动态仿真目标的空间位置精度测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国开展光电跟踪测量设备的研制工作已经有50多年了,并建立了针对该领域产品的检测体系,可以实现对光电跟踪测量设备大部分战技指标的过程检验和最终检验。由于光电跟踪测量设备以动态应用为主,因此研制了可以提供动态仿真目标的光学动态靶标,用来在室内检测光电跟踪测量设备的动态性能。
     光电跟踪测量设备的主要动态性能指标是动态跟踪精度和动态测量精度,由于目前缺失动态目标空间位置精度的测量技术和方法,不能给出光学动态靶标的仿真目标在动态工作状态下的空间位置精度,所以该光学动态靶标一直作为跟踪靶标,而不能作为测量靶标使用,不仅没有发挥光学动态靶标初始设计的测量功能,也使我国光电跟踪测量设备的动态测量性能一直处于无法度量的状态。
     本文针对光学动态靶标在高速运动状态下,动态仿真目标空间位置精度的不确定提出了一种高速图像测量方法。该方法利用计算机视觉技术,将高速摄像机对客观世界反射或透射的物质能量在空间分布的记录用于对整个视场中空间运动目标的特性进行测量。结合该测量方法建立了一套空间目标位置测量系统,该系统包括高速图像录取分系统、时间基准同步分系统、数据分析处理系统及相应的软件支持,并与我所研制的光学动态靶标组成测量网络。
     通过分析动态仿真目标与高速摄像机的空间关系,给出动态仿真目标与高速摄像机的空间关系模型,对该模型进行了仿真及实验验证;给出摄像机外部状态参数的测量方法,并对该方法进行了精度分析。
     分析了影响空间目标位置测量系统测量精度的各种误差源,对光学镜头进行了几何畸变的测量,并给出了测量方法。提出高速摄像机图像时序的检测方法并给出检测结果、讨论了图像亚像素定位算法并进行了精度分析。
     对高速图像测量方法的应用进行了扩展,实现了对某型号高精度低速转台角速率的测量。对该测量方法测量角速率的原理进行了阐述并对测量误差进行了分析,试验数据表明该方法完全可以用于高精度转台的角速率测量。
     本文主要研究了测量动态仿真目标空间位置精度的方法,建立了一套空间目标位置测量系统,通过对光学动态靶标目标实际测量结果的分析,完成了对光学动态靶标的初步动态标定,为进一步解决光电跟踪测量设备动态测量精度的检测难题奠定了基础,填补了光电跟踪测量设备动态检测领域的空白。
The equipment of photoelectric tracking and measurement has been developed for more than 50 years. Testing system in this field has been established. Most technical indexes of process inspection and final inspection of the photoelectric tracking and measurement equipment have been realized. The photoelectric tracking and measurement equipment is mainly used for dynamic application, so the optical dynamic target which provides a dynamic simulation target has been developed. The optical dynamic target is a kind of indoor measuring device which is used for testing photoelectric tracking and measurement equipment dynamic performance.
     The dynamic tracking accuracy and the dynamic measurement precision are main technical indexes of photoelectric tracking and measurement equipment. Because of the lack of dynamic target position precision measuring technique, the space position precision of the optical dynamic target cannot get in the dynamic work condition. So the optical dynamic target has to be used as a tracking targets not a measurement target. This not only results in apart from the initial design of optical dynamic target measurement functions, but also makes the dynamic measurement performance of photoelectric tracking and measurement equipment cannot be measured.
     In this paper introduce a high-speed image processing measurement method, which is used for measuring the accuracy of the target position when the optical dynamic target is in the state of high-speed movement. Computer vision technology is applied to this method. High-speed video camera is used to record the reflection or transmission of energy in the spatial distribution of a substance in the objective world, and this point is used for measuring the characteristics of moving target in the entire field of view. Based on this measurement method, a set of spatial target position measurement system has been established, which includes a high-speed image measurement sub-system, a temporal reference synchronization sub-system, a data analysis and processing system and some other related software. And a measurement network with the optical dynamic target and the spatial target position measurement system has been built.
     By analyzing the relationship between the spatial simulation target and high-speed cameras, get the target and high-speed camera spatial movement relationship model. The model has been simulated and the simulation results verify that the model is correct. Recommend the calibration method of state parameters of the high-speed camera, and analyze of the precision of the method.
     Analyze and summarize the various error sources which influence measure precision of the system, including the optical system errors, the synchronization error, algorithm error, shaft shaking error and other errors etc. The internal parameters of the camera system have been calibrated, and the calibration method was given. Measure the optical lens distortion, and give the measurement method. Discuss the measurement method of the high-speed camera image sequence and test results were given. Discuss the algorithm of subpixel image and conducted accuracy analysis.
     Extend the application of spatial target position measurement system. The angular rate of the test table has been measured by this measurement system. This method made use of the angular relationship between the measuring equipment and testing equipment to establish a space model. The principle of this method has described and analyzed the measurement error. Measure a high-precision low-speed test table’s angular rate with this method, and analyzed the data. The test data show that this method can be used for high-precision turntable's angular rate measurement.
     This paper mainly researched the method of dynamic simulation target space position precision measurement. Establish a set of spatial target position measurement system. The real value of spatial angular position of dynamic simulation target can be got in the dynamic working condition with this measurement system. It makes a foundation for solving the problem of dynamic metrical precision of the photoelectric tracking and measurement equipment at a step further. Fill the blank of dynamic testing field of photoelectric tracking and measurement equipment.
引文
[1] Ma, Jia-guang. Tracking and measuring technology of a tracking theodolite. [J].SPIE,Vol.1979:719-728
    [2]王建立,光电经纬仪电视跟踪、捕获快速运动目标技术的研究,长春光学精密机械与物理研究所博士论文,2002.7
    [3]何照才,胡保安.光电测量.北京:国防工业出版社,2002
    [4]张波.可编程动态靶标的研究.长春光学精密机械与物理研究所硕士论文,2003.05
    [5]张波,贺庚贤,沈湘衡等.可编程动态靶标标定方法[J].光学精密工程.2003,2:176-180
    [6]郭平平.光学动态靶标精度的自准直检测方法研究,长春光学精密机械与物理研究所硕士论文,2005.1
    [7]蔡文贵,李永远,许振华. CCD技术与应用.[M].北京:电子工业出版社,1992
    [8]贺和好.轴系晃动与动态靶标测角精度关系研究,长春光学精密机械与物理研究所硕士论文,2007.1
    [9]李清军.快速视频判读方法的研究. [J].光学精密工程,2000,4:321-324
    [10]杨李成,凌宁等.利用平面止推轴系研制高精度定心仪[J].光电工程.2005.6.39-42
    [11]王家骐.光学仪器总体设计.长春光学精密机械与物理研究所研究生部教材.1998
    [12]王家骐,金光,颜昌翔等.机载光电测量设备的目标定位误差分析[J].光学精密工程. 2005,13(2): 105-116.
    [13]周兴义,马军,贺和好等,旋转靶标轴系晃动测量结果的分析,《2005年全国光学测绘一起综合学术年会论文集》,2005,8:169-170
    [14]贺庚贤,张波,沈湘衡,检测光电测量设备的动态靶标参数设计,光学精密工程,2003
    [15]李忠范,高文森.数理统计与随机过程.[M].吉林:吉林大学出版社,2000
    [16]连铜淑.反射棱镜共轭理论[M].北京:北京理工大学出版社.1988
    [17]费业泰.现代误差理论及其基本问题.宇航计测技术,1996,16(4):2-5
    [18]毛英泰.误差理论与精度分析.北京:国防工业出版社,1982
    [19]吴常青.数码镜头参量优化与性能检测.长春理工大学论文,2006.11
    [20]杨志文.光学测量.北京:北京理工大学出版社,1995
    [21] Smith W.J. Practical Optical System Layout. New York: McGraw-Hill,1977
    [22]肖作江. 24位绝对式光电轴角编码器的研究.长春理工大学硕士论文,2003.1
    [23]康立丽,邓晓刚,陈阳等.影像系统MTF算法实现及分析.[J].北京生物医学工程,2002,21(3)179-182
    [24]吴海平,点源法MTF测试技术研究,江苏北方湖光光电有限公司硕士论文,2007.8
    [25]刘利生.外弹道测量数据处理.北京:国防工业出版社,2002
    [26]龙华伟,沈湘衡,马军. CCD像面旋转引起的脱靶量误差及检测方法[J].光学精密工程,2003,11(6): 607-611
    [27]王新洲.非线性模型参数估计理论与应用.武汉:武汉大学出版社,2002
    [28]杨正一,误差理论与测量不确定度.石油工业出版社.北京. 2000.4
    [29] Allan Read Eisenman, et al. The new generation of autonomous star trackers. SPIE, Vol. 3221:524-535.
    [30] Sun H. Hur-Diaz and Ahmed A. Kamel. Image navigation improvement using star trackers. SPIE, Vol. 2812: 836-846.
    [31] Sarma N. Gullapalli, et al. ASTRA 1 solid state star trackers for martine marietta’s modular attitude control system module. SPIE, Vol. 1949: 127-137.
    [32] B. F. Alexander and k. C. Ng. Elimination of systematic error in subpixel accuracy centroid estimation. Opt. Eng., 1991, 30: 1320-1330.
    [33]王志和,舒嵘,何志平,吕刚,王建宇.基于平行光管的CCD相机标定新方法[J].红外与毫米波学报,2007,6:465-468.
    [34] Weng Juyang. Camera calibraiton with distortion models and accuracy evaluation[ J ]. IEEE Transaction on Pattern Analysis and M achine Intelligence, 1992, 14 (10) : 965-980.
    [35] Guo Q W, Ma SD. Imp licit and exp licit camera calibration theory and experiment[ J ]. IEEE, 1994, 5 (16) : 469-480.
    [36] Hong Fan, Baozong Yuan, High Performance Camera Calibration Algorithm[J], SPIE,1993,2067: 1-13
    [37]乔瑞金,沈忙作.测量相机内方位元素及畸变的计算方法[J].光电工程,1999,26(6):59-63
    [38]刘伟毅,贾继强,丁亚林,耿文豹.精密测角法中测量误差对内方位元素标定的影响[J].红外与激光工程,2009,38(4):705-709.
    [39]黄静,高晓东,马文礼等.大面阵数字航测相机的精密几何标定[J].光电工程,2006,33(2):138-140
    [40]吴国栋,韩冰,何煦.精密测角法的线阵CCD相机几何参数实验室标定方法[J].光学精密工程,2007,15(10):1628-1632
    [41] Dennision, E. W. and Stanton, R. H. Ultra-precise star tracking using charge coupled devices / CCDs /. SPIE, Vol. 252:45-63.
    [42]王晓东.大视场高精度星敏感器技术研究.中国科学院长春光学精密机械与物理研究所博士学位论文.2003
    [43] [Carl Christian Liebe. Star trackers for attitude determination. IEEE AES Systems Magazine, June 1995: 10-16.
    [44] S.B.Grossman and R.B.Emmons. Performance analysis and size optimization of focal planes position estimators. J.Opt. Soc. Am. A, 3: 1809-1815,1986.
    [45] P. M. Salomon and T. A. Glavich. Image signal processing in sub-pixel accuracy star trackers. proc. SPIE, 1980, 253: 64-74.
    [46] J.P. Fillard. Subpixel accuracy location estimation from digital signals. Opt. Eng., 1992, 31: 2465-2471.
    [47]尤政,李涛. CMOS图像传感器在空间技术中的应用[J].光学技术,2002,28(1): 31-35.
    [48]刘智.CMOS图像传感器在星敏器中应用研究[D]:[博士学位论文].长春:中科院长春光学精密机械与物理研究所,2004.
    [49]刘永泽.目标定位中亚像素细分算法的研究[D]:[硕士学位论文].长春:长春理工大学,2005.
    [50]铁菊红,彭辉.一种改进的基于高斯分布拟合的提取标志点像素坐标方法[J].计算机与现代化,2008,4:58-60.
    [51]贺忠海、王宝光.利用曲线拟合方法的亚像素提取算法[J].仪器仪表学报,2003,4
    [52]于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量[J].科学出版社,2002
    [53]蒋长锦.科学计算和C程序集[M].中国科学技术大学出版社,1998
    [54]李庆扬,王能超,易大义.数值分析[M].清华大学出版社,2001
    [55]康华光,邹寿彬.电子技术基础[M].高等教育出版社,2000
    [56]朱正祥.惯导测试设备技术的研究与发展惯性技术发展动态研讨会文集[J].中国惯性技术学会军工组,1994:64~67
    [57]曾庆双,秦嘉川.转台伺服系统低速性能分析[J].中国惯性技术学报.2001.9(2):64-69.
    [58]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,1999.
    [59]刘金国,李杰,郝志航. APS星敏感器探测灵敏度研究[J].光学精密工程. 2006,14(4):553-557.
    [60]张辉.新一代的IRIG-B码时统终端的设计[J].微机处理,2004,5:49-54.
    [61]刘中富,王小海,赵云峰.应用GPS授时时角拍星标校测角精度[J].光电工程,2004,31:15-18.
    [62]赵岩,瞿百臣,武克用,陈涛.转台伺服控制系统中数字化速度测量方法的研究[J].电光与控制. 2005,12(1):43-46.
    [63]付永启. CCD在测速中的应用[J].光学精密工程. 1995.3(2):94-97.
    [64]黄战华,刘淼,张伊馨,蔡怀宇,张以谟.高速运动目标的光电精密测速系统误差分析[J].光电工程. 2006.33(3):58-61.
    [65]候宏录,李宏等.光电经纬仪测量飞行器三维坐标方法及误差分析[J].光电工程. 2002,3:4-8
    [66]张小虎.靶场图像运动目标检测与跟踪定位技术研究.国防科学技术大学博士论文. 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700