基于波前编码技术拓展三维集成成像系统景深的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成成像技术是由Lippmann在1908年提出,近十几年来得到迅速发展的新型三维显示技术。其基本原理是利用微透镜阵列记录物体三维场景,利用微透镜阵列再现三维场景。集成成像技术具有许多优点。与偏振、红绿等需要佩戴眼镜的立体显示技术相比,它是一种裸眼三维显示技术;与光栅、柱面透镜等三维显示技术相比,它可以显示三维视场信息;与全息三维显示相比,它不需要激光记录和再现。简而言之,集成成像是一种裸眼、非相干、全视角三维显示技术。然而,这种显示技术也并非十全十美。如分辨率受到显示器像素大小和微透镜数值孔径的制约。微透镜的数值孔径和显示器的像素大小限制了景深。因此,提高集成成像系统的景深和分辨率具有十分重要的意义。
     本文主要工作是利用波前编码技术拓展集成成像系统的景深,其中包括设计优化用于景深拓展的位相片和具体景深拓展实验。具体内容可以概括为以下6个方面:
     1、介绍了集成成像技术的原理。分析了集成成像的特征参数,包括视场角、分辨率和景深。重点研究了现有扩大景深的方法,进而提出了基于波前编码技术拓展集成成像系统景深的方法。
     2、分析了波前编码技术增大景深的原理。指出波前编码技术的本质在于利用位相片改造系统的光学传递函数,使其对离焦变化不敏感。分析了现有两种产生波前编码位相片的方法。给出了各种位相片的表达式。
     3、提出了一种产生高质量三次位相片的方法。通过在传统位相片上加上闪耀光栅,来克服传统位相片零级光的干扰,提高了位相片衍射图样的质量。以三次位相片为例,通过在三次位相片上加上闪耀光栅,形成闪耀型三次位相片。实验结果表明,闪耀型三次位相片的光斑分布要远好于传统三次位相片的光斑分布。
     4、提出了一种利用波前编码技术拓展相机阵列集成成像系统景深的方法。具体实验过程中,利用了三次位相片和CCD相机组成波前编码相机。并用单个波前编码相机在二维电动平移台的移动来代替波前编码相机阵列。获取的元素图像结果表明,波前编码相机整列成像系统获取的元素图像景深有着明显增加。同时,我们利用投影仪和微透镜阵列系统组成集成成像显示系统。重构实验显示,波前编码系统的景深得到明显提高。
     5、提出将波前编码技术运用到显微集成成像系统中。搭建了波前编码显微系统。通过对头发和手表中的齿轮进行成像,获取了编码的元素图像阵列。利用维纳滤波对编码图像进行了解码。结果表明,与传统的显微集成成像相比,解码图像景深有所提高。
     6、设计并制作了一种改进型正弦位相片。与正弦位相片相比,这种位相片多了一个可以优化的参数。采用一系列的评价函数对现有的各种位相片(包括正弦型、三次型和改进对数型)进行评价。评价结果表明,改进型正弦位相片比三次型、正弦型和改进对数型位相片有更高的景深增强本领。同时,在光刻胶上制作了改进型位相片,并进行了成像实验。实验结果表明,改进型正弦位相片具有景深拓展能力。
Integral imaging, as a novel3D imaging and display technique, first proposed by Lippmann in1908, has been resurrected and developed rapidly during these ten years. The principles of this technique can be divided into two parts:Recording3D scene and reconstruct3D scene. To record3D scene, the information of3D scene is recorded onto2D sensor by a micro lens array (MLA). To reconstruct3D scene, we just reverse the record process. There are lots of advantages of integral imaging technique. Compared with polarization and red-green3D display techniques, no glasses are required by integral imaging. Compared with grating and cylindrical lens array3D display technique, full parallax and quasi-continuous views angles can be display by integral imaging. Compared with holography3D display technique, no laser is needed during recording and reconstructing process by integral imaging. All in all, integral imaging is a novel3D technique with merits of viewed by naked eyes, no need of coherent light and displayed with full parallax views. However, every coins has two sides, integral imaging is not perfect. Two major drawbacks of this technique are poor lateral resolution and limited depth of field (DOF), which is either constrained by pixel of display, or limited by sizes of MLA, or both of them. Therefore, it is quite meaningful to improve the DOF and resolution of integral imaging.
     To contribute to this promising3D technique, we have put our effort into improving the DOF of integral imaging system during" last three years. This dissertation mainly focus on improve DOF of integral imaging system by wave coding technique. Designing new phase plate and concrete experiment are also included. The dissertation can be divided into the following six parts:
     Firstly, the principles of integral imaging are introduced and three main parameters (view angle, resolution and DOF) of integral imaging are analyzed. After most existent methods to extend DOF of integral imaging system are reviewed, we proposed a new method, which is using wavefront technique to enlarge DOF of integral imaging system.
     Secondly, we introduce the principles of wavefront coding technique and discuss several asymmetric phase plate used in wavefront coding system. Later, we reviewed all kinds of phase plate to extend DOF. And several continuous relief phase plates are fabricated by laser direct writer.
     Thirdly, a new method of generating high quality phase plate is proposed. By adding a conventional blazed grating onto a cubic phase plate, it enables elimination of direct incident illumination in the reconstructed beam. Experimentally measured intensity distribution of the blazed cubic plate is found in much better than traditional cubic phase plate.
     Fourthly, we demonstrate an experimental approach to enhancing DOF of the integral imaging system by using a coded camera array with a cubic phase plate (CPP). A7x7coded elemental image array is acquired by moving a single CPP coded camera placed on the electric translation stage for7x7times. The coded elemental images captured by the coded camera array have larger DOF than common camera array. After digital process of the coded elemental images, we obtained elemental images with enhanced DOF for3D display.
     Fifthly, we try to apply wavefront coding technique to integral imaging microscopy. We build the wavefront coding integral imaging system and choose hair of a man as a3D sample. After digital process of the coded elemental images, we obtained elemental images with a little enhanced DOF.
     Finally, an improved sinusoidal phase plate is proposed by adding a new parameter to a conventional sinusoidal phase plate. A series of performance comparisons are made among various phase plates including sinusoidal, cubic phase and the modified logarithmic phase. The results demonstrate that the improved sinusoidal phase plate can further extend the depth of field in incoherent hybrid imaging systems, with a lower surface relief phase structures fabricated in photoresist (AR-N4340, ALL Resist, Germany).
引文
[1]Jung S M, Lee Y B, Park H J, et al. Polarizer Glasses Type 3 - D TVs having High Image Quality with Active Retarder 3 - D Technology. SID Symposium Digest of Technical Papers,2011,42(1):168-170
    [2]孔令胜,南敬实,荀显超.平面三维显示技术的研究现状.中国光学与应用光学,2009,2(2):112-118
    [3]Srivastava A K, de Bougrenet de La Tocnaye J L, Dupont L. Liquid crystal active glasses for 3D cinema. Journal of display technology,2010,6(10):522-530
    [4]Sutherland I E. A head mounted three dimensional display. Proceedings of the fall joint computer conference part I ACM,1968:757-764
    [5]Kijima R, Ojika T. Transition between virtual environment and workstation environment with projective head mounted display. Virtual Reality Annual International Symposium IEEE,1997:130-137
    [6]Fukai K, Amafuji H, Murata Y. Color and high-resolution head mounted display. International Symposium on Electronic Imaging:Science and Technology. International Society for Optics and Photonics,1994:317-324
    [7]Rolland J P, Hua H. Head-mounted display systems. Encyclopedia of optical engineering,2005:1-13.
    [8]http://en.wikipedia.org/wiki/Anaglyph_3D#Complementary_color
    [9]Shibata T, Kawai T, Otsuki M, et al. Stereoscopic Displays and Virtual Reality Systems XII.
    [10]Sexton I. Parallax barrier display systems. Stereoscopic Television IEE Colloquium on. IET,1992:1-5.
    [11]TAO Y H, WANG Q H, GU J, et al. Autostereoseopie three dimensional projector based on two parallax barriers. Optics Letters,2009,34(20):3220-3222.
    [12]D. Winnek. Composite stereography. Nov.1968, US 3409351.
    [13]Speranza F, Tam W J, Martin T, et al. Perceived smoothness of viewpoint transition in multi-viewpoint stereoscopic displays. Proc SPIE,2005,5664:72-82.
    [14]Favalora G. Volumetric 3D displays and application infrastructure. Computer,2007,38: 4-37
    [15]G. D. Love, D. M. Hoffman, P. J. Hands, et al. High-speed switchable lens enables the development of a volumetric stereoscopic display. Optics Express,2009,17(18):15 716-15725
    [16]Stroke G W, Restrick R C. Holography with spatially noncoherent light. Applied Physics Letters,1965,7(9):229-231.
    [17]Worthington R. Production of holograms with incoherent illumination. Journal of the Optical Society of America.1966,56:1397-1398.
    [18]Cochran G. New method of making Fresnel transforms with incoherent light. Journal of the Optical Society of America.1966,56:1513-1517.
    [19]Shaked N-T, Barak K, Joseph R. Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods. Applied Optics,2009,48:H120-H135.
    [20]Lippmann G. La photographie integrale. C. R. Acad. Sci,1908,146:446-451.
    [21]A.P. Sokolov. Autostereoscpy and Integral Photography by Professor Lippmann's method.Moscow. USSR:Moscow State Univ. Press,1911.
    [22]Okano F, Hoshino H, Arai J, et al. Real-time pick-up method for a three-dimensional image based on integral photography. Applied Optics,1997,36:1598-1603.
    [23]王琼华.3D显示技术与器件.北京:科学出版社,2011.
    [24]S. Pastoor, M.D. Wopking.3-D displays:a review of current technologies. Displays. 1997,17(2):100-110.
    [25]Javidi B, Okano F. Three Dimensional Television Video and Display Technologies. Berlin Springer,2002.
    [26]Park J H, Hong K, Lee B. Recent progress in three-dimensional information processing based on integral imaging. App. Opt,2009,48:H77-H94.
    [27]Cuenca R, Saavedra G, Javidi B, et al. Progress in 3-D Multiperspective Display by Integral Imaging. Proceedings of the IEEE,2009,97:1067-1077.
    [28]Cho M, Javidi B, et al. Three-Dimensional Optical Sensing and Visualization Using Integral Imaging. Proceedings of the IEEE,2011,99(4):556-575.
    [29]Xiao Xiao, Bahram Javidi, Manuel Martinez-Corral, et al. Advances in three-dimensional integral imaging:sensing, display, and applications [Invited]. Applied Optics.2013,52,546-560.
    [30]Froner B, Holliman N, Liversedge S. A comparative study of fine depth perception on two-view 3d displays. Displays Journal.2008,29:440-450.
    [31]Marr D, Poggio T. Cooperative computation of stereo disparity. Marr D, Poggio T. Cooperative computation of stereo disparity. MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB,1976.
    [32]H. E. Ives. Optical properties of a Lippmann lenticulated sheet. Journal of the Optical Society of America.1931,21:171-176.
    [33]C. B. Burckhardt. Optimum parameters and resolution limitation of integral photography, Journal of the Optical Society of America.1968.58:71-76.
    [34]T. Okoshi, A. Yano, and Y. Fukumori,BCurved triple-mirror screen for projection-type three-dimensional display. Applied Optics.1971,10:482-489.
    [35]T. Okoshi. Optimum design and depth resolution of lens-sheet and projection-type three-dimensional displays. Applied Optics.1971:10:2284-2291.
    [36]H. Hoshino, F. Okano, H. Isono, and I. Yuyama. Analysis of resolution limitation of integral photography. Journal of the Optical Society of America,1998,15:2059-2065.
    [37]Makoto Okui, Masaki Kobayashi, Jun Arai, et al. Moire fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display. Applied Optics.2005,44:4475-4483.
    [38]Jun Arai, Makoto Okui, Takayuki Yamashita, et al. Integral three-dimensional television using a 2000-scanning-line video system. Applied Optics.2006,45:1704-1712.
    [39]Navarro, Hector, Martinez-Cuenca, Raul, Molina-Martin, A., et al. Method to Remedy Image Degradations Due to Facet Braiding in 3D Integral-Imaging Monitors. Journal of Display Technology.2009,15:841-852.
    [40]M. Cho and B. Javidi. Three-dimensional visualization of objects in turbid water using integral imaging. Journal of Display Technology.2010,6:544-547.
    [41]S. Yeom, B. Javidi, and E. Watson. Photon counting passive 3D image sensing for automatic target recognition. Optics Express,2005,13:9310-9330.
    [42]X. Xiao and B. Javidi.3D Photon counting integral imaging with unknown sensor positions. Journal of the Optical Society of America.2012,29:767-771.
    [43]V. Y. Panin, G. L. Zeng, and G. T. Gullberg. Total variation regulated EM algorithm. IEEE Trans Nucl Sci,1999,46:2202-2210.
    [44]P. J. Green. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imag,1990,9:84-93.
    [45]Y. Zhao, X. Xiao, M. Cho, and B. Javidi. Tracking of multiple objects in unknown background using Bayesian estimation in 3D space. Journal of the Optical Society of America,2011,28:1935-1940.
    [46]B. Javidi, I. Moon, and S. Yeom. Three-dimensional identification of biological microorganism using integral imaging. Optics Express,2006,14:12096-12108.
    [47]J. S. Jang and B. Javidi. Three-dimensional integral imaging of micro-objects. Optics Letters,2004,29:1230-1232.
    [48]M. Levoy, Z. Zhang, and I. McDowall. Recording and controlling the 4D light field in a microscope using microlens arrays. J. Microsc,2009,235:144-162.
    [49]Levoy M, Ng R, Adams A, et al. Light field microscopy. ACM Transactions on Graphics (TOG) ACM,2006,25(3):924-934.
    [50]D. Shin, M. Cho, and B. Javidi. Three-dimensional optical microscopy using axially distributed image sensing. Optics Letters,2010,35:3646-3648.
    [51]Y. T. Lim, J. H. Park, K. C. Kwon, et al. Resolution-enhanced integral imaging microscopy that uses lens array shifting. Optics Express,2009,17:19253-19263.
    [52]Y. Jeong, S. Jung, J.-H. Park, and B. Lee. Reflection-type integral imaging scheme for displaying three-dimensional images. Optics Letters,2002,27:704-706.
    [53]F. Okano, J. Arai, and M. Okui, B. Amplified optical window for three-dimensional images. Optics Letters,2006,31:1842-1844.
    [54]J.-S. Jang, B. Javidi. Three-dimensional synthetic aperture integral imaging. Optics Letters,2002,27:1144-1146.
    [55]M. Levoy. Light fields and computational imaging. IEEE Comput. Mag.2006,39(8): 46-55.
    [56]Jingang Wang, Shiqian Shen, Yong Yang, Et al. Enhanced depth of field in integral imaging for 3D display with a cubic phase plate coded camera array. Journal of Display Technology.2012,8(10):577-581.
    [57]S.- Park, B.-S. Song, and S.-W. Min. Analysis of image visibility in projection-type integral imaging system without diffuser. Journal of the Optical Society of Korea, 2010,14(2):121-126
    [58]Y. Kim, S.-G. Park, S.-W. Min. Projection-type integral imaging system using multiple elemental image layers. Applied Optics,2011,50(7):B 18-24.
    [59]Fumio O, Jun A, Masahiro K. Wave optical analysis of integral method for three-dimensional images. Optics Letters,2007,32 (4):364-366.
    [60]Born, Max, and Emil Wolf. Principles of Optics 7th. Cambridge Univ Pub,1999.
    [61]Erdmann L, Gabriel K J. High-resolution digital integral photography by use of a scanning microlens array. Applied Optics,2001,40(31):5592-5599.
    [62]Jang J S, Javidi B. Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics. Optics Letters,2002,27 (5):324-326.
    [63]Liao H, Dohi T, Iwahara M. Improved viewing resolution of integral videography by use of rotated prism sheets. Optics Express,2007,15(8):4814-4822.
    [64]Kim Y, Kim J, Kang J, et al. Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array. Optics Express,2007,15(26):18253-18267.
    [65]Kishk S, Javidi B. Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging. Optics Express,2003,11(26):3528-3541.
    [66]Hong S H, Javidi B. Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing. Optics Express,2004,12(19):4579-4588.
    [67]Jang J S, Oh Y S, Javidi B. Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display. Optics Express,2004,12(4): 557-563.
    [68]Park J S., Hwang D C., Shin D H, et al. Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique. Optical. Engineering,2006,45(11):1170041-7.
    [69]Park J S, Hwang D C, Shin D H, et al. Resolution-enhanced 3D image correlator using computationally reconstructed integral images. Optics Communications,2007,276(1): 72-79.
    [70]Hyun J B, Hwang D C, Shin D H, et al. Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images. Applied Optics.2007,46(31):7697-7708.
    [71]Lee K J, Hwang D C, Kim S C, et al. Blur-metric-based resolution enhancement of computationally reconstructed integral images. Applied Optics.2008,47(15): 2859-2869.
    [72]Kim Y, Jung J H, Kang J M, et al. Resolution-enhanced three-dimensional integral imaging using double display devices. Lasers and Electro-Optics Society The 20th Annual Meeting of the IEEE,2007:356-357.
    [73]Park J H, Kim J, Kim Y, et al. Resolution-enhanced three-dimension two-dimension convertible display based on integral imaging. Optics Express,2005,13(6):1875-1884.
    [74]Kim Y, Park J H, Choi H, et al. Viewing-angle-enhanced integral imaging system using a curved lens array. Optics Express,2004,12(3):421-429.
    [75]Kim Y, Park J H, Min S W, et al. Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array. Applied Optics,2005,44(4): 546-552.
    [76]Y. Kim, J.-H. Park, H. Choi, et al. Viewing-angle-enhanced integral imaging system using a curved lens array. Optics Express,2004,12:421-329.
    [77]Kim Y, Park J H, Min S W, et al. Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array. Applied Optics,2005,44(4): 546-552.
    [78]Hyun J B, Shin D H, Kim E S. Viewing-angle-enhanced display of large-depth 3d images in curved projection integral imaging. Proceedings of Asia Display,2007,2.
    [79]Lee B, Jung S, Park J H. Viewing-angle-enhanced integral imaging by lens switching. Optics Letters,2002,27(10):818-820.
    [80]Park J H, Jung S, Choi H, et al. Viewing-angle-enhanced integral imaging by elemental image resizing and elemental lens switching. Applied Optics,2002,41(32):6875-6883.
    [81]Choi H, Park J H, Kim J, et al. Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array. Optics Express,2005,13(21):8424-8432.
    [82]Jung S, Park J H, Choi H, et al. Viewing-angle-enhanced integral three-dimensional imaging along all directions without mechanical movement. Optics Express,2003, 11(12):1346-1356.
    [83]Park J H, Kim H R, Kim Y, et al. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging. Optics Letters,2004,29(23): 2734-2736.
    [84]Min S W, Javidi B, Lee B. Enhanced Three-dimensional integral imaging system by use of double display devices. Applied Optics,2003,42(20):4186-4195.
    [85]Kim Y, Kim J, Kang J M, et al. Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array. Optics Express,2007,15(26):18253-18267.
    [86]Jang J S, Javidi B. Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor. Applied Optics,2003,42(11):1996-2002.
    [87]Jung S, Park J H, Choi H, et al. Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching. Applied Optics,2003,42(14):2513-2520.
    [88]Min S W, Kim J, Lee B. Wide-viewing projection-type integral imaging system with an embossed screen. Optics Letters,2004,29(20):2420-2422.
    [89]Hyun J, Hwang D C, Shin D H, et al. Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement. ETRI Journal, 2009,31(2):105-110
    [90]Shin S H, Javidi B. Viewing-angle enhancement of speckle-reduced volume holographic three-dimensional display by use of integral imaging. Applied Optics,2002,41(26): 5562-5567.
    [91]B. Lee, S. Y. Jung, S. W. Min, et al. Three-dimensional display by use of integral photography with dynamically variable image planes. Optics Letters,2001,26(19): 1481-1482.
    [92]J. S. Jang, B. Javidi. Three-dimensional integral imaging with electronically synthesized lenslet arrays. Optics Letters,2002,27(20):1767-1769.
    [93]Jung S, Hong J, Park J H, et al. Depth - enhanced integral - imaging 3D display using different optical path lengths by polarization devices or mirror barrier array. Journal of the Society for Information Display,2004,12(4):461-467.
    [94]Pham D Q, Kim N, Kwon K Cl, et al. Depth enhancement of integral imaging by using polymer-dispersed liquid-crystal films and a dual-depth configuration. Optics Letters, 2010,35(18):3135-3137.
    [95]Y. Kim, H.Choi, J.Kim, et al. Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers. Applied Optics,2007,46(18):3766-3773.
    [96]Duc-Quang Pham, Nam Kim, Ki-Chul Kwon, et al. Depth enhancement of integral imaging by using polymer-dispersed liquid-crystal films and a dual-depth configuration. Optics Letters,2010,35:3135-3137
    [97]B. Lee, S. W. Min, B. Javidi. Theoretical analysis for three-dimensional integral imaging systems with double devices. Applied Optics,2002,41(23):4856-4865.
    [98]Y.Kim, J. H. Park, H.Choi, et al. Depth-enhanced three-dimensional integral imaging by use of multilayered display devices. Applied Optics,2006,45(18):4334-4343.
    [99]H. Choi, Y. Kim, J. H. Park, et al. Layered-panel integral imaging without the translucent problem. Optics Express,2005,13(15):5769-5776.
    [100]J. S. Jang, B. Javidi. Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes. Optics Letters,2003,28(33):1924-1926.
    [101]M. Hain, W. von Spiegel, M. Schmiedchen, et al.3D integral imaging using diffractive Fresnel lens arrays. Optics Express,2005,13(1):315-326.
    [102]Castro A, Frauel Y, Javidi B. Integral imaging with large depth of field using an asymmetric phase mask. Optics Express,2007,15(6):10266-10273.
    [103]M. Martr nez-Corral, B. Javidi.R. Marti' nez-Cuenca, and G Saavedra. Integral imaging with improved depth of field by use of amplitude modulated microlens array. Applied Optics,2004,43:5806-5813.
    [104]Bagheri S, Javidi B. Extension of depth of field in integral imaging using amplitude and phase modulation of the pupil function. SPIE Defense and Security Symposium. International Society for Optics and Photonics,2008:69830L-9.
    [105]J. S. Jang, F. Jin, B. Javidi. Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields. Optics Letters,2003,28(16):1421-1423.
    [106]Lei Zhang, Yong Yang, Xing Zhao, Zhiliang Fang, et al. Enhancement of depth-of-field in a direct projection-type integral imaging system by a negative lens array. Optics Express,2012,20:26021-26026.
    [107]Jun Arai, Hiroshi Kawai, Masahiro Kawakita, et al. Depth-control method for integral imaging. Optics Letters,2008,33:279-281.
    [108]D. Shin, S. Lee, and E. Kim. Optical 3D Image Display in Integral Imaging System Using a Depth Camera. in Adaptive Optics:Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America,2007), paper DTuC6.
    [109]J. S. Jang, B. Javidi. Time-multiplexed integral imaging for 3D sensing and display. Optics and photonics news,2004,15(14):36-43.
    [110]J. H. Park, S. Jung, H. Choi, et al. Integral imaging with multiple image planes using a uniaxial crystal plate. Optics Express,2003,11(16):1862-1875.
    [111]Dong-Hak Shin, Byoungho Lee, and Eun-Soo Kim. Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens. Applied Optics, 2006,45:7375-7381
    [112]Young-Tae Lim, Jae-Hyeung Park, Ki-Chul Kwon, et al. Analysis on enhanced depth of field for integral imaging microscope. Optics Express,2012,20:23480-23488.
    [113]E. R. Dowski, Jr. and W. T. Cathey. Extended depth of field through wave-front coding. Applied Optics,1995,34:1859-1866
    [114]S. S. Sherif, W. T. Cathery, and E. R. Dowski. Phase plate to extend the depth of field of incoherent hybrid imaging systems. Applied Optics,2004,43:2709-2721.
    [115]Albertina Castro and Jorge Ojeda-Castaneda. Asymmetric phase masks for extended depth of field. Applied Optics,2004,43:3474-3479.
    [116]Qingguo Yang, Liren Liu and Jianfeng Sun. Optimized phase pupil masks for extended depth of field. Optics Communications,2007,272:56-66.
    [117]Yasuhisa Takahashi and Shinichi Komatsu. Optimized free-form phase mask for extension of depth of field in wavefront-coded imaging. Optics Letters,2008,33: 1515-1517.
    [118]Hui Zhao, Qi Li, and Huajun Feng. Improved logarithmic phase mask to extend the depth of field of an incoherent imaging system. Optics Letters,2008,33:1171-1173.
    [119]Hui Zhao and Yingcai Li. Optimized logarithmic phase masks used to generate defocus invariant modulation transfer function for wavefront coding system. Optics Letters, 2010,35:2630-2632.
    [120]Hui Zhao and Yingcai Li. Optimized sinusoidal phase mask to extend the depth of field of incoherent imaging system. Optics Letters,2010,35:267-269.
    [121]Kuzdur D, Hatzinakos D. A novel blind deconvolution scheme for image restoration using recursive filtering. IEEE Transactions on Signal Processing,1998,46(2):375-390.
    [122]Chow T W S, Li X D, Cho S Y. Improved blind image restoration scheme using recurrent filtering. IEEE Proceedings-Vision Image and Signal Processing,2000, 147(1):23-28.
    [123]Wufan Chen, Ming Chen, and Jie Zhou. Adaptively Regularized Constrained Total Least-Squares Image Restoration. IEEE Trans on Image Processing,2000,9(4): 588-596
    [124]R. C. Gonzalez, R. E. Woods.数字图像处理第2版.北京电子工业出版社,2007.
    [125]Suthaharan. A new SNR estimate for the Wiener Filter to image restoration. SPIE Vol.2182 Image and Video Processing II.1994,242-254.
    [126]Hunt B R. The application of constrained least squares estimation to image restoration by digital computer. Computers, IEEE Transactions on,1973,100(9):805-812.
    [127]Giuseppe Antonio Cirino, Luiz Goncalves Neto. Design of cubic phase distribution lenses for passive infrared motion sensors. SPIE,2003,5073,476-484
    [128]Dana Mackenzie. Novel imaging Systems Rely on Focus free optics. SIAM New 2003. 36.
    [129]Plemmons R J, Horvath M, Leonhardt E, et al. Computational imaging systems for iris recognition. Optical Science and Technology, the SPIE 49th Annual Meeting. International Society for Optics and Photonics,2004:346-357.
    [130]Kenneth Kubala, Edward R. Dowski, James Kobus, et al. Design and optimization of aberration and error invariant space telescope systems. Novel Optical Systems Design and Optimization VII. Proc Of SPIE 5524,2004.
    [131]Rosario Porras, Sergio Vazquez-Montiel, J. Castro. Wavefront coding technology in the optical design of astronomical instruments. Proc SPIE 5622,2004
    [132]Ahuja, Nilesh A; Bose, NK. Design of Large Field-of-View High-Resolution Miniaturized Imaging System. EURASIP Journal on Advances in Signal Processing, 2007.
    [133]Sudhakar Prasad, V. Paul Pauca, Robert J. Plemmons, et al. Pupil-phase optimization for extended-focus, aberration-corrected imaging systems. Proc SPIE,2004,5559:335.
    [134]Xutao Mo. Optimized annular phase masks to extend depth of field. Optics Letters, 2012,37:1808-1810.
    [135]J. Ojeda-Castan' eda and L. R. Berriel-Valdos. Zone plate for arbitrarily high focal depth. Applied Optics.1990,29:994-997.
    [136]Deokhwa Hong, Kangmin Park, Hyungsuck Cho, et al. Flexible depth-of-field imaging system using a spatial light modulator. Applied Optics,2007,46:8591-8599
    [137]P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio. Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms. Optics Letters,2009,34:2787-2789.
    [138]Allen Y. Yi and Thomas W. Raasch. Design and fabrication of a freeform phase plate for high-order ocular aberration correction. Applied Optics.2005,44:6869-6876.
    [139]S. S. R. Oemrawsingh, J. A. W. Houwelingen, E. R. Eliel, et al... Production and characterization of spiral phase plates for optical wavelengths. Applied Optics,2004,43: 688-694.
    [140]Thomas Hessler, Markus Rossi, Rino E. Kunz, et al. Analysis and Optimization of Fabrication of Continuous-Relief Diffractive Optical Elements. Applied Optics,1998, 37:4069-4079.
    [141]W. C. Cheong, W. M. Lee, X. C. Yuan, et al. Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation. Applied Physics Letters,2004,85:5784-5786
    [142]潘开林,陈子辰,傅建中.激光微细加工技术及其在MEMS微制造中的应用.制造技术与机床,2002,3:5-7.
    [143]陈宝钦,任黎明,刘明等.电子束直写邻近效应校正技术.半导体学报,2003,24(5):221-225.
    [144]Georgios A.Siviloglou, Demetrios N.Christodoulides. Accelerating Finite Energy Airy Beams, Optics Letters,2007,32:979-981.
    [145]John Broky, Georgios A.Siviloglou, Aristide Dogariu, et al. Self-healing proprieties of optical Airy beams, Optics Express.2008,16:12880-12891.
    [146]Berna Yalizay, Burak Soylu and Selcuk Akturk. Optical element for generation of accelerating Airy beams. Journal of the Optical Society of America,2010,27: 2344-2346.
    [147]Zhu Zheng, Bai-Fu Zhang, Hao Chen, et al. Optical trapping with focused Airy beams. Applied Optics,2011,50:43-49.
    [148]Durnin, Ja, J. J. Miceli Jr, J. H. Eberly. Diffraction-free beams. Physical Review Letters,1987,58(15):1499-1501.
    [149]Durnin, J. Exact solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am. A,1987,4(4):651-654.
    [150]Christodoulides, Demetrios N. Optical trapping:riding along an Airy beam. Nature Photonics,2008,2(11):652-653.
    [151]Joseph van der Gracht, Edward, Merwyn, Merwyn G Taylor, et al. Broadband behavior of an optical-digital focus-invariant system. Optics Letters,1996,21:919-921.
    [152]Mark S.Mirotznik, Joseph van der Gracht, David Pustai, et al. Design of cubic-phase optical elements using subwavelength microstructures. Optics Express,2008,16: 1250-1259.
    [153]H. T. Dai, X. W. Sun, D. Luo, Y. J. Liu. Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals. Optics Express,2009,17: 19365-19370.
    [154]Jingang Wang, Jing Bu, Mingwei Wang, et al. Generation of high quality Airy beams with blazed micro-optical cubic phase plates. Applied Optics,2011,50:6627-6631.
    [155]Stefan Sinzinger and Victor Arrizo'n. High-efficiency detour-phase holograms, Optics Letters,1997,22:928-930.
    [156]金国藩,严瑛白,光学仪器专业教授,等.二元光学.国防工业出版社,1998:22-54
    [157]M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, et al. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications,1994,112:321-327.
    [158]Jeffrey A. Davis, Keevin Olea Valadez, and Don M. Cottrell. Encoding Amplitude and Phase Information onto a Binary Phase-Only Spatial Light Modulator. Applied Optics, 2003,42:2003-2008.
    [159]Jeffrey A. Davis, Don M. Cottrell, Juan Campos, et al. Encoding Amplitude Information onto Phase-Only Filters. Applied Optics,1999,38:5004-5013.
    [160]J. A. Davis, D. M. Cottrell, J. Campos, et al. Bessel function output from an optical correlator using an inverse filter written onto a phase-only spatial light modulator. Applied Optics,1999,38:6709-6713.
    [161]王金刚,步敬,王明伟等.新型类贝塞尔振幅调制螺旋相位片.光学学,2011,31,6
    [162]Albertina Castro, Yann Frauel, and Bahram Javidi. Integral imaging with large depth of field using an asymmetric phase mask. Optics Express,2007,15:10267-10273
    [163]H. H. Hopkins. The frequency response of a defocused optical system. Proc. Roy. Soc. Lond. Series A,1951, (231):91-103.
    [164]Flynn, A. A., A. J. Green, G. Boxer, R. B. Pedley, and R. H. J. Begent. A comparison of image registration techniques for the correlation of radiolabelled antibody distribution with tumour morphology. Physics in medicine and biology,1999,44 (7):N151.
    [165]D Huang, EA Swanson, CP Lin, JS Schuman, WG Stinson, et al. Optical coherence tomography. Science,1991:254 (5035):1178-1181.
    [166]Swedlow, Jason R., Ke Hu, et al. Measuring tubulin content in Toxoplasma gondii:a comparison of laser-scanning confocal and wide-field fluorescence microscopy. Proceedings of the National Academy of Sciences,2002,99 (4):2014-2019.
    [167]Ng, Ren, Marc Levoy, Mathieu Bredif, et al. Light field photography with a hand-held plenoptic camera. Computer Science Technical Report CSTR 2 (2005):11.
    [168]Sara Tucker, W. Thomas Cathery, Edward Dowski. Extended depth of field and aberration control for inexpensive digital microscope systems. Optics Express,1999,4: 467-474.
    [169]COGSWELL, CJ, MR ARNISON, ER DOWSKI. Extended-Depth-of-Focus Fluorescence Microscope Made Possible Using Wavefront Coding. In Proceedings of Meeting of Japan Society for Laser Microscopy,2000,25:13.
    [170]Dowski Jr, Edward Raymond, and Carol Jean Cogswell. Wavefront coding interference contrast imaging systems. U.S. Patent 7,115,849, issued October 3,2006.
    [171]Cui, Xiquan, Jian Ren, Guillermo J. et al. Wavefront image sensor chip. Optics Express,2010,18(16):16685.
    [172]Jang, Ju-Seog, and Bahram Javidi. Three-dimensional integral imaging of micro-objects. Optics letters,2004,9 (11):1230-1232.
    [173]Dai Z H, Wang J G, Zhao X, et al. Fast acquisition of 3D images in a modified optical microscope based on integral imaging. Science China Technological Sciences,2012, 55(4):977-981.
    [174]Wang J, Bu J, Wang M, et al. Improved sinusoidal phase plate to extend depth of field in incoherent hybrid imaging systems. Optics letters,2012,37(21):4534-4536.
    [175]王鸿南,钟文,汪静等.图像清晰度评价方法研究.中国图象图形学报,2004,9(7):828-831.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700