序列断层粗粒土图像三维重建及可视化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石渣坝、高土石坝、公路铁路、高层建筑物等工程的不断兴建,粗粒土作为主要的填筑材料,其应用也越来越广泛,因此粗粒土组构的力学特性也越来越引起坝工界的重视。为适应石渣坝等土工建筑物的应力和变形统计分析的需要,粗粒土在压力状态下的应力-形变关系成为岩土力学领域重要的研究内容之一,而粗粒土的微观组构特性是其应力-形变关系研究的基础。粗粒土组构(micro-fabirc)是影响粗粒土的工程性质的关键因素,对粗粒土微观组构图像的分析和处理也是粗粒土组构研究由定性走向定量的关键技术。针对目前基于粗粒土微观组构的研究基本都是基于二维图像处理,由于真实存在的粗粒土颗粒是基于三维空间分布的,因此二维研究方式存在一定的局限性,不够精确和客观,因此结合粗粒土图像的特点和实际的应用需求,本文首先利用计算机CT技术获得序列断层粗粒土微观组构图像,然后运用序列断层图像三维重建及可视化技术重构二维粗粒土微观组构图像的三维模型,进而对三维粗粒土颗粒模型进行微观组构要素提取和分析,为建立粗粒土组构力学模型奠定了坚实的基础。基于以上的研究问题与技术思路,本文依托"湖北省长江科学院高应力及复杂加载条件下土石料工程特性试验研究"项目开展了具体的研究工作,并取得了有实际工程应用价值的部分研究成果。
     论文首先详细总结和分析了目前粗粒土微观组构的国内外研究现状和方法,给出了本文研究方法的依据和理由,全面介绍了本文针对序列断层粗粒土图像三维重建及可视化技术研究的相关理论基础,并对三维重建及可视化技术的关键研究进行分析和总结,提出本文的研究技术路线和具体研究内容。
     其次论文对序列粗粒土图像三维重建及可视化技术研究中的序列图像分割技术进行分析和研究,结合粗粒土图像的具体特点,首先对粗粒土图像进行噪声滤波和插值等预处理一,得到较高质量和连续完整的序列断层粗粒土图像,进而提出种基于快速聚类的分水岭分割算法对粗粒土图像中粘连颗粒进行快速有效地分割,并针对部分颗粒过分割情况进行聚类处理,从而保证批量粗粒土图像颗粒分割的精确性,并根据实际的应用需求提出一种不同压力控制下粗粒土图像的目标颗粒序列二维图像提取方法,通过观测和分析不同压力状态下目标颗粒的形态特征和位移状态,为后续粗粒土组构力学效应分析和建立组构力学模型提供了很好的图像数据支持。
     再次,论文以序列断层粗粒土图像分割技术为基础,提出序列断层粗粒土图像的三维重建及虚拟切割算法,首先介绍和分析了序列断层图像三维重建的基本流程和常见算法,并结合序列断层粗粒土图像的特点和实际的应用需求,提出一种基于数据分类的快速混合绘制算法,首先利用分割技术将重建数据进行分类,然后针对不同的分类数据的重要程度,分别采用不同的绘制算法对不同的数据进行绘制,从而既能保证绘制图像的质量,又能加快绘制速度。
     最后针对重建的粗粒土颗粒三维模型,进一步提出粗粒土微观组构要素提取方法和重建模型简化技术。本文在传统针对二维粗粒土微观组构要素提取的研究基础上进行三维空间扩展,对重建后的粗粒土颗粒三维模型进行特征提取和分析,包括粗粒土颗粒的三维几何形态和三维空间分布特征,并在不同应力状态下对微观组构要素变量进行分析,为今后进一步粗粒土颗粒空间力学模型的建立提供依据。另外由于三维重建后的粗粒土颗粒具备较多的细节信息,虽然使得三维模型精度较高,但是针对大规模数据集的三维重建,会导致三维表面模型包含大量的三角面片,成为了可视化和后续数据处理的严重瓶颈,因此本文为尽可能的减少重建三维模型中的冗余数据,提出一种基于粗粒土颗粒三维中心长轴提取和非均匀B-样条拟合的三维模型简化算法,该算法能够使用最少的数据抽象信息构造完整和光滑的模型,从而实现大规模数据集实时绘制、存储和处理。
     论文最后对本文的研究成果进行总结和展望,对论文中提出的序列断层粗粒土三维重建及可视化技术研究方法进行分析,并对后续有待继续研究的一些问题进行展望。
With the continual construction of the slag dam, high embankment dam, highway andrailway, high building and other projects, granular soil as the main filling mateiral, has anincreasingly wide application and it is also more and more attractive to the dam sectors. Inorder to meet the needs of the stress and deformation analysis of the slag dam and otherstructures, the intensity and stress-strain relationship of granular soil under high pressureor other complex stress state becomes an important research content of rock mechanics.And the micro-fabirc characteristic of granular soil is the basis of the research forstress-strain relations. The micro-fabric of granular soil is one of the key factors whichaffects the engineering characteirstics, and the computer processing of the image ofgranular soil is also the key technology which make the micro-fabric research from thequalitative to the quantitative. The current research of the micro-fabric of granular soil ismainly based on2D image processing, while the actual granular soil is in3D space, so ithas some limitations in accuracy and objectives of2D method. According to the featuresof granular soil image, as to satisfy the practical needs of application, this thesis tires touse the CT technique to obtain the image sequences of granular soil, then reconstruct the3D model based on the2D granular soil images with3D reconstruction and visualizationtechnology, and also extract and analyze the features of granular fabric through the3Dmodel, which lays the foundation for the next stage research for establishing themechanical model of granular soil fabric. Focusing on the descirbed above problems andideas, the thesis, supported by Yangtze River Academy of Science of Hubei province, hasdeveloped the specific study and obtained many achievements with practical applicationvalue.
     Firstly, the thesis lists the research status of the micro-fabirc of granular soil, andpresents the reason and basis of our study method and introduces the related concepts andtheoires of3D reconstruction technology based on slicing image sequence, then also makethe analysis and summary of the key studies of3D reconstruction and visualizationtechnology, then leads to the specific content and method of the whole study.
     Secondly, This article studies and analyzes the slicing image segmentation technology,based on the features of granular soil image, atfer some pre-processing like ifltering andinterpolating, we can get the slicing granular soil image sequence with higher quality andcontinuity, then presents a new method with the watershed segmentation algorithm basedon fast clustering to accomplish the effective segmentation of linking particles of granularsoil in the image, here we adopt respective measures to deal with the over segmentation ofpatricles, which guarantee the accuracy of the segmentation, then also proposed a methodto extract the2D image sequence of a target particle rfom the slicing image of granular soil based on the different pressure conditions. The observation and analysis of thegeometric shape and motion-state of target particles under different pressure conditionswill become the considerable image data support to the following analysis and buildingthe micro-fabric mechanical model.
     Thirdly, the thesis proposed the algorithm of3D reconstruction and virtual cuttingbased on the segmentation technology of granular soil slicing image sequence. This partstarts with the basic lfow of3D reconstruction, and does the analysis and summary of thecommon algorithm of3D reconstruction, then presents a fast ray casting volume rendeirngalgorithm based on the data classification. The algorithm first needs to classify the originalreconstruction data using the presented segmentation method then make the differentrendeirng algorithm according to the different data. The choose of rendeirng detaileddegree is based on the signiifcance of data classification, which will not only guaranteesthe quality of the rendeirng3D model, but also increase the rendeirng speed.
     Lastly, the thesis further proposed the method to extract the micro-fabric elementsand the surface simpliifcation of the reconstructed3D model. The thesis gives anextensive study on the traditional2D extraction methods of the micro-fabirc, that is makethe research and analysis in3D space, including3D geometric shape extraction and thespatial distirbution features of granular soil particles under the different pressure condition,which will make a better data and basis for the further research of building the mechanicalmodel of granular soil particles in3D space. Then because of the3D model atfer thereconstruction has more detail information and make the data very huge, the visualizationof such data sets is already a bottleneck and it will become impossible unless newmethodologies are developed. Therefore, it is necessary to develop computer graphicsrendeirng techniques that use data abstraction and allow for different levels of detail, thethesis also presents a surface simpliifcation method based on the3D center long-axis andnon-uniform B-spline fitting algorithm to reduce the redundant data. The proposedalgorithm could give a smoother surface approximation representation, requires lessabstraction time, and uses a smaller descirption for data abstraction.
     Finally, the research achievements are summarized and directions for further researchare pointed out.
     In the end, this thesis summarizes and expects the above research results, analyze theproposed3D reconstruction and visualization technology of slicing image sequence ofgranular soil, and birelfy discussed the ifirther research of the thesis.
引文
[I] 吴良平.粗粒土组构试验研究:[硕士学位论文].武汉:长江科学院,2007.
    [2] SHEN Zhujiang. The mathematics model of soil structure~the key problem of soilmechanics for the 21 century [J]. Chinese Journal of Geotechnical Engineeirng, 1996,18(1):95-97.
    [3]周伟,胡颖,闫生存.高堆石坝流变机理的组构理论分析方法[J].岩土工程学报.29(8), 2007.
    [4]闫勋念.粗粒土力学特性三轴试验与模拟研究:[硕士学位论文].河海大学,2006.
    [5]胡瑞林,李向全,官国琳,王思敬.土体微结构力学——概念?观点?核心[J].地球学报,1999, 20(2): 150—156.
    [6]张军,高大钊,陈剑杰.粉质土直接剪切变形过程中的组构特征[J].合肥工业大学学报,2000, 23(4): 500—504.
    [7]吴义祥,张宗祜,凌泽民.土体微观结构的研究现况评述[J].地质论评,1992,38(3): 250—259.
    [8]胡瑞林,李向全,官国琳,叶浩.粘性土微结构定量模型及其工程地质特征研究
    [M].地质出版社.1995.
    [9]施斌,李立,姜洪涛,王宝军.DIPIX图像处理系统在土体微结构定量研究中的应用[J]. 1996, 32(2): 275—280.
    [10]金克盛.昆明红土的固化特性及微观结构图像特征参数研究:[硕士学位论文].昆明理工大学,2005.
    [II] 王宝军,施斌,蔡奕,唐朝生.2008.基于GIS的黏性土 SEM图像三维可视化与孔隙度计算[J],岩土力学,29(1): 251-255.
    [12]徐文杰,胡瑞林,王艳萍.基于数字图像的非均质岩土材料细观结构PFC2D模型[J].煤炭学报,2007, 32(4): 358-362.
    [13]阮秋琦.数字图像处理学[M].北京:电子工业出版社,2001.
    [14]RC.冈萨雷斯,P.温茨.数字图象处理[M].北京:科学出版社,1981.
    [15]章毓晋.图象工程(上册)——图象处理和分析[M].北京:清华大学出版社,1999.
    [16]李雪威,张新荣.保持边缘的高斯平滑滤波算法研究[J].计算机应用与软件,2010, 27(1): 83-85.
    [17]陈宏希.基于边缘保持平滑滤波的Canny算子边缘检测[J].兰州交通大学学报,2006, 25(1: 86-90.
    [18]许为华,尹学松.医学图像插值算法的研究[J].计算机仿真,2006, 23(1):111-114.
    [19] Maeland E. On the compairsion of interpolation methods [J]. IEEE traps, on MedicalImaging. 1988, 7(3):213-217.
    [20] Sahoo P K. A survey of threshold techniques [J]. Computer Vision Graphic, ImageProcess, 1988,41(2): 233-260.
    [21]章毓晋.图象分割[M].北京:科学出版社,2001.
    [22]Gonzales R C, Woods R E, Eddins S L. Digital Image Processing Using MATLAB
    [M]. Publishing House of Electronics Industry, 2005.
    [23]刘建庄,栗文清.灰度图像的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1): 101-105.
    [24]陈方昕,基于区域生长法的图像分割技术[J]. SCIENCE & TECHNOLOGYINFORMATION. 2008, 15: 58-59.
    [25]董鸿燕,边缘检测的若干技术研究:[博士学位论文]国防科学技术大学,2008.
    [26]潘夏英.图像边缘检测技术的研究:[硕士学位论文]西安科技大学,2011.
    [27] Nalwa V, Binford TO. On detecting edges [J]. IEEE Trans on Pattern Analysis andMachine Intelligence, 1986, 8 (6): 699-714.
    [28] Marimont D.H, Rubner Y. A Probabilistic Framework for Edge Detection and ScaleSelection [J]. Computer Vision Sixth International Conference-, 1998, 47, pp: 207-214.
    [29] John Canny. A Computational Approach to Edge Detection [J]. IEEE Trans. PatternAnalysis and Machine Intelligence, 1986-, vol. PAMI8, Nol, pp: 679-697.
    [30]杨丹,张小洪.基于小波多尺度积的边缘检测算法[J].计算机科学,2004, 31(1):133-144.
    [31]周维忠,赵海洋,孙国基,冯心海.基于多尺度数学形态学的边缘检测[J].数据采集与处理.2000. 03.
    [32]杨晖,张继武.数学形态学在图像边缘检测中的应用研究[J].辽宁大学学报(自然科学版),2005,01.
    [33]张爱华.基于模糊聚类分析的图像分割技术研究:[博士学位论文].武汉:华中科技大学,2004.
    [34] Kostas Hairs, Serafim N. Hybrid. Image Segmentation Using Watersheds and FastRegion Merging [J]. IEEE Transactions on Image Processing, 1998, 7(12):1684-1699.
    [35] Vincent L, Solille P. Watershed in digital spaces: an eiffcent algorithm basedimmersion simulations [J]. IEEE Trans, on PAMI, 1991, 13 (6): 538-598.
    [36]崔明,孙受迁,潘云鹤.基于改进快速分水岭变换的图像区域融合[J].计算机辅助设计与图形学学报,2005,17(3): 546-522o
    [37]郑南宁,计算机视觉与模式识别[M],北京:国防工业出版社,1998.
    [38] HanJ一. J, KamberM.范明,孟小峰等译:数据挖掘概念与技术[M].第版.北京:机械工业出版社.2006, 185-217.
    [39] Bandyopadhyay S, Maulik U. An evolutionary technique based on K-meansalgorithm for optional clustering in rn [J]. Information Sciences , 2002 , (146):221-237.
    [40] Kennedy J, Eberhart R C. Particle Swarm Optimization [C] . In Proc. IEEE Int'l.Conf on Neural Networks, IV. Piscataway, NJ: IEEE Service Center, 1995,1942-1948.
    [41] Shi Y, Eberhart. R. A modiifed particle Swarm Optimizer [C], Proceedings of theIEEE International Conference on Evolutionary Computation, IEEE Press,Piscataway, NJ, 1998, 69-73.
    [42] Ozcan E, Mohan C.K. Particle Swarm Optimization: surfing the waves [J].Proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, NJ,1999. 1939-1944.
    [43] Zeng Jianchao, Jie Jing, Cui Zhihua. Particles Swarm Optimization Algorithm [M].Beijing: Science Publication, 2004.
    [44]敏强,寇纪松,林丹等,(2002),遗传算法的基本理论与应用[M],科学出版社.
    [45]康立山一,谢云.非数值并行算法(;第一册)模拟退火算法[M].北京:科学出版社,2000.
    [46] PANG Feng. The Pirnciple of S A Algorithm and Algoirthm's application onOptimization Problem. Jilin University. 2006.
    [47]王华秋,曹长修.基于模拟退火的并行粒子群优化研究[J].控制与决策.2005,20(5): 500-504.
    [48] Wu Jinhua, Wu Huli, Zhou Shi. The Study of Particle Swarm Optimizer AlgorithmBased on Simulated Annealing [J].Chinese Journal of Scientific Instrument, 2008, 29(8): 50-53.
    [49] Wang Lianguo, Hong Yi, Zhao Fuqing, Xu Dongmei. A Hybrid Algorithm ofSimulated Annealing and Particle Swarm Optimization [J].Computer Simulation,2008-,25(11): 179182.
    [50] Ahmadyfard Alireza, Modares Hamidreza. Combining PSO and K-means to enhancedata clusteirng [A]. 1ST 2008 International Symposium[C]. Tehran : IEEEPress ,2008.
    [51]春涛,张锐,张涛.基于K-均值聚类的免疫粒子群优化算法[J].控制工程.2010, 17(6): 767-770.
    [52]丰乐一,徐向民,肖跃等.种新的二值图像目标轮廓跟踪算法[J].图像处理,2007,23(2):259-261.
    [53]泽胜.三维数据场可视化[M].北京:清华大学出版社,1999.
    [54]伟光.体可视化技术及其应用[M]一.第版,北京,电子工业出版社,1998.
    [55]秦绪佳,医学图象三维重建及可视化技术研究[J],大连理工大学机械与工程学院,2001.
    [56]李宁.基于医学CT图像序列的三维重建:[硕士学位论文].哈尔滨:哈尔滨工程大学,2007.
    [57]Hemran G. T, Liu H.K. Three Dimensional Display of Human Organs from Computed[J]. Med. Phys. 1998, 15(3).
    [58]秦绪佳,欧宗英,侯建华.医学图像三维重建模型的剖切与立体视窗裁剪[J].计算机辅助设计与图形学学报.2002, 14(3): 275-279.
    [59]康开华.三维重建算法的研究及在医学图像处理中的应用:[硕士学位论文].长春理工大学,2004.
    [60] DoiA, Koide A. An Eiffeient Method of Tirangulating Equi-Valued Surface by UsingTetrahedral cells [J]. IEEE Transactions. 1991, E74(l): 214-224.
    [61] Cline H.E., et al. Two algorithms ofr Three Dimensional Reocostruction ofTomograms [J]. Med. Phys, 1988, 15(3).
    [62] Drebin R A, Carpenter L, Hanrahan P. Volume Rendering [J]. Computer Graphics,1988,22(4): 65-74.
    [63]Kajiya J.T, Von Herzen B.P. Ray tracing volume densities[C]. Proc.SIGGRAPH 94,1994:29-37.
    [64] M Levoy. Display of surfaces rfom volume data [J]. IEEE Comp. Graph.& Appl,1998, 8(5): 29-37.
    [65] Glassner.A. Space subdivision for fast ray tracing [J]. IEEE Computer Graphics&Applications, 1984, 4(10): 15-22.
    [66]周明全,谷东伟,耿国华.三维医学可视化系统的设计与实现[J].西北大学学报(自然科学版),1999,2(29): 1-4.
    [67]邹豪,HeangK/Tuy,刘积仁.医学图像三维表面模型重建[J]. CT理论与应用研究.2000, 9: 23-28.
    [68]罗圣阳.CT断层图像三维重建中体绘制技术研究与应用:[硕士学位论文],苏州大学,2007.
    [69]Lacroute P, Levoy M. Fast volume rendering using a shear-warp factoirzation of theviewing transformation [C]. Proc. SIGGRAPH 94, 1994: 451-458.
    [70] Bcavral, Cam N, Foran J. Accelerated volume rendeirng and tomographicreconstruction using texture mapping hardware [C]. Symposium on Visualization,1994:91-98.
    [71]陈寅秋,董金详一.种新的基于3D紋理映射及Shear-warp变换的快速体绘制方法[J].计算机工程,1998, 24(8): 14-15.
    [72] Morirss J, Moreland J, Burkhart H, et al. Pre-surgical evaluation of interrupted aorticarch with 3-dimension reconstruction of CT images[J]. Ann Thorac Sug, 2007;84(1): 299.
    [73]王文成,孙汉秋等.加速体绘制技术[J].计算机辅助设计与图形学学报,2002,14(9): 880-886.
    [74]陈灵娜.基于PC机的CT医学图像三维重建算法与实现的研究:[硕士学位论文].中南大学,2004.
    [75]诸葛斌,冯焕清等.医学图像体绘制中的快速三线性插值算法[J].航天医学与医学工程,2003, 16 (3): 206-209.
    [76] Yuan JIANQ Wei BO, Longley QI, Qianfeng WANG. Reconstruction of 3D Model ofConcrete Mesastructure with CT Original Data [J]. J of China Three GorgesUniversity (Natural Sciences), 2008, 30(1): 52-55.
    [77] 丁庆木一.种改进的光线投射算法[J]. Science & Technology Infornation, 2009,31: 215-216.
    [78] Francis S H, Stephen M K. Computer Graphics Using OpenGL [M]. Prentice Hall,2003.
    [79] Gary Bradski, Adiran Kaehler, Bradski Gary, Kaehler Adiran. Leanring OpenCV:Computer Vision with the OpenCV Library [M]. O'Reilly Media, 2008.
    [80] Julio Sanchez, Maria P.Canton. DirectX 3D Graphics Programming Bible [M〗. IDGBooks Worldwide, 2001.
    [81] Schroeder W, Martin K, Lorensen B. The visualization toolkit [M]. Third Edition.New York: Kitware, 2004: 107-110.
    [82] Kitware Inc. The VTK User's Guide [M]. Prentice Hall, 2002.(http://www.kitware.com/productsNTKguide.html).
    [83]王延华,洪飞,吴恩华.基于VTK库的医学图像处理子系统设计和实现[J].计算机工程与应用.2003, 39(8): 205-207.
    [84]Pavao A.C., Pouzada E.V S" Mathias M.A. Electromagnetic Field Visualizationthrough VTK sotfware [C]. SBMO/IEEE MIT S 2001 Proceedings,0-7803-7065-1/01
    [85] Lina QI, Squeak LUO-. 3D Reconstruction of Medical Images Based on VTK.Beijing [J] Biomedical Engineering. 2006, 25(1): 1-5.
    [86] LIN Bi, WANG Liguan, Jianhong CHEN, Xinglong FENG Study and realization of3D visualization of orebody based on VTK [J]. Computer Engineeirng andApplications, 2008, 44(10): 78- 81.
    [87] Marcel O.Philipp, Klaus Kubin, Thomas Mang. Three-Dimensional VolumeRendeirng of Multidetector-Row CT Data: Applicable for Emergency Radiology [J].European Jounral of Radiology, 2003, 48(1): 33-38.
    [88] MEI Kangping, ZHANG Hongmin, LI Xiaofeng. 3D Reconstruction of CT ImageBased on the Ray Casting Method of VTK [J]. Computer & Digital Engineeirng,2008,36(5):135-137.
    [89]唐棠,罗代升,何小海,滕奇志.岩石样本孔隙和颗粒二维图象的三维重建研究[J].计算机工程与应用,2007(7): 227-229.
    [90]苏盛,沈德建,吕维波.三维重建技术在全级配混凝土骨料随机分布中的研究与应用[J].江西科学,25(5): 522-525, 531.
    [91]姜袁,柏巍,戚永乐,王乾峰.基于CT扫描数据的混凝土细观结构的三维重建[J]-.三峡大学学报,2008, 30(1): 5255.
    [92]曾如菲.数字图像处理在粗粒土组构图像测量系统中的应用:[硕士学位论文],华中科技大学,2009.
    [93]周桃峰.粗粒土组构图像测量系统的研究与实现:[硕士学位论文],华中科技大学,2009.
    [94]占宏,黎善斌,胥布工.基于WSNs中距离函数和指数函数的三维质心定位算法[J].传感器与微系统.2011, 30(5): 136-138.
    [95]杨豉,滕奇志.基于Marching cubes的三维目标表面积估算方法[J].计算机与数字工程,2011,39(2): 137-140.
    [96]周保珍.曲面测量方法研究及测量仿真:[硕士学位论文],江南大学,2008.
    [97]孙宇锋,房少梅,曾美萍,池雄标.三维医学模型表面积和体积计算方法研究[J].数学的实践与认识.2009,39(15): 79-82.
    [98]曾理,王英华,陈绪佳.工业CT三维图像曲面面积与内腔体积的测量[J].计算机应用.2011, 31(11): 3027-3030.
    [99]陈昊,钟尔杰.三维体积计算中的等参变换法[J].大学数学,2006,22(1):114-119.
    [100]陈恳,赵攀,汪一聪.基于任意形状颗粒集合二值图像的体积估算模型[J].宁波大学学报(理工版).2007, 20(2): 141-146.
    [101]周勤华,杨业凤,石磊,金玉青.浅谈土壤大孔隙及其体积估算方法[J].上海农业科技.2012,1:28-29.
    [102] James D.Foley, Andires van Dam, Steven K. Feiner etc. Computer GraphicsPirnciples and Practice [J]. Second Edition in C. American: Pearson Education, Inc.1996-,533562.
    [103]银红霞,杜四春,蔡立军等.计算机图形学[M].第一版.北京:中国水利水电出版社,2005. 175-180.
    [104]何晖光,田捷,张晓鹏,赵明吕,李光明.网格模型化简综述[M].软件学报.2002, 13(12): 15-24.
    [105] Rossignac, Jarek R, PaulBorrel.Multi-resolusion 3D Approximations for RenderingComPlex Scenes [R]. Technical Report RC 17697, IBM Reseacrh Division,T.J.Watson Research Center, Yorktown Heights, N Y 10958, 1993,455-465.
    [106]Schroeder W.J, Zarge J.Aand Lorensen W.E, Decimation of Triangle Meshes [C], in:Proc. SIGGRAPH' 92, 1992, pp. 65-70.
    [107]李现民.三角网格简化及等值面抽取技术:[博士学位论文],中国科学院计算技术研究所,2001.
    [108]付鑫.三维网格模型简化算法研究:[硕士学位论文],西南大学,2008.
    [109] Kalvin A.D, Taylor H. Russell. Superfaces: Polygonal Mesh Simplification withBounded Error [C]. IEEE Computer Graphics and Application, 1996, 15(3).
    [110]周昆,潘志庚,石教英一.种新的基于顶点聚类的网格简化算法[J].自动化学报,1999, 25(1): 1-8.
    [111] Hugues Hoppe, Progressive Meshes [CJ, in: Proc. SIGGRAPH ,96, 1996, pp.99-108
    [112]刘焕敏一,杨克俭.种面积加权的半边折叠网格简化算法及其递进网格构造[J].武汉理工大学学报,2005, 29(1): 76-78.
    [113] Michael Garland, Paul Heckbert. Surface Simpliifcation Using Quadric ErrorMetrics [C], in: Proc.SIGGRAPH ,97,1997, pp. 209-216
    [114]马小虎一.种新的基于二次误差的三角形网格简化方法[J].计算机应用,2001,21(3): 22-24.
    [115]王军安,魏生民.距离加权的二次误差测度网格简化算法[J].计算机辅助设计与图形学报[J]. 2001, 13(2): 189-192.
    [116]Cohen J, Varshney A, Manocha D, Simplification Envelopes [C], in: Proc.SIGGRAPH '96,1996, pp. 119-128
    [117]张明敏,周昆,潘志庚.基于超包络的网格简化算法[J].软件学报,1999, 10(6):1-8.
    [118] Fuchs H, Kedem Z.M, Uselton S.P, Optimal Surface Reconstruction from PlanarContours [J], in: Commun. ACM, 1977, vol(20), pp. 693-702
    [119]Mortara M, Patane G, Spagnuolo M, Falcidieno B, Rossignac J, Plumber: a methodfor a multi-scale decomposition of 3D shapes into tubular primitives and bodies [C],in: Proc,. SMA 04, 2004, pp. 339-344.
    [120] Jeong W.K, Beyer J, Hadwiger M, SSECRETT and NeuroTrace: InteractiveVisualization and Analysis Tools for Large-Scale Neuroscience Datasets [J], in:IEEE Computer Graphics and Applications, 2010, vol(30), pp. 58-70.
    [121] Jeong W.K, Beyer J, Hadwiger M, Pifster H, Vazquez A, Whitaker R.T. Scalable andInteractive Segmentation and Visualization of Neural Processes in EM Datasets [J],in: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2009, vol(15),pp. 1505-1514.
    [122] Hyun D. E, Yoon S.H, Kim M.S and Juttler B. Modeling and Deformation of Armsand Legs Based on Ellipsoidal Sweeping [C], in: PG,03, 2003
    [123] Pudney C. Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for3D Digital Images [C], in: CVIU, 1998, vol(72), pp. 404-413
    [124] Foskey M, Lin M C, Manocha D, Eiffcient Computation of A Simpliifed MedialAxis [J], in: Journal of Computing and Information Science in Engineeirng, 2003,vol(3), pp. 274-284.
    [125] Miklos B, Giesen J, Pauly M, Discrete Scale Axis Representations for 3D Geometry
    [C], in: Proc. SIGGRAPH ,10, 2010.
    [126] Rumpf M, Telea A. A Continuous Skeletonization Method Based on Level Sets [C],in: Proc. VisSym ,02, 2002-, pp. 151158.
    [127] Telea A, Van Wijk J J. An Augmented Fast Marching Method for ComputingSkeletons and Centerlines [C], in: Proc. VisSym '02, 2002, pp. 251-259.
    [128] Hesselink W, Roerdink J, Euclidean Skeletons of Digital Image and Volume Data inLinear Time by the Integer Medial Axis Transform [J], in: IEEE Trans. Pattern Anal.Mach. Intell, 2008, pp. 2204-2217.
    [129] Lee E. T. Y. A Simplified B-Spline Computation Routine [J], in: Journal ofComputing, 1982, vol(29), pp. 365-371.
    [130]王仁宏.数值逼近[M].北京:高等教育出版社.
    [131]隋岩峰,张志强,赵军.应用非均匀B样条拟合涡轮发动机部件特性[J].航空动力学报-,2008, 23(8): 14861489.
    [132]史利民,王仁宏.NURBS曲线曲面拟合数据点的迭代算法[J].数学研究与评论,2006, 26(4): 735-743.
    [133]蔺宏伟,王国瑾-,董辰世.用迭代非均匀Bspline曲线(曲面)拟合给定点集[J].中国科学(E辑),2003, 33(10): 912-923.
    [134]王建雄,王腾军.非均匀B样条函数的最小二乘法在GPS水准拟合中的应用[J].测绘科学.2007, 32(3): 65-67.
    [135]聂翔,张瑞林.最小二乘法在曲线拟合中的实现.[J]陕西工学院学报.2000, 3:79-81.
    [136]叶晶,平雪良,陶宇,董宁.移动最小二乘法在NURBS曲线拟合中的应用[J].工具技术.2011, 1: 34-36.
    [137]王田苗,曹宇男,陈友东,魏洪兴.基于de Boor算法的NURBS曲线插补和自适应速度控制研究[J].中国机械工程.2007, 18(21):2608-2613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700