面向AUAV自主控制的图像融合方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代防御技术的发展,攻击型无人飞行器(Attack Unmanned AerialVehicle,AUAV),需要不断提高其自主控制能力,而基于图像融合的态势感知是实现自主控制的前提。由于战场环境日益复杂,如何设计有效的图像融合方法,提高AUAV对目标的识别能力和对威胁的规避能力,增强其智能程度,是一个具有重要理论价值与军事意义的课题。
     图像融合在多维空间综合处理图像信息,形成具有决策意义的融合结果。目前的研究方法多是基于先融合再评价的模式,因而无法使图像融合的结果达到最优。为了提高AUAV多传感器图像融合的性能,论文采用多目标优化理论,对AUAV图像融合的关键环节(包括预处理、融合算法、目标定位等问题)展开研究。论文的研究工作和主要创新点如下:
     1)研究了基于图像融合的AUAV自主控制系统。介绍了自主控制的概念和层次划分,分析了基于图像融合的AUAV自主控制系统的组成、功能和结构,并设计了相应的系统流程,并将其分为态势感知、动态重规划和任务执行三个阶段,其中态势感知包括图像预处理、图像配准、图像融合、目标识别与定位等环节;动态重规划包括控制策略选择和实时航迹规划两步。
     2)提出了基于离散小波变换(Discrete Wavelet Transform,DWT)和快速离散曲波变换(Fast Discrete Curvelet Transform,FDCT)的AUAV图像融合预处理方法。针对目前图像去噪方法多不能实现最佳的去噪效果等问题,研究了基于多目标优化算法的图像去噪方法,给出了图像去噪的评价指标,提出了基于DWT和基于FDCT的图像去噪优化算法。实验结果表明,两种方法都可以实现Pareto最优的图像去噪效果,且两者各有优势,DWT法速度较快,而FDCT法去噪效果较好。在一定条件下,如机载传感器成像条件保持不变,去噪阈值可以设为定值,这样得到图像可实时进行处理并输出结果,满足实际应用的需要。
     3)提出了基于多目标优化理论的AUAV图像融合方法。首先设计了图像融合的有效评价准则,即分别从单幅图像质量、与源图像关系和与参考图像关系三个角度出发,选择并设计了一组有效的评价准则,设计了新的交互信息量指标,避免了信息的重载,并根据指标相关度和指标选取原则对图像融合的指标进行评价和选取;然后以多个评价指标作为优化目标,进行融合参数的优化搜索,并对图像融合的空域模型和小波域模型进行了统一,提出了两种融合规则,简化了图像融合模型的设计;最后进行了多聚焦图像融合、盲图像融合、多分辨和彩色图像融合实验,并根据不同的融合图像进行相应的算法设计和评价指标设计,实验结果表明所提方法不但有效,而且能够得到最优的评价指标。
     4)提出了最优的图像融合小波分解层数计算方法,并研究了图像融合小波基函数的选取问题。为了实现最优的图像融合,小波分解层数和小波基函数的选择都是很重要的。基于多目标优化理论,提出了用于图像融合的小波分解层数优化方法。实验结果表明最优的分解层数并不是一个固定值,它随源图像的特性发生改变。一般地,最优分解层数随着源图像的尺寸而增加。但无论源图像有何种特性,用多目标优化的方法都可以获得最优的分解层数,而且该方法可以获得Pareto最优的融合结果,使各评价指标最大化。对最优的小波域图像融合而言,小波基函数的选取也是非常重要的。根据图像融合的特点给出了小波基函数的选取原则,为使结果更有意义,计算较为简便,并避免图像重构失真,采用Haar小波函数作为基函数。
     5)提出了基于变形模板的融合图像目标识别与跟踪方法。在融合图像基础上,研究了目标的提取与定位问题。首先分析了变形模板用于目标识别与跟踪问题的优势,由于变形模板具有形式化的描述参数,因此可以很好的定义各种形状的目标。然后设计了典型目标的解析参数式变形模板,定义了变形模板的能量函数,将其化为单目标优化问题进行求解。提出了基于变形模板的目标识别与定位方法,通过对能量函数的优化达到目标匹配目的,给出了不同目标定位方法及其使用条件。最后研究了基于变形模板的目标跟踪算法,实验表明变形模板方法能够实现快速的目标搜索、识别、定位和跟踪。
     6)提出了基于PSO的多目标优化算法MOCPSO。借鉴不同的多目标优化算法思想,提出了适合不同优化目标和优化问题的MOCPSO算法(Multi-objectiveConstriction Particle Swarm Optimization),放弃用自适应网格进行种群Pareto最优解的控制,设计了一种新的分层拥挤算子进行种群的多样性保持,并引入自适应变异操作,从而提高算法寻优能力,避免早期收敛,使Pareto最优解尽可能均匀分布于Pareto前端,最后用均匀设计进行算法控制参数的优化设计。分析了多目标优化算法的评价准则,并给出了典型的测试函数,最后通过实验考察了算法的性能,结果表明算法对不同的多目标优化问题都具有较强的适应性。
With the development of modern defense techniques, the abilities of autonomous control of attack unmanned aerial vehicles (AUAV), such as cruise missile, attack unmanned plane, urgently need to be improved, which can help to enhance the intelligence of AUAV. In order to realize the autonomous control of AUAV, the situation awareness based on image fusion is the first step. Because of the high complexity of battle environment, how to design an effective method of image fusion has become a problem with both great significant theoretical value and great practical value, which can improve the abilities of target recognition and threat elusion, and enhance the intelligent degree of AUAV.
     Image fusion can deal with the images and information in multiple dimensions, and form a result for decision making. Aiming to overcome the limitations of traditional image fusion that cannot realize the optimal fusion because of the mode of the fusion before the evaluation, the multi-objective optimization image fusion methods where the evaluation before the fusion are proposed and designed in this thesis. In this architecture, image fusion is divided into preprocessing, fusion and target location to realize the optimal image fusion. The main work and the creative contribution of this thesis are as follows:
     1) The system structure of autonomous control of AUAV based on image fusion is built. First the concept of autonomous control is defined and the autonomy level is classified; then the structure, components, functions of autonomous control system of AUAV are analyzed, the system flow of autonomous control based on image fusion, which are divided into three parts, i.e. situation awareness, dynamic replanning, and mission conduction, where situation awareness includes image preprocessing, image registration, image fusion, image recognition and target location, and dynamic replanning includes strategy selection and real-time route planning.
     2) The methods of image fusion preprocessing based on DWT (Discrete Wavelet Transform) and FDCT (Fast Discrete Curvelet Transform) are proposed. Aiming at the shortcomings of current image denoising methods that can't realize the best denoising effect, the image denoising method based on multi-objective optimization is researched, the multiple criteria for image denoising are presented, the methods of image denoising based on DWT and Fast DCT are proposed. The experimental results show the two method can realize the Pareto optimal denoising effect, but the two methods have their advantages themselves, the speed of DWT methods is higher, while the effect of FDCT methods is better. On condition that the imaging environment of AUAV is invariable, the thresholds of denoising can be set a fixed value, which can meet the requirement of applications, and give the effective solutions in time.
     3) A multi-objective optimization image fusion is proposed. The effective evaluation metrics is proposed from the view of image quality, the relation of the fused image to source images, and the relation of the fused image to the standard image. New conditional mutual information is proposed, which can avoid the information overloaded. The evaluation metrics are selected and designed according to the metric relativity and a certain selection rules. The multiple metrics are the optimization objectives, and the fusion parameters are selected as the decision variables and optimized by a multi-objective optimization algorithm. The fusion models in space domain and DWT domain are uniformed and simplified, two fusion rules are designed, finally the experiments for multi-focus image fusion, blind image fusion, multi-resolution image fusion, and color image fusion are conducted, and the methods and evaluation metrics of image fusion is designed according the characteristics of different images. Experimental results indicate that the fusion method based on multi-objective optimization is suitable for many types of pixel-level image fusion and can realize the Pareto optimal image fusion.
     4) The method of optimizing the decomposition levels for wavelet-based image fusion is presented and the selection of wavelet bases is analyzed. In order to realize the optimal wavelet-based image fusion, the decomposition levels and wavelet base selection are both important. A multi-objective optimization approach to determine the optimal number of decomposition levels is presented. In the experiments it is found that the optimal decomposition level is not a fixed value, but rather, changes with the characteristics of the original images. In general, fusion of images with larger resolution requires a higher number of decomposition levels. The experimental results also show that using the multi-objective optimization can effectively obtain the optimal number of decomposition levels make each metric be maximized. For there exist too many wavelet bases, the selection criteria of wavelet bases are given. In order to make more meaningful results, simplify the computation, and avoid the reconstruct distortion, the "Haar" wavelet is selected the wavelet base.
     5) A method of target recognition and tracking based on deformable templates in a fused image is proposed. First the advantage and challenges of deformable templates in target recognition and tracking are analyzed. Because the deformable template has formalized description parameters, it can define different targets in all kinds of shapes. Then different target templates are designed, and the energy functions are defined, the template matching is converted into single objective problem. The target recognition based on the deformable template is presented, which can reach the target matching through optimizing the energy functions, and the different methods of target location are analyzed. The target tracking based on the deformable template is also researched, and experimental results show that the method based on the deformable template can search, recognize, locate, and track the target quickly.
     6) A novel multi-objective constriction particle swarm optimization (MOCPSO) is presented. Using different multi-objective optimization algorithms as reference, MOCPSO is proposed, which not only uses mutation operator to avoid earlier convergence, but also uses a new crowding operator to improve the distribution of nondominated solutions along the Pareto front, and uses the uniform design to obtain the optimal parameter combination. The sound evaluation criteria for multi-objective optimization algorithm are given, and some typical test functions are introduced. Experimental results show that MOCPSO has faster convergent speed and better search capacity than other multi-objective particle swarm optimization algorithms, especially when there are more than two objectives. MOCPSO is suitable to solve different multi-objective optimization problems.
引文
[1]Fahlstrom P G,Gleason T J.Introduction to UAV Systems,Second Edition[M].UAV Systems Inc.,Columbia,Midland,USA,1998.
    [2]李爱军.攻击型无人机探讨[J].航空科学技术,2002,(1):30-32.
    [3]刘永才.巡航导弹系列译文集(第十三分册)--任务规划技术[M].航天科工集团310所,2003.
    [4]Jones C and Guerlain S.Measuring the Effectiveness of a "Decision Matrix" for Missile Retargeting Decisions[A].Proceedings of 2004 IEEE Systems and Information Engineering Design Symposium[C].Charlottesville,VA,2004.
    [5]Antsaklis P J,Passino K M.An Introduction to Intelligent and Autonomous Control[M].Netherlands:Kluwer Academic Publishers,1993.
    [6]Pachter M,Chandler P R.Challenges of Autonomous Control[J].IEEE Control Systems,1998,18(4):92-97.
    [7]Boskovic J D,Prasanth R,Mehra R K.Multi-layer Architecture for Intelligent Control of Unmanned Aerial Vehicles[A].Proceedings of 1st Unmanned Aerospace Vehicles,Systems,Technologies,and Operations Conference and Workshop[C],Portsmouth,VA,AIAA,2002-3473:1-11.
    [8]Saridis G N.Machine Intelligent Robots:A Hierarchical Control Approach[A].Machine Intelligence and Knowledge Engineering for Robotic Applications[C].Springer-Verlag,Berlin,1987.
    [9]Ziegler B P.High Autonomy Systems:Concepts and Models[A].Proceedings of AI,Simulation,and Planning in High Autonomy Systems[C],1990.
    [10]Army Science Board,Ad Hoc Study on Human Robot Interface Issues[R],Arlington,Virginia,2002.
    [11]Clough B T.Relating autonomy to a task-Can it be done?[A]Proceedings of 1st Unmanned Aerospace Vehicles,Systems,Technologies,and Operations Conference and Workshop[C],Portsmouth,VA,AIAA,2002,3445 1-9.
    [12]Clough B T.Unmanned Aerial Vehicles-Autonomous Control Challenges,A Researcher's Perspective[A].Proceedings of 2nd AIAA "Unmanned Unlimited"Systems,Technologies,and Operations-Aerospace,Land,and Sea Conference,Workshop and Exhibition[C],San Diego.AIAA,2003,6504:1-15.
    [13]Huang H M,Messina E,Wade R,et al.Autonomy Measures for Robots[A].Proceedings of IMECE 2004[C].Nov,2004.
    [14]Mission planning Systems for Tactical Aircraft(Pre-flight and In-flight)[R],AGARD-AR-313,DEC 1992.
    [15]USAF Scientific Advisory Board.UAV Technologies and Combat Operations [R],Vol.1:Summary,SAB-TR-96-01,1996.
    [16]Churchman D A,Control Automation Task Allocation Program[A].Proceedings of National Aerospace and Electronics Conference[C].Dayton,OH,1994:587-597.
    [17]Chandler P R,Pachter M.Research Issues in Autonomous Control of Tactical UAVs[A].Proceedings of American Control Conference[C],1998:394-398.
    [18]Barfield F.Autonomous Collision Avoidance:the Technical Requirements[A].Proceedings of the IEEE NAECON[C],2000:808-813.
    [19]Cummings M L.Designing Decision Support Systems for Revolutionary Command and Control Domains[D].Ph.D.Dissertation,University of Virginia,2004.
    [20]Johnson T L;Sutherland H A,Bush S F,et al.The TRAC Mission Manager Autonomous Control Executive[A].Proceedings of IEEE Aerospace Conference [C].2001,2:639-646
    [21]Ward D G,Sharma M,Richards N D,et al.Intelligent Control of Unmanned Air Vehicles-Program Summary and Representative Results[A].Proceedings of 2nd AIAA "Unmanned Unlimited" Systems,Technologies,and Operations Aerospace,Land,and Sea Conference,Workshop and Exhibition[C],San Diego.AIAA,2003,6641:1-10.
    [22]Cheng Z Q.Dynamic Inversion and Model Predictive Control for Unmanned Aerial Vehicles[D].Ph.D.Dissertation,University of Ottawa,Canada,2004.
    [23]Reichard K M,Banks J,Eddie C C,et al.Intelligent Self-Situational Awareness for Increased Autonomy,Reduced Operational Risk,and Improved Capability [A].Proceedings of 1st Space Exploration Conference:Continuing the Voyage of Discovery[C].Orlando,Florida,AIAA,2005,2692:1-8.
    [24]周锐,李惠峰,陈宗基.无人战术飞行器的自主控制[J].控制与决策,2001,16(3):344-346.
    [25]张新国.从自动飞行到自主飞行-飞行控制与导航技术发展的转折和面临的挑战[J].飞机设计,2003,(3):55-59.
    [26]唐强,朱志强,王建元.国外无人机自主飞行控制研究[J].系统工程与电子技术,2004,26(3):418-422.
    [27]杨晖.无人作战飞机自主控制技术研究[J].飞行力学,2006,24(2):1-4.
    [28]Saridis G N.Self-Organizing Controls of Stochastic System[M].New York:Marcel Decker,1977.
    [29]Krozel J A.Search Problems in Mission Planning and Navigation of Autonomous Aircraft.[D].Ph.D.Dissertation,School of Aeronautics,Purdue University,Indiana,1987.
    [30]Kolitz S E.Computing Techniques in Mission Planning[A].AGARD Lecture Series on "New Advances in Mission Planning And Rehearsal Systems"[C],Oct 1993.
    [31]Brooks R A.A Robust Layered Control System for A Mobile Robot[J].IEEE J Robotics and Automation,1986,2(1):14-23.
    [32]朱淼良,杨建刚,吴明春.自主式智能系统[M].杭州:浙江大学出版社,2000.
    [33]Arkin R C.Behavior-Based Robotics[M].The MIT Press,1998.
    [34]Szczerba R J,Galkowski P,Glicksten I S,et al.Robust Algorithm for Real-Time Route Planning[J].IEEE Transactions on Aerospace and Electronic System,2000,6(3):869-878.
    [35]叶媛媛.多UCAV协同任务规划方法研究[D].长沙:国防科学技术大学博士学位论文,2005.
    [36]Daily M I,Farr T,and Elachi C.Geologic Interpretation from Composited Radar and Landsat Imagery[J].Photogrammetric Engineering and Remote Sensing,1979.45(8).1009-1116.
    [37]郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报,1994,16(3):1-10.
    [38]蒋定定,吕晓国,尚顶洪.战场图像情报侦察处理技术及其发展[J].现代防御技术,2006,34(6):71-73.
    [39]韩崇昭,朱洪艳,段战胜.多源信息融合[M].北京:清华大学出版社,2006.
    [40]唐小明,夏明革,李炳荣,何友.无人机载多传感器图像融合评述[J].海军航空工程学院学报,2005,20(5):505-509.
    [41]Zitova B,Flusser J.Image Registration Methods:A Survey[J].Image and Vision Computing,2003,21(11):977-1000.
    [42]刘同明,夏祖勋,解洪成.数据融合技术及其应用[M].北京:国防工业出版社,2000.
    [43]杨万海.多传感器数据融合及其应用[M].西安电子科技大学出版社,2004.
    [44]Pohl C,Genderen J L V.Multisensor Image Fusion in Remote Sensing:Concepts,Methods and Applications[J].International Journal of Remote Sensing,1998,19(5):823-854.
    [45]何友,王国宏,陆大金等.多传感器信息融合及应用[M].北京:电子工业出版社,2000.
    [46]Klein L A.Sensor and Data Fusion Concepts and Applications[M].SPIE Optical Engineering Press,Washington,1999.
    [47]Hall D L.An Introduction to Multisensor Fusion[A].Proceedings of International workshop on data fusion[C],Beijing,2002.
    [481 Sharma R K.Probabilistic Model-based Multisensor Image Fusion[D].Ph.D. Dissertation,Oregon Graduate Institute ot Science and Technology,1999.
    [49]Wang Z J,Ziou D,Armenakis C,et al.A Comparative Analysis of Image Fusion Methods[J].IEEE Transactions on Geosci Remote Sens,2005,43(6):1391-1402.
    [50]杨莘元,蒲书缙,马惠珠.多传感器目标识别的优化融合[J].宇航学报,2005,26(1):47-51.
    [51]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2006.
    [52]Coello Coello C A.Recent Trends in Evolutionary Multiobjective Optimization [A],Evolutionary Multiobjective Optimization:Theoretical Advances and Applications[C],Springer-Verlag,London,2005:7-32.
    [53]Pulido G T.On the Use of Self-Adaptation and Elitism for Multiobjective Particle Swarm Optimization[D].Ph.D.Dissertation,Electrical Engineering Department,CINVESTAV-IPN,Mexico,2005.
    [54]Zitzler E.Evolutionary Algorithms for Multiobjective Optimization:Methods and Applications[D].Ph.D.Dissertation,Swiss Federal Institute of Technology (ETH),Zurich,Switzerland,1999.
    [55]黄席樾,张著洪,何传江等.现代智能算法理论与应用[M].北京:科学出版社,2005,4.
    [56]Kirkpatrick S,Gelatt C D,Vecchi M P.Optimization by Simulated Annealing[J].Science,1983,220(4598):671-680.
    [57]Glover F,Laguna M.Tabu Search[M].Boston,MA:Kluwer Academic Publisher,1997.
    [58]Fogel D B.Evolutionary Computation:The Fossil Record[M].New York:IEEE Press,1998.
    [59]段海滨.蚁群算法原理及应用[M].北京:科学出版社,2005.
    [60]Kennedy J and Eberhart R C.Particle Swarm Optimization[A].Proceedings of IEEE International Conference on Neural Networks[C],Perth,Australia,1995,4:1942-1948.
    [61]高尚,杨静宇.群智能算法及其应用[M]北京:中国水利水电出版社,2006.
    [62]Hassan R,Cohanim B,Weck O.A Comparison of Particle Swarm Optimization and the Genetic Algorithm[A].Proceedings of 46th AIAA Structures,Structural Dynamics & Materials Conference[C].AIAA 2005,1897:1-13.
    [63]Zitzler E,Deb K,Thiele L.Comparison of Multiobjective Evolutionary Algorithms:Empirical Results[J].Evolutionary Computation,2000,8(2):125-148.
    [64]Knowles J D,Corne D W.Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy[J].Evolutionary Computation,2000,8(2):149-172.
    [65]Zitzler E,Laumanns M,Thiele L.SPEA2:Improving the Strength Pareto Evolutionary Algorithm[R].Technical Report 103,Gloriastrasse 35,CH-8092Zurich,Switzerland,2001.
    [66]Deb K,Pratap A,Agarwal S,et al.A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [67]张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策,2005,20(2):170-174.
    [68]Coello Coello C A,Pulido G T,and Lechuga M S.Handling Multiple Objectives with Particle Swarm Optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):256-279.
    [69]罗文彩,罗世彬,陈小前,王振国.多方法协作优化算法协作策略研究[J].系统工程与电子技术,2005,27(7):1238-1242.
    [70]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [71]Leung Y W,Wang Y P.Multiobjective Programming Using Uniform Design and Genetic Algorithm[J].IEEE Transactions on Syst Man Cybem Pt C Appl Rev,2000,30(3):293-304.
    [72]黄永青,梁昌勇,张祥德.基于均匀设计的蚁群算法参数设定[J].控制与决策,2006,21(1):93-96.
    [73]Van Veldhuizen D A,Lamont G B.Multiobjective Evolutionary Algorithm Research:A History and Analysis[R].Air Force Inst.Technol.,Wright-Patterson AFB,OH,Tech.Rep.TR-98-03,1998.
    [74]Czyzak P,Jaszkiewicz A.Pareto-Simulated Annealing:A Metaheuristic Technique for Multi-Objective Combinatorial Optimization[J].Journal of Multi-Criteria Decision Analysis,1998,7(1):34-47.
    [75]Schott J R.Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization[D].M.S.Thesis,Massachusetts Inst.Technol.,Cambridge,MA,1995.
    [76]Van Veldhuizen D A.Multiobjective Evolutionary Algorithms:Classifications,Analyzes,and New Innovations[D].Ph.D.Dissertation,Graduate School of Eng.,Air Force Inst.Technol.,Wright-Patterson AFB,OH,1999.
    [77]Kennedy J and Eberhart R C.Swarm Intelligence[M].San Mateo,CA:Morgan Kaufmann,2001.
    [78]Shi Y and Eberhart R C.A Modified Particle Swarm Optimizer[A].Proceedings of IEEE International Conference on Evolutionary Computation[C],1998:69-73.
    [79]Huang T,Mohan A S.A Hybrid Boundary Condition for Robust Particle Swarm Optimization[J].IEEE Antennas Wirel Propag Letters,2005,4(1):112-117.
    [80] Angeline P J. Evolutionary Optimization versus Particle Swarm Optimization:Philosophy and Performance Differences [A]. Evolutionary Programming VII [C]. LNCS, Springer-Verlag, Berlin, 1998, 1447: 601-610.
    [81] Engelbrecht A P. Fundamentals of Computational Swarm Intelligence [M]. John Wiley & Sons, 2005.
    [82] Reyes-Sierra M, Coello Coello C A. Multi-objective Particle Swarm Optimizers:a Survey of the State-of-the-Art [J] International Journal of Computational Intelligence Research, 2006, 2(3): 287-308.
    [83] Coello Coello C A. Evolutionary Multiobjective Optimization: a Historical View of the Field [J]. IEEE Computational Intelligence Magazine, 2006, 1(1): 28-36.
    [84] Parsopoulos K E and Vrahatis M N. Particle Swarm Optimization Method in Multiobjective Problems [A]. Proceedings of the 2002 ACM Symposium on Applied Computing (SAC'2002) [C], Madrid, Spain, 2002: 603-607.
    [85] Baumgartner U, Magele C, and Renhart W. Pareto Optimality and Particle Swarm Optimization [J]. IEEE Transactions on Magnetics, 2004, 40(2):1172-1175.
    [86] Hu X H and Eberhart R. Multiobjective Optimization Using Dynamic Neighborhood Particle Swarm Optimization [A]. Proceedings of Congress on Evolutionary Computation (CEC'2002) [C], 2002, 2: 1677-1681.
    [87] Chow C K and Tsui H T. Autonomous Agent Response Learning by a Multi-species Particle Swarm Optimization [A], Proceedings of Congress on Evolutionary Computation (CEC'2004) [C], Portland, Oregon, 2004, 1: 778-785.
    [88] Ray T and Liew K M. A Swarm Metaphor for Multiobjective Design Optimization [J]. Engineering Optimization, 2002, 34(2): 141-153.
    [89] Ho S L, Yang S Y, Ni G Z, et al. A Particle Swarm Optimization-Based Method for Multiobjective Design Optimizations [J]. IEEE Transactions on Magn, 2005,41(5): 1756-1759.
    [90] Huang V L, Suganthan P N, Liang J J. Comprehensive Learning Particle Swarm Optimizer for Solving Multiobjective Optimization Problems [J]. International Journal of Intellifent System, 2006, 21(2) 209-226.
    [91] Mahfouf M, Chen M Y, and Linkens D A. Adaptive Weighted Particle Swarm Optimisation for Multi-Objective Optimal Design of Alloy Steels [A]. Parallel Problem Solving from Nature - PPSN VIII [C]. LNCS, Springer-Verlag, Berlin,2004,3242:762-771.
    [92] Ozcan E and Mohan C K. Analysis of a Simple Particle Swarm Optimization System [A]. Proceedings of Intelligent Engineering Systems through Artificial Neural Networks [C], 1998, 253-258.
    [93] Ozcan E and Mohan C K. Particle Swarm Optimization: Surfing the Waves [A].Proceedings of Congress on Evolutionary Computation (CEC'1999) [C], Washington,1999:1939-1944.
    [94]Bergh F V D.An Analysis of Particle Swarm Optimizaers[D].Ph.D Dissertation,Univerity of Pretoria,South Africa,2001.
    [95]Bergh F V D,Engelbrecht A P.A Study of Particle Swarm Optimization Particle Trajectories[J].Information Sciences,2006,176(8):937-971.
    [96]Clerc M and Kennedy J.The Particle Swarm:Explosion,Stability,and Convergence in a Multi-Dimensional Complex Space[J].IEEE Transactions on Evolutionary Computation,2002,6(2):58-73.
    [97]Laumanns M,Thiele L,Deb K,and Zitzler E.Combining Convergence and Diversity in Evolutionary Multi-Objective Optimization[J].Evolutionary Computation,2002,10(3):263-282.
    [98]Brits R,Engelbrecht A P,Bergh F V D.Locating Multiple Optima Using Particle Swarm Optimization[J].Applied Mathematics and Computation,2007,189(2):1859-1883.
    [99]高尚,汤可宗,蒋新姿,杨静宇.粒子群优化算法收敛性分析[J].科学技术与工程,2006,6(12):1625-1628.
    [100]潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377.
    [101]Kennedy J and Mendes R.Neighborhood Topologies in Fully Informed and Best-of-Neighborhood Particle Swarms[J].IEEE Transactions on Syst.Man Cybem.Pt.C:Appl.Rev.,2006,36(4):515-519.
    [102]Kita H,Yabumoto Y,Mori N,Nishikawa Y.Multi-objective Optimization by Means of the Thermodynamical Genetic Algorithm[A].Parallel Problem Solving From Nature-PPSN Ⅳ[C],LNCS,Springer-Verlag,Berlin,1996:504-512.
    [103]Kursawe F.A Variant of Evolution Strategies for Vector Optimization[A].Parallel Problem Solving From Nature-PPSN Ⅰ[C],LNCS,Springer-Verlag,Berlin,1991,496:193-197.
    [104]Deb K.Multi-objective Genetic Algorithms:Problem Difficulties and Construction of Test Problems[J].Evolutionary Computation,1999,7(3):205-230.
    [105]Deb K,Thiele L,Laumanns M,Zitzler E.Scalable Test Problems for Evolutionary Multi-Objective Optimization[R].Technical Report 112,Swiss Federal Institute of Technology(ETH),Zurich,Switzerland,2001.
    [106]谢杰成,张大力,徐文立.小波图像去噪综述[J].中国图象图形学报,2002,7(3):209-217.
    [107]Astola J.Fundamentals of Nonlinear Digital Filtering[M].Boca Raton,U.S.A:CRC Press,1997.
    [108]Geman D,Reynolds G.Constrained Restoration and the Recovery Of Discontinuities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(3):367-383.
    [109]You Y,Kaveh D.Fourth-Order Partial Differential Equations for Noise Removal [J].IEEE Transactions on Image Processing,2000,9(10):172 3-1730.
    [110]孙即祥.数字图象处理[M].石家庄:河北教育出版社,1993.
    [111]李威,郁道银,谢洪波等.基于邻域信息优化方法的图像恢复与增强[J].天津大学学报,2001,34(7):495-497.
    [112]李小春.多源遥感影像融合技术及其应用[D].郑州:信息工程大学博士学位论文,2005.
    [113]成礼智,王红霞,罗勇.小波的理论与应用[M].北京:科学出版社,2004.
    [114]Donoho D L and Johnstone I M.Ideal Spatial Adaptation via Wavelet Shrinkage [J].Biometrika,1994,81(3):425-455.
    [115]Donoho D L.De-noising by Soft-Thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.
    [116]Gao H Y and Bruce AG.WaveShrink with Firm Shrinkage[J].Statist.Sinica,1997,7(4):855-874.
    [117]Zhang X P and Desai M.Adaptive Denoising Based on SURE Risk[J].IEEE Signal Processing Letters,1998,5(10):265-267.
    [118]Aziem M M A,Ismaiel H M.Quantitative and Qualitative Evaluations of Image Enhancement Techniques[A].Proceedings of the 46th IEEE International Midwest Symposium on Circuits and Systems(MWSCAS'03)[C].2003:664-669.
    [119]Bei L,Meyer W,Klassen V R.Comparison of Two Image Quality Models[J],SPIE Human Vision and Electronic Imaging Ⅲ,1998,3299(2):98-109.
    [120]刘贵喜.多传感器图像融合方法研究[D].西安:西安电子科技大学博士学位论文,2001.
    [121]科弗·托马斯(美)著.阮吉寿,张华译.信息论基础[M].北京:机械工业出版社,2005.
    [122]李树涛,王耀南,张昌儿.多传感器图像融合的客观评价与分析[J].仪器仪表学报,2002,23(6):651-654.
    [123]Wang Z,Bovik A C.A Universal Image Quality Index[J].IEEE Signal Processing Letters,2002,9(3):81-84.
    [124]Wang Z,Bovik A C,Sheikh H R,et al.Image Quality Assessment:from Error Visibility to Structural Similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
    [125]Chen Y.and Han C.Adaptive Wavelet Threshold for Image Denoising[J]. Electronics Letters,2005,41(10):586-587.
    [126]Chang S G,Yu B,and Vetterli M.Adaptive Wavelet Thresholding for Image Denoising and Compression[J].IEEE Transactions on Image Processing,2000,9(9):1532-1546.
    [127]Achim A,Tsakalides P,Bezerianos A.SAR Image Denoising via Bayesian Wavelet Shrinkage Based on Heavy-Tailed Modeling[J].IEEE Transactions on Geosci Remote Sens.,2003,41(8):1773-1784.
    [128]Shi G M and Li F D.Image Denoising with Optimized Subband Threshold[A].Proceedings of International Conference on Computational Intelligence and Multimedia Applications(ICCIMA)[C],Xi'an,2003:160-164.
    [129]Portilla J,Strela V,Wainwright M J,and Simoncelli E P.Image Denoising Using Scale Mixtures Of Gaussians in the Wavelet Domain[J].IEEE Transactions on Image Processing,2003,12(11):1338-1351.
    [130]Candès E J,Donoho D L.Curvelets:A Surprisingly Effective Nonadaptive Representation for Objects with Edges[A].Curves and Surfaces[C],Nashville,TN:Vanderbilt University Press,1999:105-120.
    [131]Candès E J.Ridgelets:Theory and Applications[D].Ph.D.Dissertation,Department of Statistics,Stanford University,1998.
    [132]Donoho D L.Ridgelet Function and Orthonormal Ridgelets[J].Journal of Approximation Theory,2001,111(2):143-179.
    [133]Donoho D L and Duncan M R.Digital Curvelet Transform:Strategy,Implementation,Experiments[R].Technical Report,Department of Statistics,Stanford University,1999.
    [134]焦李成,谭山,刘芳.脊波理论:从脊波变换到Curvelet变换[J].工程数学学报,2005,22(5):761-772.
    [135]Candés E J,Donoho D L.New Tight Frames of Curvelets and Optimal Representations of Objects with C~2 Singularities[J].Comm.Pure Appl.Math.,2004,57(2):219-266.
    [136]Candés E J,Demanet L,Donoho D L,et al.Fast Discrete Curvelet Transforms [R].Technical Report,Applied and Computational Mathematics,California Institute of Technology,2005.
    [137]Nasrabadi N M,Clifford S,Liu Y.Integration of Stereo Vision and Optical Flow Using an Energy Minimization Approach[J].J Opt Sot Amer A,1989,6(6):900-907.
    [138]覃征,鲍复民,李爱国等.数字图像融合[M].西安交通大学出版社,2004.
    [139]Huang W and Jing Z L.Evaluation of Focus Measures in Multi-Focus Image Fusion[J].Pattern Recognition Letters,2007,28(4):493-500.
    [140]Chen H,Varshney P K.A Perceptual Quality Metric for Image Fusion Based on Regional Information[A].Proceedings of SPIE Multisensor,Multisource Information Fusion:Architectures,Algorithms,and Applications[C].2005,5813:34-45.
    [141]Shi W Z,Zhu C Q,Tian Y,Nichol J.Wavelet-based image fusion and quality assessment[J].International Journal of Applied Earth Observation and Geoinformation.2005,6(3):241-251.
    [142]王海晖,彭嘉雄,吴巍等.多源遥感图像融合效果评价方法研究[J].计算机工程与应用,2003,39(25):33-37.
    [143]李弼程,魏俊,彭天强.遥感影象融合效果的客观分析与评价[J].计算机工程与科学,2004,26(1):42-46.
    [144]Qu G H,Zhang D L,Yan P F.Information Measure for Performance of Image Fusion[J].Electronics Letters,2002,38(7):313-315.
    [145]Ramesh C,Ranjith T.Fusion Performance Measures and a Lifting Wavelet Transform Based Algorithm for Image Fusion[A].Proceedings of of FUSION2002[C],Annapolis,US,2002,1:317-320.
    [146]Wang Q,Shen Y,Zhang Y,et al.Fast Quantitative Correlation Analysis and Information Deviation Analysis for Evaluating the Performances of Image Fusion Techniques[J].IEEE Transactions on Instmm Meas,2004,53(5):1441-1447.
    [147]Tsagaris V,Anastassopoulos V.A Global Measure for Assessing Image Fusion Methods[J].Optical Engineering,2006,45(2):1-8.
    [148]张尧庭,方开泰.多元统计分析[M].北京:科学出版社,1997.
    [149]刘丽莉.评价指标选取方法研究[J].河北建筑工程学院学报,2004,22(1):23-25.
    [150]徐祥发,肖人彬.评价指标相关性的消除方法研究[J].系统工程理论与实践,2002,22(11):1-5.
    [151]Goshtasby A A,Nikolov S.Image fusion:Advances in the State of the Art[J].Information Fusion,2007,8(2):114-118.
    [152]Li H.Wavelet-Based Weighted Average and Human Vision System Image Fusion[J].International Journal of Wavelets,Multiresolution and Information Processing,2006,4(1):97-103.
    [153]李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社,2003.
    [154]Huang X S,Chen Z A Wavelet-Based Scene Image Fusion Algorithm[A].Proceedings of IEEE TENCON02[C],Beijing,China,2002:602-605.
    [155]谭善文,秦树人,汤宝平.小波基时频特性及其在分析突变信号中的应用[J].重庆大学学报,2001,24(2):12-17.
    [156]秦定宇,王敬东,李鹏.图像融合中小波基的选择分析[J].光电子技术,2006, 26(3):203-307.
    [157]申晓华,艾宝,王婷.多聚焦图像融合中小波基函数选取的研究[J].弹箭与制导学报,2007,27(3):231-234.
    [158]De I,Chanda B.A Simple and Efficient Algorithm for Multifocus Image Fusion Using Morphological Wavelets[J].Signal Processing,2006,86(5):924-936.
    [159]Goshtasby A.Fusion of Multifocus Images to Maximize Image Information[A],Proceedings of SPIE Defense and Security Symposium[C],Orlando,Florida,2006.
    [160]Zhukov B,Oertel D,Lanzl F,Reinhackel G.Unmixing-Based Multisensor Multiresolution Image Fusion[J].IEEE Transactions on Geoscience and Remote Sensing 1999,37(3):1212-1226.
    [161]Bogoni L,Hansen M,and Burt P.Image Enhancement Using Pattern-Selective Color Image Fusion[A].Proceedings of International Conference on Image Analysis and Processing[C],1999:44-49.
    [162]Toet A,Lucassen M P.A Universal Color Image Quality Metric[A].Proceedings of SPIE Visual Information Processing Ⅻ[C],2003,5108:13-23.
    [163]邵丹,韩家伟.YUV与RGB之间的转换[J].长春大学学报,2004,14(4):51-53.
    [164]Pajares G,Cruz J M.A Wavelet-Based Image Fusion Tutorial[J],Pattern Recognition,2004,37(9):1855-1872.
    [165]陈木生,狄红卫.多聚焦图像融合的最佳小波分解层研究[J].光电工程,2004,31(3):64-67.
    [166]李树涛,王耀南,龚理专.多聚焦图像融合中最佳小波分解层数的选取[J].系统工程与电子技术,2002,24(6):45-48.
    [167]Zhu J J,Guo H D,Fan X T,and Shao Y.Fusion of High-Resolution Remote Sensing Images Based on a Trous Wavelet Algorithm[A].Proceedings of IGARSS04[C],2004:352-355.
    [168]Na Y,Ehlers M,Yang W H,Shi L.Adaptive Remote Sensing Image Fusion with Multiwavelet Transform[A].Proceedings of SPIE Remote Sensing for Environmental Monitoring,GIS Applications,and Geology V[C],2005,5983:1-9.
    [169]Pradhan P S,King R L,Younan N H,and Holcomb D W.Estimation of the Number of Decomposition Levels for a Wavelet-Based Multiresolution Multisensor Image Fusion[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(12):3674-3686.
    [170]冉鑫.基于可变形模型的图像分割与图像配准研究[D].上海:上海交通大学博士学位论文,2005.
    [171]Widrow B.The Rubber Mask Technique,Parts Ⅰ and Ⅱ[J].Pattern Recognition,1973,5(3):175-211.
    [172]Fischler M,Elschlager R.The Representation and Matching of Pictorial Structure[J].IEEE Transactions on Computer,1973,22(1):67-92.
    [173]丁险峰,吴洪,张宏江,马颂德.形状匹配综述[J].自动化学报.2001,27(5):678-694.
    [174]Kass M,Witkinm A,Terzopoulos D.Snakes:Active Contour Models[J].International Journal of Computer Vision,1988,1(4):321-331.
    [175]Blake A,Isard M.Active contours[M].Springe-Verlag,Berlin Heidelberg 1998.
    [176]Cohen L D.Note on Active Contour Models and Balloons[J].CVGIP,Image Understanding,1991,53(2):211-218.
    [177]Cohen L D and Cohen I.Finite Element Methods for Active Contour Models and Balloons for 2D And 3D Images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1131-1147.
    [178]Morris D T,Donnison C.Identifying the Neuroretinal Rim Boundary Using Dynamic Contours[J].Image and Vision Computing,1999,17(2):169-174.
    [179]Xu C Y,Prince J L.Snakes,Shape,and Gradient Vector Flow[J].IEEE Transactions on Image.Processing,1998,7(3):359-369.
    [180]Ronfard R.Region-Based Strategies for Active Contour Models[J].International Journal of Computer Vision,1994,13(2):229-251.
    [181]Chakraborty A,Staib L,Duncan J.Deformable Boundary Finding in Medical Images by Integrating Gradient and Region Informatlon[J].IEEE Transactions on Medical Imaging,1996,15(6):859-870.
    [182]Perrin D and Smith C.Rethinking Classical Internal Forces for Active Contour Models[A].Processings of International Conference on Computer Vision and Pattern Recognition[C],2001,2:615-620.
    [183]Lai K F,Chin R T.Deformable Contours:Modeling and Extraction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(11):1084-1090.
    [184]Gunn S R and Nixon M S.A Robust Snake Implementation:A Dual Active Contour[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(1):63-68.
    [185]Srinark T.and Kambhamettu C A.Framework for Multiple Snakes[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [C],2001,2:202-209.
    [186]Menet S,Saint-Marc P,Medioni G.B-Snakes:Implementation and Application to Stereo[A].Proceedings of DARPA Image Understanding Workshop[C],1990:720-726.
    [187]Gavrila D M.Hermite Deformable Contours[A].Proceedings of the International Conference on Pattern Recognition[C],1996:130-135.
    [188]Mclnemey T,Terzopoulos D.Topology Adaptive Snakes[J].Medical Image Analysis,2000,4:73-91.
    [189]Meegama R G N and Rajapakse J C.NURBS Snakes[J].Image and Vision Computing,2003,21(6):551-562.
    [190]杨新.图像偏微分方程的原理与应用[M].上海:上海交通大学出版社,2003.
    [191]Malladi R,Sethian J A.Vemuri B C.Shape Modeling with Front Propagation:a Level Set Approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(2):158-174.
    [192]Sethian J A.Level Set methods and Fast Marching Methods[M].Cambridge University Press,1999.
    [193]Paragios N,Deriche R.Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(3):266-280.
    [194]Grenander U.General Pattern Theory:A Mathematical Study of Regular Structure[M].Oxford:Oxford University Press,1993.
    [195]Chow Y S,Grenander U,Keenan D M.Hands,a Pattern-Theoretic Study of Biological Shapes[M].Springer,New York,1991.
    [196]Cootes T F,CooPer D,Taylor C J and Graham J.Active Shape Models-Their Training and Application[J].Computer Vision and Image Understanding,1995,61(1):38-59.
    [197]Cootes T F,Wheeler G V,Walker K N and Taylor C J.View-Based Active Appearance Models[J].Image and Vision Computing,2002,20:657-664.
    [198]Yuille A L,Hallinan P W,Cohen D S.Feature Extraction from Faces Using Deformable Templates[J].Proceedings of International Conference on Computer Vision,1992,8(2):99-111.
    [199]Lakshmanan S,Jain A K,Zhong Y.Detecting Straight Edge in Millimeter Wave Images[A].Proceedings of International Conference on Image Processing[C],1995:258-261.
    [200]Dubuisson M P,Lakshmanan J S,Jain A K.Vehicle Segmentation Using Deformable Templates[J].Transactions on Pattern Analysis and Machine Intelligence,1996,18(3):293-308.
    [201]赵雪春.可变形模型及模板在图像识别中的应用研究[D].上海:上海交通大学博士学位论文,2000.
    [202]Coughlan J,Yuille A,English C,et al.Efficient Optimization of a Deformable Template Using Dynamic Programming[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C],1998:747-752.
    [203]Williams D J,Shab M.A Fast Algorithm for Active Contours and Curvature Estimation[J].CVGIP:Image Understanding,1992,55(1):14-26.
    [204]Storvik G A.Bayesian Approach to Dynamic Contour through Stocnastic Sampling and Simulated Annealing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(10):975-986.
    [205]Lalonde M and Gagnon L.Variable Neighborhood Search for Geometrically Deformable Templates[A].Proceedings of International Conference on Pattern Recognition[C],2002:689-692.
    [206]Tohka J.Global Optimization of Deformable Surface Meshes Based on Genetic Algorithms[A].Proceedings of International Conference on Image Analysis and Processing[C],2001:459-464.
    [207]刘少创,林宗坚.基于变形模板的航空影像中建筑物提取[J].武汉测绘科技大学学报,1997,22(1):21-28.
    [208]何文涛.无人机定位技术及其应用[J].光电技术应用,2003,(5):3-6.
    [209]Jain A K,Zhong Y and Lakshmanan S.Object Matching Using Deformable Templates[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(3):267-278.
    [210]Zhong Y,Jain A K and Dubuisson-Jolly M.Object Tracking Using Deformable Templates[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(5):544-549.
    [211]McCane B.Real Time Deformable Template Tracking[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C],2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700