海上溢油遥感图像的边缘检测算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国航海事业、海洋石油开发和沿海经济的迅速发展,溢油事故和不合法的废油排放频频发生。这些问题严重地威胁着海洋环境并造成巨大的经济损失。所以,溢油的及时监测、识别、回收和清理工作显得十分重要。遥感技术的迅猛发展使得人们通过遥感手段来监测和识别溢油成为可能,大量针对遥感数字图像处理的技术也应运而生。其中,图像边缘检测技术显得尤为重要,因为无论溢油的识别,位置的确定或者溢油量的获取,我们都需要首先确定溢油区域的边界信息。由于溢油遥感图像通常存在大量的条纹、斑点噪声,边界模糊,溢油区和海水区对比度较低以及灰度不均匀性等问题,使得现存的边缘检测方法很难获得精确的边缘检测结果。本课题以溢油遥感图像为重点研究对象,对图像边缘检测的发展情况,现状进行了深入、系统的探讨和研究,创新性地提出了3种边缘检测算法。具体工作可概括如下:
     1.借鉴了传统边缘检测方法的思路即:候选边缘点的确定,阈值去噪和边缘连接三个过程,且针对阈值去噪过程中常用的全局阈值算法的缺陷提出了一种动态分块阈值去噪算法,该算法考虑了局部边缘的梯度信息对阈值的影响,避免了在使用全局阈值算法时由微弱精细边缘形成的局部极大值会随着由灰度不均匀、噪声等产生的极大值一起被滤除掉,从而更加准确的确定了真实的边缘点,且对候选边缘图像中存在的伪边缘和噪声具有较好的抑制能力。在边缘连接的过程中,针对GDNI边缘连接方法在噪声和模糊边界的干扰下容易产生误连接的问题,提出一种改进的GDNI边缘连接算法,该算法综合利用了边缘终断点间的灰度信息,欧几罩德距离信息以及方向信息,实现了对终断边缘点的准确连接。实验结果表明,提出的两种算法的结合较好地实现了具有低对比度、弱噪声问题的溢油遥感图像的边缘检测,且具有很好的实时性。
     2.充分利用区域可扩展拟合模型RSF和全局最小化主动轮廓模型GMAC各自的优势,提出了一种新的基于区域可扩展的全局主动轮廓边缘检测模型(RSF-GAC)。该模型在全局最小化框架下引了图像的边缘信息和局部区域信息,既能够避免能量函数的演化陷入局部极小值,又能够抑制图像中存在的噪声、灰度不均匀性和低对比度等问题。在曲线演化和数字最小化的过程中,引入了基于加权全变分的对偶规则,将RSF-GAC模型的最小化问题转化成一个迭代过程,并对数字化迭代过程进行了文字描述。与传统的基于水平集的曲线演化方法相比,基于加权全变分对偶规则的最小化方法不需要定义初始轮廓,实现更简单,曲线收敛更快,更准确。实验结果证明,提出的RSF-GAC边缘检测模型对于具有低对比度、强噪声、弱灰度不均匀性问题的溢油遥感图像都能够获得较理想的边缘检测结果,且与其它算法相比,具有较少的控制参数、较高的精确性和较快的收敛速度。
     3.由于溢油遥感图像中会存在各种程度的灰度不均匀性的问题,而现存的主动轮廓边缘检测模型无法很好的处理该问题,基于此本文提出一种健壮的基于局部高斯拟合和灰度不均匀性纠正的主动轮廓边缘检测模型LGF-IHC。首先对具有灰度不均匀性的图像用数学方法来描述,并尝试建立一个基于局部高斯拟合和灰度不均匀性纠正的区域能量模型,然后结合测地线主动轮廓模型的边缘梯度信息构造了一个新颖、健壮的LGF-IHC主动轮廓边缘检测模型。从理论上借用了Chan的全局最小化优化思想来求得LGF-IHC模型的全局极小解。在数字最小化和曲线演化过程中,运用了基于加权全变分的对偶规则,快速、稳定地实现了LGF-IHC模型的全局最小化迭代过程。通过大量的实验证明了提出的LGF-IHC模型不仅能够有效的实现具有低对比度和强噪声问题的溢油遥感图像的边缘检测,还能够纠正图像中存在的各种程度的灰度不均匀性问题,从而得到理想的恢复图像。与基于动态分块阈值和改进的GDNI边缘连接的边缘检测算法以及基于RSF-GAC模型的边缘检测算法相比,基于LGF-IHC模型的边缘检测算法具有更高的精确性和更强的鲁棒性。算法的扩展证明了提出的LGF-IHC模型还能够处理目标和背景具有相同均值但不同方差的一类特殊图像,且在军事和医学图像中的应用进一步证明了LGF-IHC模型良好的可扩展性。
With the current maritime cause, offshore oil development and rapid economic development along the coast, oil spills accidents and illegal oily discharge occur frequently on the sea, and these situations represent a serious threat to the marine environment and cause great losses of energy sources. Early detection, monitoring, containment, and cleanup of oil spill are crucial for the protection of the environment. It is possible to monitor and identify oil spill with the rapid development of remote sensing technology, and many image processing techniques of remote sensing have came into being. In particular, the technology of edge detection is an important tool for the location and acreage calculation of oil slick on the sea by aerial remote sensing. Whenever we need to identify oil spill, confirm the location or get the shape and acreage of oil spill, we have to get the edge information of oil slick images firstly. Due to the complexity of oil spill remote sensing image, it is very difficult to gain accurate edge detection results by conventional edge detection methods. Therefore, further research is still needed. In this research, we mainly focus on the edge detection of the oil spill remote sensing images, and put forward three innovative edge detection algorithms, the main works in this thesis can be summarized as follows:
     1. Considering conventional edge detection methods are focused on three main problems:determination of candidate edge points, threshold denoising and edge linking, we propose a new edge detection method based on a dynamic block threshold denoising algorithm and an improved GDNI edge linking algorithm. Comparing with the current common global threshold algorithm, the proposed dynamic block threshold algorithm considers the local information of edge gradient and avoids the problems while using global threshold, thereby determining the true edge points more accurately. In the process of edge linking, we propose an improved GDNI edge linking algorithm which uses a cost function based on the weighting combination of Euclidean distance, intensity information and angle information of edge ending points and finally to improve the edge linking decision. We demonstrate through several experiments that the combination of the two algorithms achieves good edge detection results for oil slick remote sensing images with low contrast and weak noise, and has a better real-time performance.
     2. A novel global active contour edge detection model (RSF-GAC) based on region scalable fitting is proposed, which makes full use of advantages of RSF model and GMAC model. RSF-GAC model introduces the edge information of image and local region information under the framework of GMAC, so RSF-GAC model can avoid the existence of local minima and meanwhile deals with the intensity inhomogeneity, noise, and weak edge boundaries exiting in images. In the process of the active contour evolving toward object boundaries and numerical minimization, a dual formulation based on the weighting total variation is used for converting the minimization problem of RSF-GAC into an iterative process and overcoming drawbacks of curve evolution method based on the usual level set and gradient descent method so that the process of minimization can be much easier and and our algorithm is independent of the initial position of the contour. The numberical iterative process has been described literally. Large numbers of experiment results have shown that the proposed RSF-GAC model outperforms other algorithms in terms of the efficiency and accuracy with satisfactory results of edge extraction for oil slick images with low contrast, strong noise and weak intensity inhomogeneity.
     3. Oil slick remote sensing images ususlly have a serious problem of intensity inhomogeneity. The existing active contour models can not deal with the problem very well, so a robust active contour model is proposed based on the local Gaussian fitting and the correction of intensity inhomogeneity. Firstly, we describe the image with intensity inhomogeinty by using a common mathematical model, and try to establish a region energy model based on the local Gaussian distribution. Finally a novel and robust LGF-IHC edge detection model is constructed by combining the established region energy model and the geodesic active contour model. In the process of seeking the minimum solution of LGF-IHC energy model, we use the Chan's global minimum optimization theory. In the process of the active contour evolving toward object boundaries and numerical minimization, a dual formulation based on the weighting total variation is used and implements global minimization iteration of the LGF-IHC model fast and stably. Large numbers of experiment results have shown that the proposed LGF-IHC model can be robust to the high noise and severe intensity inhomogeneity existing in oil slick remote sensing images. In addition, the accurate edge detection of oil slick region and the correction of intensity inhomogeneity are simultaneously achieved via the proposed LGF-IHC model. Compared with the dynamic block threshold denoising algorithm and an improved GDNI edge linking algorithm and the RSF-GAC model, LGF-IHC edge detection model has higher accuracy and robustness, furthermore, it will have a better application prospect in the edge detection of oil slick remote sensing image.
引文
[1]焦阳.海上溢油遥感图像智能边缘检测算法的研究:(硕十学位论文).辽宁:大连海事大学,2005.
    [2]Massin J M. Remote sensing for the control of marine pollution. Plenum Press, New York,1984:165.
    [3]Tseng W Y, Chiu L S. Avhrr observations of Persian Gulf oil spills. Proceedings of International Geoscience and Remote Sensing Symposium,1984,2:779-782.
    [4]夏文香,林海涛.海上溢油的污染控制技术.青岛建筑工程学院学报,2004,25(1):56.
    [5]Zhang G Y, Yan P, Zhao L Z, Li R et al.Analytical study on flow process of floating-oil recovery device from oil-contaminated seawater by myd method. Journal of Hydrodynamics, Series B,2007,19(2):195-200.
    [6]刘功臣,姜勇,郑和平等.溢油应急培训教程.北京:人民交通出版社,2004.
    [7]安居白,张永宁.发达国家海上溢油遥感监测现状分析.交通环保,2002,23(3):27.
    [8]安居白.航空遥感探测海上溢油的技术.交通环保,2002,23(1):24-26.
    [9]赵冬至,张存智,徐恒振.海洋溢油灾害应急响应技术研究.北京:海洋出版社,2006.
    [10]韦玉春,汤国安,杨昕等.遥感数字图像处理教程.北京:科学出版社,2007.
    [11]李弼程,彭天强,彭波等.智能图像处理技术.北京:电子工业出版社,2004.
    [12]Lee J, Haralick R, Shapiro L. Morphologic edge detection. IEEE Transactions on Robotics and Automation,1987,3(2):142-156.
    [13]Torre V, Poggio T. On Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(2):147-16.
    [14]董红燕.边缘检测的若干技术研究:(博士学位论文).长沙:国防科技大学,2008.
    [15]Gonzalez RC,Richard EW著,阮秋琦等译.数字图像处理(第二版).北京:电子工业出版社,2002.
    [16]Julerz B. Method of coding TV signals based on edge detection. Bell System Technical Journal,1959,4(38):1001-1020.
    [17]Roberts L G. Machine perception of three-dimensional solids. Optimal and Electro-Optimal Information Processing, MA:MIT Press,1965:99-197.
    [18]Prewitt J. Object enhancement and extraction. In Picture Processing and Psychopictorics, Academic Press, New York,1970.
    [19]Haralick R. Digital step edges from zero crossing of second directional derivatives. IEEE Transactions on Pattern Analysis and Machine Intelligence,1984, 6(1):58-68.
    [20]Rosenfeld A, Thurston M. Edge and curve detection for visual scene analysis. IEEE Transactions on Computer,1971,20:512-519.
    [21]Marr D. Theory of edge detection. Proceedings of the Royal Society of London, Series B, Biological Sciences,1980,207(1167):187-217.
    [22]Witkin A P. Scale-space filtering. Proceedings of the eighth International Joint Conference Artificial Intelligence,1983, (2):1019-1021.
    [23]李庆,梁艳.基于三次B样条小波的图像边缘检测技术研究.武汉理工大学学报,2007,29(12):1-3.
    [24]Guan Y P. Automatic extraction of lips based on multi-scale wavelet edge detection. Computer Vision,2008,2(1):23-33.
    [25]Jiang W, Lam K M, Shen T Z. Efficient edge detection using simplified Gabor wavelets. IEEE Transactions on Systems, Man and Cybernetics,2009,39(4):1036-1047.
    [26]Williams D J, Shah M. Edge contours using multiple scales. Computer Vision, Graphics and Image Processing,1990,51:256-274.
    [27]Ducotter C, Fournel T, Barat C. Scale-adaptive detection and local characterization of edges based on wavelet transform. Signal Processing,2004, 84:2115-2137.
    [28]Bergholm F.Edge focusing, IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(6):726-741.
    [29]Pellegrino F A, Vanzella W, Torre V. Edge detection revisited. IEEE Transactions on Systems, Man and Cybernetics-part B:Cybernetics,2004,34(3):1500-1518.
    [30]Pal S K, King R A. On edge detection of X-ray images using fuzzy sets. IEEE Transactions on Pattern Analysis and Machine Intelligence,1983,5(1):69-77.
    [31]王倩,阮海波.快速模糊边缘检测算法.中国图象图形学报.2001,6(1):92-95.
    [32]孔样维,谢存,徐蔚然.基于多特征和模糊推理的边缘检测.电子学报.2000,28(6):36-39.
    [33]Kass M, Witkin A, Terzopoulos D. Snakes:active contour models. International Journal of Computer Vision,1987,1(4):321-331.
    [34]Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal computer vision,1997,22(1).61-79.
    [35]Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics,1989, 42(5):577-685.
    [36]Chan T, Vese L. Active contours without edges. IEEE Transactions on Image Processing,2001,10(2):266-277.
    [37]Li C M, Xu C, Gui C et al. Level set evolution without re-initialization:a new variational formulation. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2005,1:430-436.
    [38]Li C M, Kao C, Gore J et al. Implicit active contours driven by local binary fitting energy. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2007.
    [39]Li C M, Kao C, Gore J. Minimization of region-scalable fitting energy for image segmentation. IEEE Transactions on Image Processing,2008,17(10):1940-1949.
    [40]Change L Y, Chen K S, Chen C F et al. A Multiplayer-multiresolution approach to detection of oil slicks using ERS SAR image. Proceedings of the 17th Asian Conference of Remote Sensing,1996, Sri Lanka.
    [41]Chen C F, Chen K S, Change L Y et al. The use of satellite imagery for monitoring coastal environment in Taiwan. International Geoscience and Remote Sensing Symposium, 1997, (3):1424-1426.
    [42]Solberg A H S, Storvik G, Solberg R et al. Automatic detection of oil spills in ERS SAR images. IEEE Transactions on Geoscience and Remote Sensing,1999, 37(4):1916-1924.
    [43]Solberg A H S, Dokken S T, Solberg. Automatic detection of oil spills in Envisat, Radarsat and ERS SAR images. International Geoscience and Remote Sensing Symposium, 2003,4:2747-2749.
    [44]Solberg A H S, Brekke C. Oil spill detection in RADARSAT and ENVISAT SAR images. IEEE Transactions on Geosciences and Remote Sensing,2007,45(3):746-755.
    [45]Liu A K, PENG C Y, Chang S Y. Wavelet analysis of satellite images for costal watch. IEEE Journal of Oceanic Engineering,1997,22(1):9-17.
    [46]Wu S Y, Liu A K. Towards an automated ocean feature detection, extraction and classification scheme for SAR imagery. International Journal of Remote Sensing,2003, 24(5):935-951.
    [47]Kanaa T F N, Tonye E, Mercier G et al. Detection of Oil Slick Signatures in SAR Images by Fusion of Hysteresis Thresholding Responses. International Geoscience and Remote Sensing Symposium,2003, (4):2750-2752.
    [48]Gasull A, Fabregas X, Jimenez J et al. Oil spills detection in SAR images using mathematical morphology. European Signal Processing Conference,2002, (1):25-28, Toulouse, France.
    [49]Galland F, Refregier P, Germain 0. Synthetic aperture radar oil spill segmentation by stochastic complexity minimization. IEEE Geoscience and Remote Sensing Letter,2004,1 (4):295-299.
    [50]Karantzalos K, Argialas D. Automatic detection and tracking of oil spills in SAR imagery with level set segmentation. International Journal of Remote Sense,2008, 29(21):6281-6296.
    [51]陈巍巍.应用BP融合模型探测海上溢油遥感图像边缘的研究:(硕士学位论文).辽宁:大连海事大学,2003.
    [52]An J B. Combining fuzzy theory and a genetic algorithm for satellite image edge detection. International journal of remote sensing,2006,27(12-14):3013-3024.
    [53]荀文龙.PCNN在溢油遥感图像边缘检测中的应用研究:(硕士学位论文).辽宁:大连海事大学,2008.
    [54]Canny J. A computational approach to edge detection. IEEE Transactions on Pattern analysis and Machine Intelligence,1986,8(6):815-822.
    [55]Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics,1979,9(1):6266.
    [56]何斌,马天予,于运坚等.Visual C++数字图像处理.北京:人民邮电出版社,2001.
    [57]Kittler J, Illingworth J. Mininum error thresholding. Pattern Recognition,1986, 19(1):257-261.
    [58]Pun T. A new method for gray-level picture thresholding using the entropy of the histogram. Signal Processing,1980,2(3):223-237.
    [59]Kapur J N. Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics and Image Processing,1985,29(3):273-285.
    [60]Tony T. Adaptive wavelet estimation:a block thresholding and oracle inequality approach. The Annals of Statistics,1999,27(3):898-924.
    [61]彭莉,唐炬,张晓星.一种基于复小波变换提取PD信号的分块自适应复阈值算法.电工技术学报,2008,23(7):36-39.
    [62]陶硕.变电站红外图像的分割和识别研究:(博士学位论文).陕西:西安科技大学,2008.
    [63]王小鹏,王紫婷.基于视觉感知的双层次阈值边缘连接方法.计算机应用,2006,6(8):1845-1847.
    [64]赵于前,桂卫华,陈真诚.基于自适应数学形态学的医学图像边缘连接.计算机工程,2006,32(22):17-19.
    [65]董梁.基于哈夫变换的图像边缘连接.现代电子计术,2008,31(18):149-150.
    [66]Ballard D Ⅱ, Christopher M B. Computer Vision. Prentice Hall Professional Technical Reference,1982.
    [67]Miller F L, Maeda J, Kubo H et al. Template based method of edge linking using a weighted decision. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,1993,3:1808-1815.
    [68]Hajjar A, Chen T. A VLSI architecture for real-time edge linking. Transactions on Pattern Analysis and Machine Intelligence,1999,21(1):89-94.
    [69]Ghita O, Whelan P. Computational approach for edge linking. Journal of Electronic Imaging,2002,11 (4):479-485.
    [70]Wang Z J, Zhang H. Edge linking using geodesic distance and neighborhood information. Proceedings of the 2008 IEEE/ASME International conference on advanced intelligent mechatronics, Xi'an, China,2008.
    [71]Kimmel R, Amir A, Bruckstein A. Finding shortest paths on surfaces using level set propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1995, 17(6):635-640.
    [72]Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation:a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence,1995, 17(2):158-175.
    [73]Xu C, Prince J. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing,1998,7(3):359-369.
    [74]Xu C, Prince J. Generalized gradient vector flow external ` forces for active contours. Signal Process,1998,71 (2):131-139.
    [75]Ronfard R. Region-based strategies for active contour models. International Journal of Computer Vision,1994,13(2):229-251.
    [76]Yezzi A, Tsai A, Willsky A. A statistical approach to snakes for bimodal and trimodal imagery. Proceedings of the Seventh IEEE International Conference on Computer Vision,1999,2:898-903, Washington, DC, USA.
    [77]Samson C, Blanc-Feraud L, Aubert G et al. A variational model for image classification and restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(5):460-472.
    [78]Tsai A, Yezzi A, Willsky A S. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Transactions on Image Processing,2001,10(8):1169-1186.
    [79]Paragios N, Deriche R. Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision,2002, 46(3):223-247.
    [80]Vese L, Chan T. A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision,2002, 50(3):271-293.
    [81]Rousson M, Deriche R. A variational framework for active and adaptive segmentation of vector valued images. In:IEEE Work-shop on Motion and Video Computing, 2002:52-56.
    [82]Piovano J, Rousson M, Papadopoulo T. Efficient segmentation of piecewise smooth images. Proceedings of the first International Conference on Scale Space and Variational Methods in Computer Vision,2007:709-720.
    [83]Li C, Huang R, Ding Z et al. A variational level set approach to segmentation and bias correction of medical images with intensity inhomogeneity. Proceedings of Medical Image Computing and Computer Aided Intervention, Lecture Notes in Computer Science, Part Ⅱ, Springer, Berlin,2008:1083-1091.
    [84]Wang L, Li C, Sun Q et al. Brain MR image segmentation using local and global intensity fitting active contours/surfaces. Proceedings of Medical Image Computing and Computer Aided Intervention, Lecture Notes in Computer Science, Part Ⅰ, Springer, Berlin,2008,5241:384-392.
    [85]Wang L, Li C, Sun Q et al. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Computerized Medical Imaging and Graphics,2009,33(7):520-31.
    [86]Zhang K H, Song H, Zhang L. Active contours driven by local image fitting energy. Pattern Recognition,2010,43(4):1199-1206.
    [87]Wang X F, Huang D S, Xu H. An efficient local Chan-Vese model for image segmentation. Pattern Recognition,2010,43 (3):603-618.
    [88]Zhang K H, Song H, Zhang L. Active contours with selective local or global segmentation:A new formulationand level set method. Image and Vision Computing,2010, 28(4):668-676.
    [89]Jain K A, Zhong Y, Dubuisson-Jolly M. Deformable template models:a review. Signal Process,1998,71(2):109-129.
    [90]Cremers D, Rousson M, Deriche R. A review of statistical approaches to level set segmentation:integrating color, texture, motion and shape. International Journal of Computer Vision,2007,72(2):195-215.
    [91]He L, Peng Z, Everding B et al. A comparative study of deformable contour methods on medical image segmentation. Image Vision Computer,2008,26(5):141-163.
    [92]Savelonas M A, Iakovidis D K, Legakis I et al. Active Contours Guided by Echogenicity and Texture for Delineation of Thyroid Nodules in Ultrasound Images. IEEE Transactions on Information Technology in Biomedicine,2009,13(4):519-527.
    [93]Al-Diri B, Hunter A, Steel D. An Active Contour Model for Segmenting and Measuring Retinal Vessels. IEEE Transactions on Medical Imaging,2009,28(9):1488-1497.
    [94]Besson S J, Barlaud M, Aubert G. Detection and tracking of moving objects using a new level set based method. Proceedings of the 15th International Conference on Pattern Recognition,2000,3:1100-1105.
    [95]Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(3):266-280.
    [96]Gui J, Rao X, Ying Y. Fruit shape detection by level set. Journal of Zhejiang University-Science A,2007,8(8):1232-1236.
    [97]谢振平,王士同.融合模糊聚类的Mumford-Shah模型. 电子学报,2008,36(1):110-116.
    [98]方亮,陆佳佳,叶玉堂等.一种基于Mumford-Shah模型的红外图像边缘检测方法.强激光与粒子束,2007,19(4):566-570.
    [99]Galland F, Philippe R, Olivier G. Synthetic Aperture Radar oil spill segmentation by stochastic complexity minimization. IEEE Geoscience Remote Sensing Letter,2004, 1(4):295-299.
    [100]Xu C, Pham D L, Prince J L. Image segmentation using deformable models. SPIE handbooks on Medical imaging, volume 3:Medical image analysis, May,2000.
    [101]陈金男.基于水平集方法的图像分割研究:(硕士学位论文).河北:燕山大学,2007.
    [102]刘军伟.基于水平集的图像分割方法研究及其在医学图像中的应用:(博士学位论文).安徽:中国科学技术大学,2009.
    [103]Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics, 1988,79:12-49.
    [104]Zhang K H, Zhang L, Song H H et al. Active contours with selective local or global segmentation:a new formulation and level set method. Image and Vision Computing, 2010,28 (4):668-676.
    [105]Zhang K H, Song H H, Zhang L. Active contours driven by local image fitting energy. Pattern Recognition,2010,43(4):1199-1206.
    [106]Wang X F, Huang D S, Xu Huan. An efficient local Chan-Vese model for image segmentation. Pattern Recognition,2010,43(3):603-618.
    [107]Wang L, Li C M, Sun Q S et al. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Computerized Medical Imaging and Graphics,2009,33:520-531.
    [108]Tsai A, Yezzi A, Willsky A S. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Transactions on Image Processing,2001,10(8):1169-1186.
    [109]Vese L, Chan T. A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision,2002, 50(3):271-293.
    [110]Michailovich 0, Rathi Y, Tannenbaum A. Image segmentation using active contours driven by the bhattacharyya gradient flow. IEEE Transactions on Image Processing, 2007,16(11):2787-2801.
    [111]谢强军.变分水平集理论及其在医学图像分割中的应用:(博士学位论文).杭州:浙江大学,2009.
    [112]Chan T. Algorithms for finding global minimizes of image segmentation and denoising models. SIAM Journal on Applied Mathematics,2004,66(5):1632-1648.
    [113]Bresson X, Chan T. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging,2008,2(4): 455-484.
    [114]Chan T, Golub G, Mulet P. A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal of Scientific Computing,1999, 20(6):1964-1977.
    [115]Carter J. Dual methods for total variation-based image restoration:[doctoral dissertation], Berkeley:Univ. of California,2001.
    [116]Chambolle A. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision,2004,20(1-2):89-97.
    [117]Aujol J F, Chambolle A. Dual norms and image decomposition models. International Journal of Computer Vision,2005,63(1):85-104.
    [118]Aujol J F, Gilboa G, Chan T et al. Structure-texture image decomposition—modeling, algorithms, and parameter selection. International Journal of Computer Vision,2006,67(1):111-136.
    [119]Wu J, Li J, Liu J, Tian J. Infrared image segmentation via fast fuzzy c-means with spatial information. Proceedings of the IEEE International Conference on Robotics and Biomimetics,2004:742-745, Shenyang, China.
    [120]Brinkmann B H, Manduca A, Robb R A. Optimized homomorphic unsharp masking for MR inhomogeneity correction. IEEE Transactions Medical Imaging,1998, 17(2):161-171.
    [121]Russ J C. The Image Processing Handbook,2nd edition. CRC Press, Boca Raton, 1995.
    [122]ToMazevic D, Likar B, Pernus F. Comparative evaluation of retrospective shading correction methods. Journal of Microscopy,2002,208(3):212-223.
    [123]Lewis E B, Fox N C. Correction of differential intensity inhomogeneity in longitudinal MR images. Neuroimage,2004,23(1):75-83.
    [124]Vokurka E A, Watson N A, Watson Y et al. Improved high resolution MR imaging for surface coils using automated intensity non-uniformity correction:Feasibility study in the orbit. Journal of Magnetic Resonance Imaging,2001,14(5):540-546.
    [125]Zhuge Y, Udupa J K, Liu J et al. Scalebased method for correcting background intensity variation in acquired images. Proceedings of 2002 SPIE Medical Imaging, 2002,4686:1103-1111.
    [126]Hernandez J A, Mora M L, Schiavi E et al. RF inhomogeneity correction algorithm in magnetic resonance imaging. Proceedings of the 5th International Symposium on Biological and Medical Data Analysis,2004,3337:1-8.
    [127]Vemuri P, Kholmovski E G, Parker D L et al. Coil sensitivity estimation for optimal SNR reconstruction and intensity inhomogeneity correction in phased array MR imaging. Proceedings of 19th International Conference on Information Processing in Medical Imaging,2005,3565:603-614.
    [128]Likar B, Viergever M A, Pernus F. Retrospective correction of intensity inhomogeneity by information minimization. IEEE Transactions on Medical Imaging, 2001,20(12):1398-1410.
    [129]Solanas E, Thiran J P. Exploiting voxel correlation for automated MRI bias field correction by conditional entropy minimization. Proceedings of the 4th Medical Image Computing and Computer-Assisted Intervention,2001,2208:1220-1221.
    [130]Learned-Miller E G, Ahammad P. Joint MRI bias removal using entropy minimization across images. Proceedings of Neural Information Processing Systems Conference, Vancouver, Canada,2004.
    [131]Vovk U, Pernus F, Likar B. MRI intensity inhomogeneity correction by combining intensity and spatial information. Physics in Medicine and Biology,2004, 49(17):4119-4133.
    [132]Studholme C, Cardenas V, Song E et al. Accurate template-based correction of brain MRI intensity distortion with application to dementia and aging. IEEE Transactions on Medical Imaging,2004,23(1):99-110.
    [133]Leemput K, Maes F, Vandermeulen D et al. Automated model-based bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging,1999, 18(10):885-896.
    [134]Wells W, Grimson E, Kikinis R et al. Adaptive segmentation of MRI data. IEEE Transactions on Medical Imaging,1996,15(4):429-442.
    [135]Li C M, Huang R, Ding Z et al. A variational level set approach to segmentation and bias correction of medical images with intensity inhomogeneity. Proceedings of 11th International Conference on Medical Image Computing and Computer-Assisted Intervention,2008,5242:1083-1091.
    [136]Zhang K H, Zhang L, Zhang S. A variational multiphase level set approach to simultaneous segmentation and bias correction. Proceedings of IEEE International Conference on Image Processing,2010:4105-4108.
    [137]Vovk U, Pernus F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Transactions on Medical Imaging,2007,26(3):405-421.
    [138]Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal Computer Vision,1997,22(1):61-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700