基于DSP的空间光通信PAT系统中光信号处理子系统的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要是完成空间光通信PAT系统中信标光光信号的处理,得出信标光的像面位置误差信号,为后续伺服控制系统提供输入信号。根据目前空间光通信对信标光处理子系统提出的高实时性和高精度性的要求以及课题的需要,本论文提出用数字信号处理芯片DSP来解决空间光通信中信标光的像面位置误差信号提取的问题,其优点就是系统体积小、重量轻、功耗低、实时性高、精度高等。通过硬件和软件的有机结合来加速图像的处理。硬件部分主要包括图像采集模块、视频A/D模块、图像数据缓冲模块、接口逻辑控制模块、基于DSP的图像处理模块和电源管理模块等,实现了图像信号的采集、数字化、缓冲和处理。为了提高系统的实时性,做到数据采集和数据处理的并发进行,本论文在硬件上采用了乒乓结构的双FIFO缓冲结构,并且设计了DSP的假读机制简化了双FIFO缓冲结构的逻辑控制电路。软件部分主要包括系统上电复位初始化程序、中断向量表、图像处理核心算法和命令文件,实现了图像数据的预处理和对目标的高速、高精度定位。在图像处理核心算法中积极探讨了针对空间光通信信标光图像特征的目标搜索、阈值分割、目标识别、目标定位和目标跟踪算法。本论文的最后设计了系统的测试模型,给出了测试结果,并对系统的实时性做了精确的评估。
A research and design of optical signal processing subsystem in PAT system of space optical communication is proposed in this dissertation. The subsystem can extract the image position error signal of beacon beam that supplies the input signal of the latter serving system. According to the current high real time peculiarity and high precision demands of beacon beam processing subsystem of space optical communication and the requirements of our project, the method that uses digital signal processor (DSP) to solve the image position error signal extraction of beacon beam is proposed in this dissertation. It have the following advantages: the small system volume, the slight weight, the small power, the high real time peculiarity and the high precision and so on. The combination of hardware and software accelerates the image processing. The part of hardware includes mainly the module of image acquisition, the module of video A/D, the module of image buffer, the module of interface logic control, the module of im
    age processing based on DSP and the module of power management. The hardware modules accomplish the image acquisition, digitization, buffer and processing. In order to improve the real time peculiarity of the subsystem and achieve the synchronization of image acquisition and processing, the subsystem adopts double FIFO buffers of pingpong structure, and devises the fake reading mechanism of DSP to simplify the logic control circuit of double FIFO buffers of pingpong structure. The part of software includes mainly the initialization program for resetting, the interruption table, the core algorithm of image processing and command file. The software modules accomplish the image pre-processing and the high speed and high precision locating of beacon beam. The core algorithms of image processing actively research the algorithms including object searching, threshold partition, object recognition, object locating and object tracking. At last, the testing model of the subsystem is devised, and the result is given, f
    urthermore the real time peculiarity of the subsystem is evaluated in the dissertation.
引文
[1] Chien-Chung Chen, and Chester S.Gardner. Impact of Random Pointing and Tracking Errors on the Design of Coherent and Incoherent Optical Intersatellite Communication Links[C]. IEEE Transactions on Communications, Vol.37, No.3, P.252-260, March, 1989
    [2] A.Buccheri, and G.Borghi, et al. Development and Test of an Integrated Focal Plane Star Sensor for Cryogenic Environment Operation[C]. Optical Systems for Space Applications, SPIE, Vol.810, E83-87, 1987
    [3] J.L.Vanhove, B.Laurent, and J.L.Perbos. System Analysis of Optical Interorbit Communications [C]. Optical Systems for Space Applications, SPIE. Vol.810, P. 164-171, 1987
    [4] Manfred Wittig, and Werner Reiland. Impact of Satellite Motion on Optical Intersatellite Data Links: a System Simulation Approach[C]. Optical Systems for Space Applications, SPIE, Vol.810, R195-201, 1987
    [5] 谢木军.自由空间激光通信及其关键技术[J].光电工程,1999, 26 (12): 2:3-28
    [6] R.Kern, U.Kugel, E.Hettlage. Control of a Pointing, Acquisition and Tracking subsystem for Intersatellite Laser Links ISL2[C]. Optical' Systems for Space Applications, SPIE Vol.810, R202-210, 1987
    [7] Alexandru F. Popescu, Walter R.Leeb, Arpad L.Scholtz. Laboratory Model of a Bidirectional Diode Laser Data Link with Acquisition and Tracking Capability[C]. Optical Systems for Space Applications, SPIE Vol.810, R239-244, 1987
    [8] Paul II.Duncan, Jr. Overlapping Search With Scanned Beam Applications[J]. IEEE Transactions on Aerospace and Electronic Systems, Vol.32, No.3, pp984-994, July, 1996
    [9] I.M.Teplyakov. Acquisition and Tracking of Laser Beams in Space Communications[J]. Acta Astronautica, Vol.7, R341-355, 1980
    [10] Jean-Claude Boutemy. Use of CCD Arrays for Optical Link Acquisition and Tracking[C]. Optical Systems for Space Applications, SPIE Vol.810, pp215-222, 1987
    [11] D.J.Dick and T.M.Shay. Ultrahigh-noise Rejection Optical Filter[J]. Optics Letters, Vol.16, No.11, R867-869, June, 1991
    [12] Anton Schex, Stefan Zanner. Simulation and Optimization of a Coherent Detection and Tracking Receiver for Free-space Laser Communications[C]. Free Space Laser Communication Technologies, SPIE Vol.2699, R218-226, January, 1996
    [13] J.Menders, RSearcy, K.Roff and Eric Korevaar. Blue Cesium Faraday and Voigt Magneto-optic Atomic Line Filters[J]. Optics Letters, Vol.17, No.19, R1388-1390, October, 1992
    
    
    [14] Tang Junxiong, et al. Experimental Study of a Model Digital Space Optical Communication SyStem with New Quantum Devices[J]. Applied Optics, Vol.34, No. 15, R2619-2622, May, 1995
    [15] Junxiong Tang, et al. Experimental Study of a Novei Free-space Optical Communication System[J]. Optical Engineering, Vol.33, No.11, R3758-3761, November, 1994
    [16] A.Biswas, et al. 45-krn horizontal-path optical link experiment[C]. Free Space Laser Communication Technologies, SPIE Vol.3615, R43-53, January, 1999
    [17] I.I.Kim, et al. Horizontal-Link performance of the STRV-2 lasercom experiment ground terminals[C]. Free Space Laser Communication Technologies, SPIE Vol.3615, P. 11-22, January, 1999
    [18] 罗彤.自由空间光通信地面演示系统光束ATP设计与实现[J].应用光学,2002,23(2):14-17
    [19] 戚振超.卫星光链路全轨道捕捉及扫描方式研究[D].北京大学电子学系硕士研究生论文,2001
    [20] 马晶.各国空间光通信系统的比较分析[J].电信科学,1998,4:47-49
    [21] 王庆有.CCD应用技术[M].2000.11,第一版,天津大学出版社:15-16
    [22] 支新军.一种自由空间光通信光路的设计与分析[J].半导体光电,2003,24(3):197-199
    [23] Willert C.E. and M.Gharib. Digital particle image velocimetry[J]. Experiments in Fluids, 1991,10:181-193
    [24] 冯月霞.基于DSP的视频图像目标快速识别与跟踪系统设计[D].中国科学院硕士研究生论文,2001
    [25] 孟哲、陈国靖.DSP芯片的选型.现代计算机[J],2000,89(4):51-52
    [26] 苏海冰、吴钦章.用SDRAM在高速数据采集和存储系统中实现海量缓存[J].光学精密工程,2002,10(5):462-465
    [27] 尹军、梁光明等.基于EPLD实现TMS320C5402与SDRAM接口[J].微处理机.2001,11(4):46-48
    [28] 申敏、郑建宏.DSP原理及其在移动通信中的应用[M].2001.9,第一版,人民邮电出版社:272-274
    [29] 汪安民.TMS320C54XXDSP实用技术[M].2002.7,第一版,清华出版社:34-36
    [30] 蒋建国.基于DSP的视频图像压缩系统的研究.合肥工业大学硕士研究生论文,2001
    [31] 候霞.点状目标实时跟踪定位技术的研究[D].武汉测绘科技大学硕士研究生论文,1999
    [32] 付忠良.图像阈值选取方法的构造[J].中国图像图形学报,2000,5(6):466-469
    [33] 刘文萍、吴立德.图像分割中闽值选取方法比较研究[J].模式识别与人工智
    
    能,1997,10(3):271-277
    [34] 王润生.图像理解[M].1995.10,第一版,国防科学技术出版社:88-102
    [35] 何斌、马天予、王运坚等.Visual C++数字图像处理[M].2002.12,第二版,人民邮电出版社:281-292
    [36] 徐锐.远距离目标定位技术的研究[D].武汉大学硕士研究生论文,2003
    [37] 李静.重心法在光电信号处理中的应用[J].光学技术,1999,3(2)57-59
    [38] 王新华、李宇光.图像分析与测量技术[M].1998.1,第一版,武汉测绘科技大学出版社:43-79
    [39] 王庆有、孙学珠.CCD应用技术[M].1993.3,第一版,天津大学出版社:17-67
    [40] 戴明桢、周建江.TMS320C54XDSP结构、原理及应用[M].2001.11,第一版,北京航空航天大学出版社:127-134
    [41] 刘益成.TMS320C54XDSP应用程序设计与开发[M].2002.5,第一版,北京航空航天大学出版社:306-310
    [42] 杨宜禾、周维真.成像跟踪技术导论[M].1990.5,第一版,西安电子科技大学出版社:53-89
    [43] S.B.grossman and R.B.Emmons. Performance analyses and size optimization of focal planes for Point-source tracking algorithm applications[J]. Optical Engineering, Vol.23, No.2, R167-177, March/April, 1984
    [44] Phil M.Salomon. Charge-coulpled devices(CCD) trackers for high-accuracy guidance applications[J]. Optical Engineering, Vol.20, NO. 1, R 135-142 January/February, 1981
    [45] Richard H.Stanton, Janes W.Alexander and Eduin W.Dennison. Optical tracking using charge-coupled devices[J]. Optical Engineering, Vol.26, No.9, P.930-938, 1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700