基于图像处理自动调焦技术在经纬仪中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电经纬仪对目标进行跟踪测量过程中,目标与设备的相对距离不断发生变化,会造成目标像面离焦,降低了背景与目标成像的对比度,影响了成像质量。现有的光电经纬仪的调焦是依靠人眼观察手动调焦,或根据距离信息来实现距离调焦,这种传统调焦方式具有精度不高等缺点。同时由于受温度变化使得经纬仪焦面发生变化,为了减小环境温度变化对经纬仪成像系统的影响,目前主要利用温度经验公式补偿温度引起的离焦量,况且每台经纬仪都需要进行外场温度补偿标定,工作量很大。因此自动调焦问题是光电经纬仪亟待解决的问题。
     随着现代计算技术的发展和数字图像处理理论的日益成熟,越来越多的自动调焦算法运用的是图像处理理论。基于图像处理自动调焦技术在光电经纬仪等大型光测设备中是非常具有应用前景的,在此背景下本文对基于图像处理理论的自动调焦技术进行了相关研究。
     本文首先根据图像处理自动调焦的原理及其关键技术,给出了基于图像处理的自动调焦技术在经纬仪中的应用的系统组成和工作流程,对目前基于图像处理的清晰度评价函数进行了分类阐述,并且对某些评价函数进行改进,选取几种代表性调焦评价函数进行计算与实验,得到并分析其函数曲线,选出最优的清晰度评价函数。本文将经纬仪自动调焦过程分为粗调和细调两个过程,通过实验得到本文提到的改进的Kirsch清晰度评价函数适合作为粗调清晰度评价函数,基于小波变换的清晰度评价函数适合作为细调清晰度评价函数。
     针对小波变换清晰度评价函数计算量大,实时性不高的特点,本文采用提升小波变换的清晰度评价函数,采用提升方法构造小波函数,并提出基于提升小波变换的清晰度评价函数。
     本文提出了一种经纬仪自动调焦窗口的选择方法——基于目标脱靶量计算调焦窗口,该方法能跟踪运动目标,计算量较小,满足调焦准确性的要求,另外还减少了背景对调焦过程的影响。
     在聚焦搜索过程中,本文提出一种适合经纬仪自动调焦的搜索算法——爬山搜索与曲线拟合相结合的搜索算法,在粗调焦过程中,使用爬山搜索算法,在细调区内,采用爬山算法与曲线拟合相结合的调焦方式。本文对爬山搜索算法存在的问题进行多项改进,实验证明了该方法的有效性。
     最后对基于图像处理的自动调焦系统在经纬仪上进行了验证,实验表明本文算法能够做到对经纬仪图像的自动调焦,系统的调焦精度为±0.015mm。稳定性较高,该自动调焦系统完全能够满足光电经纬仪实时跟踪以及事后数据处理和分析对图像清晰度的要求。
During the tracking measurement process of photoelectric theodolite to target,the relative distance between target and equipment and the ambient temperature arealmost changing, leading to defocus of target image surfaces. It would decrease thecontrast between background and target images, which affects the quality of imaging.The focusing of existing photoelectric theodolite all depends on the observation ofhuman eye and manual focus, or achieving distance focusing according to theinformation of distance. However, this traditional method of focusing takes thedisadvantage of low precision. Meanwhile, the theodolite focal surfaces alwayschanged due to the variation of temperature. In order to reduce the effect of ambienttemperature on the theodolite image system, effort has been done to compensate thedefocusing amount caused by the change of temperature through the empiricaltemperature formula. Every theodolite needs to be compensation demarcated byexternal field temperature. The workload is very huge. Thus, the auto-focusingproblem of photoelectric is urgent to be resolved.
     With development of the modern calculation technologies and fast maturity ofthe digital image treatment theory, more and more image treatment theory is appliedin auto-focusing algorithm. The application of auto-focusing technique based image treatment in large photic measure equipment, such as theodolite, possesses hugechallenge and good application prospect. In this work, we investigated the applicationof the auto-focusing technique based image treatment in photoelectric theodolite.
     In this work, we first offer the system composition and process of the applicationof the auto-focusing technique based image treatment in photoelectric theodoliteaccording to the principle and key technology of image treatment auto-focusing. Thenwe stated in classify the current sharpness evaluation function based on the imagetreatment and improved some evaluation function. Moreover, we process someselected representative focus criteria function through calculation and experiment toget and investigate the function curves, consequently, obtained the optimal sharpnessevaluation function. In this paper, the focusing process of theodolite was classifiedinto coarse adjustment and fine adjustment. It is confirmed that the improved Kirschsharpness evaluation function is suitable for using as the coarse adjustment sharpnessevaluation function, and the sharpness evaluation function based on wavelet transformis suitable for using as the fine adjustment sharpness evaluation function.
     During the calculation on wavelet transform sharpness evaluation function, weinvestigated the selection of the wavelet base through experiment and selected thesuitable wavelet function. Because the characteristics of large calculation and lowreal-time performance of the wavelet transform sharpness evaluation function, weadopted the lifting wavelet transform sharpness evaluation function and used thelifting method to construct the wavelet function. Moreover, we put forward thesharpness evaluation function based on lifting wavelet transform.
     In this paper, we put forward the selected method of theodolite auto-focusingwindow, which is based on the target miss distance calculation focusing window. Thismethod could track moving target and possess small computational complexity, whichcould satisfy the requirement of focusing accuracy and reduce the effect ofbackground on the focusing process.
     We also put forward a searching algorithm which is suitable for theodoliteauto-focusing. The searching algorithm is hill climbing search combined with curve fitting. The hill climbing search algorithm is used during the process of coarsefocusing and the focusing mode of hill climbing search combined with curve fitting isused during the process of fine focusing. Because the hill climbing search algorithmexisting a lot of problems, we improved many items in this paper. The effectiveness ofthis algorithm was confirmed by experiment.
     Finally, we explain the hardware and software design of the image treatmentauto-focusing system clearly. Moreover, the technique was confirmed throughexperiment. The experiment indicates that the theodolite image could auto-focus byusing this algorithm, and the focusing accuracy is±0.015mm. this auto-focusingsystem possesses higher focusing accuracy and could totally satisfy the requirement ofthe photoelectric theodolite real-time tracking, data treatment and analysis afterwardsfor image definition.
引文
[1]何照才.光学测量系统.北京:国防工业出版社,2002.
    [2]赵学颜,李迎春.靶场光学测量.装备指挥技术学院内部教材,2001.
    [3] A.LAllan. The Principle of Theodolite Intersection Systems. Survey,1988;29:277-281.
    [4]王岚,于惠珠.260电影经纬仪摄影自动调焦系统.光学精密工程,1995;3(5):93-97.
    [5]梁翠萍,李清安,乔彦峰.简析光学系统自动调焦的方法.电光与控制,2006;13(6):93-96.
    [6]林兆华,刘鑫.基于MSP430单片机自动调焦控制系统在经纬仪的应用.电光与控制,2011;18(1):48-52.
    [7]梁翠萍.相位法检焦技术在经纬仪中应用的研究.中科院博士学位论文,2007.
    [8]冯华军,毛邦福,李奇,等.一种用于数字成像的自动对焦系统.光电工程,2004;31(10):69-72.
    [9]翟蓬,林喜荣.一种基于图像处理的自动调焦系统.电于技术应用,2002;28(10):33-35.
    [10]梁敏华,吴志勇,陈涛.采用最大灰度梯度法实现经纬仪自动调焦控制.光学精密工程,2009;17(12):3016-3021.
    [11] N.Kehtarnavaza, H.J.N. Kehtarnavaz. Development and real-time implementationof a rule-based auto-focus algorithm. Real-Time Imaging,2003;9:197-203.
    [12] L. Subbarao. Focusing techniques. Optical engineering november,1993;132:2824-2836.
    [13]黄其昆.自动调焦二十年.大众摄影,2001;(5):52-55.
    [14] P.Jennison, L.G.Gregoris A self imaging technique for focusing an IR telescope.SPIE.1990;1309:245-256.
    [15]原育凯.光学系统的自动调焦方法.《红外》月刊.2004;(6):15-21.
    [16]汤德伟.35mm相机最新设计的主、被动混合式自动对焦功能影视技术.2000;263(6):50-53.
    [17]李继陶,苏显渝.激光三角法距离传感器:散斑的影响.光电工程.1997;(4):69-72.
    [18] E. Krotkov. Focusing. International Journal of Computer Vision,1987;(1):223-237.
    [19] M.Subbarao, T. S. Choi, andA. Nikzad. Focusing Techniques. OpticalEngineering,1993,32(11):2824-2836.
    [20]黄剑琪.基于频谱分析的数字对焦技术研究.浙江大学硕士学位论文,2001.
    [21]李美志.摄像机的自动聚焦方式及各服存在问题的方法.电视技术.1994;21(10):6-9.
    [22]铃木谦二.单反照相机的自动调焦技术(佳能照相机开发中心).江西光学仪器,2001;(2):45-49.
    [23]朱春平.照相机电子化进程(3).照相机,1998;4:33-35.
    [24]咸池.美能达AF创新科技新进展.器材知识.2002;7:25.
    [25]白磊.CCD显微测量系统自动调焦技术的研究.哈尔滨工业大学硕士学位论文,2002.
    [26] G. Begni, D. Leger.In-flight refocusing method for the spot HRV camera.Photogrametric engineering and remote sesing.1984;50(12):1697-1705.
    [27]李庆祥,王东生.现代精密仪器设计.北京:清华大学出版社,2006.
    [28]薛实福,李庆祥.精密仪器设计.北京:清华大学出版社,1991.
    [29]高稚允,高岳.光电检测技术.北京:国防工业出版社,1995.
    [30]王之江.光学仪器手册.北京:机械工业出版社,1993.
    [31]郁道银,谈恒英.工程光学.机械工业出版社,2003.
    [32]薛实幅,李庆祥.精密仪器设计.北京:清华大学出版社,1991.
    [33] F. C.A. Groen, I. T. Young, G. Ligthart.Acomparison of different focus functionsfor use in autofocus algorithms. Cytometry,1984;6:81-91.
    [34] H.Harms, H.M.Aus. Comparision of Digital Focus Criteria for a TV MicroscopeSystem. Cytometry,1988;5:236-243.
    [35] F.C.A.Groen, Ian T Young, G.Lighart, A Comparison of Different FocusFunctions for Use in Autofocus Algorithms.Cytometry,1985;6:81-91.
    [36] L.Firestone, K.Cook, K.Culp, M.Talsania, K. J. Preston. Comparison ofAutofocus Methods for Automated Microscopy, Cytometry,1991;12:195-206
    [37] Y.L. Xiong, S.A. Shafer. Depth from Focusing and Defocusing. Proceedings ofIEEE Computer Society Conference on Computer Vision and Pattern Recognition,1992.
    [38] S. Jutamulia, T.Asakura, R. D. Bahuguna, P. C. De. Gunman.AutofocusingBased on Power-Spectra Analysis. Appl. Optics,1994;33(26):6210-6212.
    [39]王立强,林斌等.基于USB video Camera的自动对焦系统.光电工程,2001;28(5):32-34.
    [40]李奇,冯华君.数字图像清晰度评价函数研究.光子学报,2002;31(6):736-738.
    [41]李奇.数字自动对焦技术的理论及实现方法研究.浙江大学博士论文,2004.
    [42]周贤,姜威.基于边缘能量的自动聚焦算法.光学技术,2006;32(1):36-40
    [43]周贤.自动聚焦算法研究与验证平台设计.山东大学硕士论文.2006.
    [44]张乐.自动聚焦系统精确性和实时性的研究.山东大学硕士论文.2008.
    [45]朱孔凤.数字图像处理在自动聚焦系统中的应用.山东大学硕士论文.2006.
    [46]蒋凤林.基于数字图像处理的自动调焦算法研究.哈尔滨理工大学硕士论文.2008.
    [47]王敏君.基于图像的自动聚焦方法研究.南昌大学硕士论文.2010.
    [48]陈国金.数字图像自动聚焦技术研究及系统实现.西安电子科技大学博士论文.2007.
    [49]胡凤萍.视频自动聚焦方法研究与实现.西安电子科技大学硕士论文.2008.
    [50]翟永平,周东翔.聚焦函数性能评价指标设计及最优函数选取.光学学报,2011;31(4):1-3.
    [51]徐博泓.基于图像的自动调焦方法研究及系统实现.国防科学技术大学硕士论文.2010.
    [52]徐博泓,江和平.一种粗精结合的图像式靶场测量系统自动调焦算法.中国激光,2010;47(3):1-3.
    [53]刘兴宝.基于数字图像处理的自动对焦技术研究.中国工程物理研究院硕士论文.2007.
    [54]梁敏华,吴志勇,陈涛.采用最大灰度梯度法实现经纬仪自动调焦控制.光学精密工程,2009;17(12):3016-3021.
    [55]杨权,刘晶红.基于图像处理的机载光电平台自动调焦方法.液晶与显示,2011;26(5):677-682.
    [56]胡涛.机器视觉中的自动调焦及形貌恢复技术研究.哈尔滨工业大学博士论文,2007.
    [57]张辉. CCD图像检测系统自动调焦的研究.哈尔滨工业大学硕士论文,2007.
    [58]樊攀.基于数字图像处理的自动聚焦系统算法研究.哈尔滨工业大学硕士论文,2009.
    [59]张以谟.应用光学.北京:机械工业出版社,1988.
    [60]萧泽新.工程光学设计.北京:电子工业出版社,2002.
    [61]马媛.基于DSP的直流伺服系统在调焦系统中的应用.中国科学院研究生院硕士学位论文.2006.
    [62]蒋婷.基于图像处理的自动对焦理论和技术研究.武汉理工大学硕士学位论文.2008.
    [63]王剑华.基于嵌入式Linux的数字自动对焦系统研究.华南理工大学硕士学位论文,2011.
    [64]鲍歌堂,赵辉.图像测量技术中几种自动调焦算法的对比分析.上海交通大学学报,2005;39(1):121-128.
    [65]求是科技. Visual C++数字图像处理典型算法及实现.北京:人民邮电出版社,2006.
    [66] K.R.Castleman.数字图像处理.北京:电子工业出版社.2006.
    [67]胡文锦.图像边缘检测方法研究.北京交通大学硕士学位论文,2009.
    [68] R. C.Gonzalez,阮秋琦.数字图像处理(第二版).北京:电子工业出版社,2006.
    [69]陈国金.图像调焦算法研究及FPGA实现.光电工程.2007;32(11):181-185.
    [70]王慧琴.小波分析与应用.北京:北京邮电大学出版社,2011.
    [71]倪林.小波变换与图像处理.合肥:中国科学技术大学出版社,2010.
    [72]王丽荣.基于小波变换的目标检测方法研究.吉林大学博士论文,2006.
    [73] B.S. Manjunath. Gabor wavelet transform and application to problems in earlyvision. IEEE Trans. Signal Processing,1999;9:6368-6393.
    [74]孙延奎.小波分析及其应用.北京:机械工业出版社,2005.
    [75]徐继友.空间目标跟踪技术中应用小波变换的探讨.光电工程,2000;5:52-55.
    [76]王昕,刘畅.基于提升小波变换的图像清晰度评价算法.东北师大学报(自然科学版),2009;41(4):52-57.
    [77]王义文,刘献礼.基于小波变换的显微图像清晰度评价函数及3D自动调焦技术.光学精密工程,2006;14(6):1063-1069.
    [78]张起贵,张雪梅,等.基于小波提升的自动聚焦评价函数.太原理工大学学报,2009;40(3):243-245.
    [79]高真真.基于提升方案的自适应小波变换算法研究.哈尔滨工业大学硕士学位论文,2006.
    [80]王卫卫.小波与提升及其在图像数字水印中的算法研究.西安电子科技大学博士学位论文,2001.
    [81] J. Kautsky, J. Flusser, at el. A new wavelet-based measure of image focus. PatternRecognition Letters,2002,;23:1785-1794.
    [82]程佩青.数字信号处理教程.北京:清华大学出版社,2001.
    [83] W. SweIdens. The lifting scheme: A custom-design construction of biothogonalwavelets. Journal of Applied and Comput. Harmonic Analysis,1996;3(2):186-200.
    [84] S. Mallat. A Theory for Multiresolution Signal Decomposition the WaveletRepresentation.IEEE trans. On Pattern Analysis and Machine Intelligence,1989;11(7):674-693
    [85]李奇,徐之海,冯华君等.数字成像系统自动对焦区域设计.光子学报.2002,31(1):1-4.
    [86]李奇,徐之海,冯华君,等.自动对焦系统中图像非均匀采样的实验研究.光子学报,2003;32(12):1499-1501.
    [87]朱孔凤,姜威等.自动聚焦系统中聚焦窗口的选择及参量的确定.光学学报,2006;26(6):836-840.
    [88] G. Wang, D.W. Chen, C.D. Tao et al. Research on Auto-focusing system Based onImage Processing. SPIE,1999;3650:88-92.
    [89] Y.L.Xiong, S.A.Shafer. Depth from focusing and defocusing. Proc.computerVision and Pattern Recognition, IEEE1993:68-73.
    [90] D. Vollath. Automatic focusing by correlative methods. Journal of Microscopy,1987;147:279-288.
    [91]韦玉科,李江平,等.一种基于图像处理的舌象采集自动调焦算法.山东大学学报(工学版),2011;41(4):95-100.
    [92]黄娟.被动式自动对焦算法的研究.太原理工大学硕士学位论文,2008.
    [93]王跃宗,刘京会. TMS320DM642DSP应用系统设计与开发.北京:人民邮电出版社,2009.
    [94]李芳慧,王飞,何佩琅,等. TMS320C6000系列DSPs原理与应用.北京:电子工业出版社,2003.
    [95]付腾.基于DM642的运动目标识别与跟踪.河南大学研究生硕士学位论文,2009.
    [96] HEIDENHAIN直线光栅尺说明书. www.heidenhain.com.cn.
    [97] TMS320C6000CPU and Instruction Set Reference Guide. Texas Instruments.October2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700