on T7 DNA polymerase activity, Nature, 2000, Vol 404, Pg 103;
    [29] B. Maier, D. Bensimon and V. Croquette, Replication by a single DNA polymerase of a stretched single-stranded DNA, Proc. Natl Acad. Sci., 2000, Vol 97, Pg 12002
    [30] G. Binning and C.F. Quate, Atomic Force Microscope, Phys. Rev. Lett., 1986, Vol 56, Pg 930;
    [31] T. Junno, K. Deppert, L. Montelius, and L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett., 1995, Vol 66, Pg 3267;
    [32] D.M. Schaefer, R. Reifenberger, A. Patil and R.P. Andres, Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope, Appl. Phys. Lett., 1995, Vol 66, Pg 1012;
    [33] C. Baur, B.C. Gazen, B. Koel, T.R. Ramachandran, A.A.G. Requicha, and L. Zini, Robotic nanomanipulation with a scanning probe microscope in a networked computing environment, J. Vac. Sci. Technol. B, 1997, Vol 15, Pg 1577;
    [34] C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, N. Montoya, T.R. Ramachandran, A.A.G. Requicha, R. Resch and P. Will, Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring, Nanotechnology, 1998, Vol 9, Pg 360;
    [35] L.T. Hansen, K. Kühle, A.H. S?renson, J. Bohr and P.E. Lindelof, A technique for positioning nanoparticles using atomic force microscope, Nanotechnology, 1998, Vol 9, Pg 337;
    [36] Yoshiaki Sugimoto,óscar Custance, Masayuki Abe and Seizo Morita, Site-Specific Force Spectroscopy and Atom Interchange Manipulation at Room Temperature, e-J. Surf. Sci. Nanotech., 2006, Vol 4, Pg 376;
    [37] Felix Loske and Angelika Kühnle, Manipulation of C60 islands on the rutile TiO2 (110) surface using noncontact atomic force microscopy, Appl. Phys. Lett., 2009, Vol 95, 043110;
    [38] Oscar Custance, Ruben Perez and Seizo Morita, Atomic Force Microscopy as a tool for atom manipulation, Nature Nanotechnology, 2009, Vol 4, Pg 803;
    [39] http://www.ntmdt.com/scan-gallery;
    [40] G. Binnig, M. Despont, U. Drechsler, W. H?berle, M. Lutwyche, P. Vettiger, B.W. Chui and T.W. Kenny, Ultrahigh-density atomic force microscopy data storage with erase capability, Appl. Phys. Lett., 1999, Vol 74, Pg 1329;
    [41] E. Henderson, Imaging and nanodissection of individual supercoiled plasmids by atomic force microscopy, Nucleic Acids Research, 1992, Vol 20, Pg 445;
    [42] H.G. Hansma, J. Vesenka, C. Siegerist, Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope, Science, 1992, Vol 256, Pg 1180;
    [43] B. Geisler, F. Noll, N. Hampp, Nanodissection and noncontact imaging of plasmid DNA with an atomic force microscope, Scanning, 2000, Vol 22, Pg 7;
    [44] N. Severin, J. Barner, A.A. Kalachev, Manipulation and overstretching of genes on solid substrates, Nano Lett., 2004, Vol 4, Pg 577;
    [45] M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. H?berle, H. Rohrer, H. Rothuizen, P. Vettiger, G. Yaralioglu, C.Quate, 5×5 2D AFM cantilever arrays a first step towards a Terabit storage device, Sensors and Actuators, 1999, Vol 73, Pg 89;
    [46] http://www.nanohand.eu;
    [47] Guangyong Li, Ning Xi, Mengmeng Yu, Wai Keung Fung, Augmented Reality System for Real-time Nano-mantipulation, 3rd IEEE Conference on Nanotechnology, 2003, Vol 2, Pg 64;
    [48] Guangyong Li, Ning Xi, Heping Chen and Ali Saeed, Augmented Reality Enhanced“Top-Down”Nano-Manufacturing, IEEE/ASME Transactions on Mechatronics, 2004, Vol 9, Pg 358;
    [49] Guangyong Li, Ning Xi, Heping Chen, Craig Pomeroy, Mathew Prokos,“Videolized”Atomic Force Microscopy for interactive Nanomanipulation and Nanoassembly, IEEE Transactions on Nanotechnology, 2005, Vol 4, Pg 605;
    [50]刘连庆,焦念东,田孝军,董再励,席宁,王越超,具有实时视觉/触觉反馈的纳米操作系统,高技术通讯,2006,Vol 16,Pg 36;
    [51] Xiaojun Tian, Niandong Jiao, Lianqing Liu, Yuechao Wang, Ning Xi, Wenjung Li, Zaili Dong, An AFM based nanomanipulation system with 3D nano forces feedback, International Conference on Intelligent Mechatronics and Automation, 2004, Pg 18;
    [52] Xiaojun Tian, Lianqing Liu, Niandong Jiao, Yuechao Wang, Zaili Dong, Ning Xi, 3D nano forces sensing for an AFM based nanomanipulator, International Conference on Information Acquisition, 2004, Pg 208;
    [53] Afshin Tafazzoli, Metin Sitti, Dynamic behavior and simulation of nanoparticle sliding during nanoprobe-based positioning, ASME 2004 International Mechanical Engineering Congress and Exposition, 2004, Pg 965;
    [54] Metin Sitti, Atomic Force Microscope Probe based Controlled Pushing for Nano-Tribological Characterization, IEEE Transaction on Mechatronics, 2003, Vol 8, Pg 1;
    [55] B. Mokaberi, Yun Jaehong, M. Wang, A.A.G. Requicha, Automated Nanomanipulation with Atomic Force Microscopes, IEEE International Conference on Robotics and Automation, 2007, Pg 1406;
    [56] A. Bensimon, A. Simon, A. Chiffaudel, et al., Alignment and sensitive detection of DNA by a moving interface, Science, 1994, Vol 265, Pg 2096;
    [57] D. Bensimon, A. Simon, V. Croquette, et al., Stretching DNA with a receding meniscus: experiments and models, Phys. Rev. Lett., 1995, Vol 74, Pg 4754;
    [58] J. Hu, M. Wang, H-U.G. Weier, Imaging of single extend DNA molecules on flat (aminopropyl) triethoxysilane-mica by atomic force microscopy, Langmuir, 1996, Vol 12, Pg 1697;
    [59] Z.Q. Ouyang, J. Hu, S.F. Chen, Molecular patterns by manipulating DNA molecules, J. Vac. Sci. Technol B, 1997, Vol 15, Pg 1385;
    [60] Y. Zhang, S.F. Chen, Z.Q. Ouyang, Stretching and imaging studies of single DNA molecules, Chinese Sci. Bul., 2000, Vol 45, Pg 1366;
    [61] J. Hu, Y. Zhang, B. Li, H.B. Gao, U. Hartmann and M.Q. Li, Nanomanipulation of single DNA molecules and its applications, Surface and Interface Analysis, 2004, Vol 34, Pg 124;
    [62] J. Hu, Y. Zhang, H.B. Gao, M.Q. Li and U. Hartmann, Artificial DNA Patterns by Mechanical Nanomanipulation, Nano Lett., 2002, Vol 2, Pg 55;
    [63]李宾,汪颖,武海萍,动态组合模式“蘸笔”纳米刻蚀与单个DNA分子上的物理纳米图形制造,科学通报,2004,Vol 49, Pg 444;
    [64] Junhong Lü, Nanomanipulation of extended single-DNA molecules on modified mica surfaces using the atomic force microscopy, Colloids and Surfaces B: Biointerfaces, 2004, Vol 39, Pg 177;
    [65] P. Wang, H.J. Yang, H.B. Wang, X.Y. Wang, Y. Wang, J.H. Lü, B. Li, Y. Zhang, J. Hu, Modification of AFM Tips for Facilitating Picking-up of Nanoparticles, Chinese Physics Letters, 2008, Vol 25, Pg 2407;
    [66] Y. Wang, Y. Zhang, B. Li, J.H. Lüand J.Hu, Capturing and depositing one nanoobject at a time: Single particle dip-pen nanolithography, Appl. Phys. Lett., 2007, Vol 90, Pg 133102;
    [67] J.H. Lü, H.K. Li, H.J. An, G.H. Wang, Y. Wang, M.Q. Li, Y. Zhang and J. Hu, Positioning isolation and biochemical analysis of single DNA molecules based on nanomanipulation and single-molecule PCR, J. AM. CHEM. SOC., 2004, Vol 126, Pg 11136;
    [68] J.H. Lü, H.J. An, H.K. Li, X.L. Li, Y. Wang, M.Q. Li, Y. Zhang and J. Hu, Nanodissection, isolation, and PCR amplification of single DNA molecules, Surf. Interface Anal., 2006, Vol 38, Pg 1010;
    [69]吕鸣,石宝晨,李雪玲,吕军鸿,陈润生,胡钧,一种基于单分子纳米操纵的有序化测序策略,生物化学与生物物理进展,2006, Vol 33, Pg 660;
    [70] H.J. An, J.H. Huang, M. Lü, X.L. Li, J.H. Lü, H.K. Li, Y. Zhang, M.Q. Li and J. Hu, Single-base resolution and long-coverage sequencing based on single-molecule nanomanipulation, Nanotechnology, 2007, Vol 18, Pg 225101;
    [71] www.veeco.com
    [72] M. Sitti, H. Hashimoto, Force controlled pushing of nanoparticles: modeling and experiments, IEEE/ASME International Conference on Advanced Intelligent Mechantronics, 1999, Pg 13;
    [73] M. Sitti, H. Hashimoto, Teleoperated touch feedback from the surfaces at the nanoscale: medeling and experiments, IEEE/ASME Transaction on Mechatronics, 2003, Vol 8, Pg 287;
    [74] A. Ferreira, Virtual reality and haptics for nanorobotics, IEEE Robotics Automation Magzine, 2006, Vol 13, Pg 78;
    [75] B. Mokaberi, A.A.G. Requicha, Drift compensation for automatic nanomantipulation with scanning probe microscopes, IEEE Transaction on Automation Science and Engineering, 2006, Vol 3, Pg 199;
    [76] J. Frank, A. Verschoor, and M. Boublik, Computer Averaging of Electron-Micrographs of 40s Ribosomal-Subunits, Science, 1981, Vol 24, Pg 1353;
    [77] M. Auer, Three-dimensional electron cryo-microscopy as a powerful structural tool in molecular medicine, Journal of Molecular Medicine-Jmm, 2000, Vol 78, Pg 191;
    [78] S. Scheuring, D. Fotiadis, C. Moller, S. A. Muller, A. Engel, and D. J. Muller, Single proteins observed by atomic force microscopy, Single Molecules, 2001, Vol 2, Pg 59;
    [79] D. J. Muller and K. Anderson, Biomolecular imaging using atomic force microscopy, Trends in Biotechnology, 2002, Vol 20, Pg S45;
    [80] J. Frank and L. Alali, Signal-to-Noise Ratio of Electron Micrographs Obtained by Cross-Correlation, Nature, 1975, Vol 256, Pg 376;
    [81] P. Penczek, M. Radermacher, and J. Frank, Three-dimensional reconstruction of single particles embedded in ice, Ultramicroscopy, 1992, Vol 40, Pg 33;
    [82] J. P. Lewis, Fast template matching, Vision Interface, 1995, Vol 95, Pg 120;
    [83] R. A. Singer, Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets, IEEE Transactions on Aerospace and Electronic Systems, 1970, Pg 473;
    [84] R.E. Kalman, A new approach to linear filtering and prediction problems, Journal of Basic Engineering, Vol 82, Pg 35;
    [85] R.E. Kalman and R.S. Bucy, New results in linear filter estimation and prediction theory, Journal of Basic Engineering, 1961, Vol 83, Pg 95;
    [86] A. Gelb, Applied Optimal Estimation, MIT Press, 1974;
    [87] A.C. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press, 1990;
    [88] Tinku Acharya, Ajoy K. Ray, Image Processing: Principles and applications, Wiley Press, 2005;
    [89] E. Ficarra, L. Benini, E. Macii, and G. Zuccheri, Automated DNA fragments recognition and sizing through AFM image processing, IEEE Transactions on Information Technology in Biomedicine, 2005, Vol 9, Pg 508;
    [90] K. R. Lata, P. Penczek, and J. Frank, Automatic Particle Picking from Electron Micrographs, Fifty-Second Annual Meeting - Microscopy Society of America/Twenty-Ninth Annual Meeting - Microbeam Analysis Society, Proceedings, 1994, Vol 122-123, Pg 1087;
    [91] R.W. Wall, Fast parallel thinning algorithms: parallel speed and connectivity preservation, Communications of the ACM, 1989, Vol 32, Pg 124;
    [92] J. Hu, X.D. Xiao, D.F. Ogletree, M. Salmeron, The structure of molecularly thin films of water on mica in humid environment, Surf. Sci., 1995, Vol 344, Pg 221;
    [93] J. Hu, X.D. Xiao, M. Salmeron, Scanning polarization force microscopy: a technique for imaging liquids and weakly adsorbed layers, Appl. Phys. Lett., 1995, Vol 67, Pg 476;
    [94] J. Hu, X.D. Xiao, D.F. Ogletree, M. Salmeron, Imaging the Condensation and Evaporation of Molecularly Thin Films of Water with Nanometer Resolution, Science, 1995, Vol 268, Pg 267;
    [95] X.J. Li, J.L. Sun, X.F. Zhou, G. Li, P.G. He, Y.Z. Fang, M.Q. Li, J. Hu, Height measurement of dsDNA and antibodies adsorbed on solid substrates in air by vibratingmode scanning polarization force microscopy, J. Vac. Sci. Technol. B, 2003, Vol 21, Pg 1070;
    [96]周星飞,安红杰,郭云昌,孙洁林,李民乾,胡钧,基于原子力显微镜的单个DNA分子压弹性测量,科学通报,2005, Vol 50, Pg 1434;
    [97] H.B. Wang, X.F. Zhou, H.J. An, Y.C. Guo, J.L. Sun, Y. Zhang, J. Hu, Effects of substrate hydrophobicity/hydrophilicity on height measurement of individual DNA molecules, CHIN. PHYS. LETT., 2007, Vol 24, Pg 644;
    [98] Z.P. Peng, H.L. Hu, M.I.B. Utama, L.M. Wong, K. Ghosh, R. Chen, S.J. Wang, Z.X. Shen, Q.H. Xiong, Heteroepitaxial Decoration of Ag Nanoparticles on Si Nanowires: A Case Study on Raman Scattering and Mapping, Nano Letters, 2010, Vol 10, Pg 3940;
    [99] H.N. Du et al., A peptide motif consisting of glycine, alanine, and valine is required for the fibrillization and cytotoxicity of human alpha-synuclein, Biochemistry, 2003, Vol 42, Pg 8870;
    [100] D.A. Kocisko et al., Cell-Free Formation of Protease-Resistant Prion Protein, Nature, 1994, Vol 370, Pg 471;
    [101] T. Kowalewski & D.M. Holtzman, In situ atomic force microscopy study of Alzheimer's beta-amyloid peptide on different substrates: New insights into mechanism of beta-sheet formation, P. Natl. Acad. Sci., 1999, Vol 96, Pg 3688;
    [102] F. Zhang et al., Epitaxial growth of peptide nanofilaments on inorganic surfaces: Effects of interfacial hydrophobicity/hydrophilicity, Angew. Chem. Int. Edit., 2006, Vol 45, Pg 3611;
    [103] H. Hertz et al, On the contact of elastic solids, Angew.Math, 1881, Vol 92, Pg156;
    [104] B.V. Derjaguin, V.M. Muller and Y.P. Toporov, Effect of contact deformations on the adhesion of particles, Journal of Colloid and Interface Science, 1975, Vol 53, Pg 314;
    [105] V.M. Muller, B.V. Derjaguin and Y.P. Toporov, On two methods of calculation of the force of sticking of an elastic sphere to a rigid plane, Colloids and Surfaces, 1983, Vol 7, Pg 251;
    [106] K.L. Johnson, K. Kendall and A.D. Roberts, Surface energy and the contact of elastic solids, Proc. R. Soc. London A, 1971, Vol 324, Pg 301;
    [107] J.N. Sneddon, Int. J. Eng. Sci., 1965, Vol 3, Pg 47;
    [108] M. Heuberger et al, J.Vac.Sci.Technol.B, 1996, Vol 14, Pg 1250;
    [109] G. Amontons, De la resistance causée dans les machines, Mem. Acad. R. A, 1699, Pg 275;
    [110] "History of Science Friction", tribology-abc.com;
    [111] F.P. Bowden, D. Tabor, The friction and lubrication of solids, Clarendon, 1950;
    [112] J.F. Archard, Contact and Rubbing of Flat Surface, J. Appl. Phys., 1953, Vol 24, Pg 981;
    [113] J.F. Archard, W. Hirst, The Wear of Materials under unlubricated Conditions, Proc, Royal Soc, 1958, Vol A-236, Pg 71;
    [114] Carlos Bustamante, Steven B. Smith, Jan Liphardt and Doug Smith, Single molecule studies of DNA mechanics, Curr. Opin. Struct. Biol., 2000, Vol 10, Pg 279;
    [115] M.R. Falvo, S. Washburn, R. Superfine, M. Finch, F.P. Brooks, V. Chi, R.M. Taylor, Manipulation of individual viruses: friction and mechanical properties, Biophysical Journal, 1997, Vol 72, Pg 1396;
    [116] D. Bensimon, A.J. Simon, V. Croquette, A. Bensimon, Stretching DNA with a receding meniscus: experiments and models, Phys. Rev. Lett., 1995, Vol 74, Pg 4754;
    [117] G.U. Lee, L.A. Chrisey, R.J. Colton, Direct measurement of the forces between complementary strands of DNA, Science, 1994, Vol 266, Pg 771;
    [118] J. Israelachvili, Intermolecular and surface forces, 2nd ed., Academic Press, 1992;
    [119] J. S. McFarlane, D. Tabor, Proc. R. Soc.,1950, Vol A202, Pg 224;
    [120] F. M. Orr, L.E. Scriven, A.P.J. Rivas, Fluid Mech, 1975, Vol 67, Pg 723
    [121] U. Hartmann, Theory of van der Waals microscopy, J. Vac. Sci. Technol. B, 1991, Vol 9, Pg 465;
    [122] X.D. Xiao, L.M. Qian, Investigation of humidity-dependent capillary force, Langmuir, 2000, Vol 16, Pg 8153;
    [123] K.T. Wang, D.T. Smith, B.R. Lawn, Fracture and contact adhesion energies of mica-mica, silica-silica, and mica-silica interfaces in dry and moist atmospheres, J. Am. Ceram. Soc., 1992, Vol 75, Pg 667;
    [124] George C. Schatz and Mark A. Ratner, Capillary force in atomic force microscopy, Journal of Chemical Physics, 2004, Vol 120, Pg 1157;
    [125] Yuri Lyubchenko, Lyuda Shlyakhtenko et al., Atomic force microscopy of long DNA: Imaging in air and under water, Proc. Natl. Acad. Sci., 1993, Vol 90, Pg 2137;
    [126] Yuri Lyubchenko, Lyuda Shlyakhtenko, AFM for analysis of structure and dynamics of DNA and protein-DNA complexes, Methods, 2009, Vol 47, Pg 206;
    [127] M. Sasou, S. Sugiyama, T. Yoshino and T. Ohtani, Molecular flat mica surface silanized with methyltrimethoxysilane for fixing and straightening DNA, Langmuir, 2003, Vol 19, Pg 9845;
    [128] B. Bhushan, K.J. Kwak, S. Gupta and S.C. Lee, Nanoscale adhesion, friction and wear studies of biomolecules on silane polymer-coated silica and alumina-based surfaces, J. R. Soc. Interface, 2009, Vol 6, Pg 719;
    [129] F. Denise, Siqueira Petri, Gerhard Wenz, Peter Schunk, Thomas Schimmel, An improved method for the assembly of amino-terminated monolayers on the SiO2 and vapor deposition of gold layers, Langmuir, 1999, Vol 15, Pg 4520;
    [130] S.C. Jain, V.K. Tanwar, Vivechana Dixit, S.P. Verma et al., Applied Surface Science, 2001, Vol 182, Pg 350;
    [131] J.H. Xiang, P.X. Zhu, Y. Masuda, K. Koumoto, Langmuir, 2004, Vol 20, Pg 3278;
    [132] Takashi Tanii, Takumi Hosaka, Takeo Miyake et al., Applied Surface Science, 2004, Vol 234, Pg 102;
    [133] J.K. Kim, D.S. Shin, W.J. Chung et al., Colloids and Surface B: Biointerfaces, 2004, Vol 33, Pg 67;
    [134] M. Qin, S. Hou, L.K. Wang, X.Z. Feng et al., Colloids and Surface B: Biointerfaces, 2007, Vol 60, Pg 243;
    [135] Y.C. Chang, Curtis W. Frank, Langmuir, 1998, Vol 14, Pg 326;
    [136] Dirk G. Kurth, Thomas Bein, Langmuir, 1993, Vol 9, Pg 2965;
    [137] Y.Q. An, M. Chen, Q.J. Xue, W.M. Liu, J. Colloid and interface Sci., 2007, Vol 311, Pg 507;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700