肾脏局部病理改变和肾小管上皮细胞受损在肾结石形成中的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究目的
     1、通过观察不同结石成分肾结石患者肾乳头的组织病理学特点和钙盐沉积特点,分析局部病理改变与钙盐沉着在肾结石形成中的作用;通过检测成骨性蛋白骨桥蛋白、骨形成蛋白-2(BMP-2)和Ⅱ型胶原在肾结石患者肾组织的表达,以验证我们关于。肾结石患者肾组织钙盐沉积的形成可能也是一种成骨性反应的猜测,探讨肾钙盐沉积的机制;
     2、通过观察不同浓度草酸、COM结晶对体外培养的人近端肾小管上皮细胞(HK-2)的毒性损伤和蛋白表达的影响,探讨上皮细胞受损在肾结石形成过程中的可能作用;
     3、通过双向凝胶电泳结合质谱分析,鉴定HK-2细胞在受到草酸、COM结晶损伤后表达的差异蛋白质,并推测和讨论这些蛋白质在HK-2细胞受损和肾结石形成中的可能作用,为进一步深入研究肾结石的形成机制提供新的研究思路和方向。
     二、研究内容
     1、采用傅立叶转换红外光谱测定结石成分;对接受经皮肾镜取石碎石术(PCNL术)的肾结石患者,于术中直视下获取肾乳头活检标本,行HE染色和茜素红染色,光镜和电镜下观察其组织病理学特点;采用免疫组化检测骨桥蛋白、BMP-2和Ⅱ型胶原在肾结石患者肾组织的表达情况,并与正常肾组织比较。
     2、体外培养HK-2细胞,待细胞长满后,换成无血清含钙DMEM培养液,使细胞处于静止期;分别在培养基中加入不同终浓度(1 mM、2 mM、3 mM、5 mM和10mM)草酸、(200mg/L、500mg/L和1000mg/L)COM结晶或(1 mM、2 mM、3 mM、5 mM和10mM)草酸+200mg/L COM结晶,作用4h、12h及24h后,以CCK-8试剂盒检测上述结石成分对HK-2细胞的毒性作用;通过Bradford蛋白浓度测定试剂盒检测HK-2细胞受不同浓度(1 mM、2 mM、5 mM和10mM)草酸或(1mM、2mM、5mM和10mM)草酸+200mg/L COM结晶作用后,细胞表达的总蛋白量的变化。
     3、筛选受草酸和COM结晶损伤后HK-2细胞的差异蛋白表达谱:利用双向凝胶电泳技术对正常HK-2细胞和与2mM草酸+200mg/L COM结晶共孵育12小时后的HK-2细胞总蛋白进行电泳分离,获得相应蛋白质谱。Image Master Platinum5.0图形分析软件对凝胶图谱进行分析,筛选出正常HK-2细胞和与草酸+COM结晶孵育后细胞间的差异蛋白质点。
     4、使用Finnigan线性离子阱串联质谱仪(LTQ)对部分差异表达蛋白点进行液相色谱—串联质谱分析(LC-ESI-MS/MS);从所鉴定出来的差异蛋白点选择2种蛋白ENO1和Cofilin-1,用Western blotting验证其在正常HK-2细胞和受损HK-2细胞中的表达情况;通过检索数据库,对所鉴定出来的蛋白质进行亚细胞定位和功能分析,并对这些蛋白在肾小管上皮细胞受损和肾结石形成中的可能作用进行推测和讨论。
     三、结果
     1、部分肾结石患者的肾脏可见肾乳头钙斑;活检标本的组织病理学检查发现局部有钙盐沉积。钙盐沉积的镜下特点:在钙盐聚集较多的组织切片,钙盐镜下表现为结节状或片状,可见于肾小管基底膜和间质组织;而在钙盐较少的组织标本,钙盐仅见于肾小管基底膜,或呈颗粒状由肾小管基底膜向间质蔓延;当钙盐突破尿路上皮进入集合系统后,其上可见小结石生长。
     免疫组织化学检查表明:肾结石患者肾组织中的肾小管上皮细胞可见骨桥蛋白呈阳性表达,而肾结石患者肾组织和正常肾组织均未见BMP-2和Ⅱ型胶原明显表达。
     2、细胞毒性检测表明,草酸和/或COM结晶对HK-2的毒性作用呈明显浓度依赖性,但在不同的浓度与作用时间对HK-2作用不同。蛋白含量检测表明:1mM、2mM和5 mM草酸作用12h后,HK-2表达的蛋白量增加,但无统计学意义(P均>0.05);而受10mM草酸或10mM草酸+200mg/L COM结晶作用12h后,HK-2表达的蛋白量则显著减少(分别为263.75±75.77ug/ml vs 328.75±60.34ug/ml,227.5±54.97ug/ml vs328.75±60.34ug/ml,P<0.05);2mM草酸+200mg/L COM结晶作用12h后,HK-2表达的蛋白量稍高于正常HK-2细胞,但无统计学意义(332.5±51.48ug/ml vs328.75±60.34ug/ml,P>0.05)。
     3、成功建立正常HK-2细胞和受2mM草酸+200mg/L COM结晶作用12小时后的HK-2细胞总蛋白的双向凝胶电泳图谱,实验组凝胶最后共得到2204±84个蛋白点,正常细胞组即对照组最后共得到2347±57个蛋白点。经软件分析,实验组凝胶与对照组凝胶比较共找到可信差异表达蛋白点16个。其中实验组表达上调的有9个,表达下调的有7个。
     4、差异蛋白点利用LC-ESI-MS/MS技术进行了质谱鉴定,最后共有12个蛋白质点得到了鉴定。有许多研究表明这些蛋白参与了细胞的能量代谢、细胞增殖、凋亡、钙离子通道活性调控、细胞运动及信号转导等多种生理功能。Western blotting检测证实了受损HK-2细胞中ENO1蛋白表达升高,而Cofilin-1表达降低。
     四、结论
     1、肾结石患者钙盐沉积最初可能形成于肾小管基底膜,并向间质扩展。钙盐在肾结石形成中至少起到了以下作用:①钙盐突破上皮进入集合系统,可作为结晶粘附、聚集和生长的平台;②脱落到集合系统的钙盐可作为结石形成的核心;③钙盐与局部细胞相互作用,影响肾结石的形成。
     2、肾结石患者肾组织表达骨桥蛋白,而不表达BMP-2和Ⅱ型胶原,因此钙盐的形成可能并不是一种类似于动脉钙化的成骨性反应。
     3、草酸、COM结晶在不同的浓度与作用时间对HK-2细胞产生不同程度的毒性作用。
     4、高浓度草酸和COM结晶可使正常人HK-2细胞的蛋白表达发生改变,这些蛋白的功能涉及能量代谢、细胞增殖和凋亡、细胞运动、钙离子通道活性调节、信号转导、蛋白合成调节和细胞应激反应等多方面,既可起到细胞的自我保护作用,又可能通过相应途径在肾结石的形成过程中起重要作用,对这些蛋白与肾结石关系的进一步探讨,有望发现影响肾结石形成的新的作用途径和机制
     5、本研究将双向凝胶电泳结合蛋白质谱分析应用于尿路结石的基础研究,为了解尿石结晶与上皮细胞的相互作用、研究肾结石形成机制和寻找预防肾结石发生和复发的有效措施提供了新的方法和研究方向。
Objective
     1.To observe the histopathological characters of renal papilla and renal calcareous deposits in patients with various renal calculi,so as to explore the possible role of local histopathological changes and calcareous deposits in the formation of renal calculi.To explore the formation mechanism of renal calcareous deposits by determining the expression of osteopontin,bone morphogenetic protein-2(BMP-2) and typeⅡcollagen in the kidneys of patients with renal calculi.
     2.To evaluate the toxic effects of oxalic acid and/or calcium oxalate monohydrate (COM) crystals at different levels on human renal tubular epithelial cells(HK-2) as well as the influence on cell protein expression;to explore the potential role of epithelial cell injury in the formation of renal calculi.
     3.To identify the differently expressed proteins in HK-2 cells injured by oxalic acid and COM crystals,and to postulate and discuss the potential roles of these proteins in renal tubular epithelial cell injury as well as kidney stone formation,so as to provide new ways for further kidney stone formation.
     Methods
     1.Patients with renal calculi undergoing percutaneous nephrolithotomy(PCNL) were included,whose stones were analysed with a transform-infrared(FT-IR) spectrometer. Renal papilla biopsy specimens were obtained under a nephroscope during the operation, followed by staining with hematoxylin-eosin or alizarin bordeaux for light microscopy and electron microscopy to observe the histopathological characters.The expression of osteopontin,bone morphogenetic protein-2(BMP-2) and typeⅡcollagen in the kidneys of patients with renal calculi or without urolithiasis were determined by immunohistochemistry.
     2.Normal HK-2 cells were cultured in vitro and the culture medium was changed with serum-free medium after cell growth to confluence.Oxalic acid and/or COM crystals with different concentrations were then added and the cells were incubated for 4h,12h or 24h,respectively.Crystal adherence to cells was observed microscopically.The toxic effects of oxalic acid and/or COM crystals with different concentrations on HK-2 cells after incubation for 4h,12h or 24h were detected with a CCK-8 kit.Changes of protein expression in HK-2 cells were determined using the Bradford method.
     3.The proteins of normal HK-2 cells and the HK-2 cells incubated with 2mM oxalic acid plus 200mg/L COM crystals for 12h were respectively separated using two-dimensional electrophoresis technology and visualized by silver staining.The digitized images were then analyzed with an Image Master software to obtain the differential protein profiling between normal HK-2 cells and the HK-2 cells incubated with oxalic acid plus COM crystals.
     4.The differential protein spots were identified using liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry(LC-ESI-MS/MS) conducted by a Finnigan LTQ mass spectrometer.Two identified proteins,ENO1 and Cofilin-1,were selected and their expression in normal HK-2 cells or injured HK-2 cells was determined by Western blotting.All identified proteins were classified by their subcellular location and biological function.The potential roles of these proteins in renal tubular epithelial cell injury as well as kidney stone formation were postulated and discussed.
     Results
     1.Renal papilla calcific plaques were found in a part of the patients with renal calculi during PCNL.Local calcareous deposits could be found in the biopsy specimens. Microscopically,in tissue sections with abundant calcareous deposits,calcareous deposits appear as tuberose or flakiness,localized in the tubular basement membranes and interstitial tissues;while in other sections,calcareous deposits could only be observed in the tubular basement membranes or spreading from the tubular basement membranes to the interstitium.Once the calcareous deposits pierced into the collection system,tiny stones growing on them could be observed.
     Immunohistochemistristry examination showed that osteopontin was positively expressed in the renal tubular epithelial cells of the patients with kidney stones and the normal controls,but BMP-2 and typeⅡcollagen were negatively expressed in the kidneys of both groups.
     2.Oxalic acid and/or calcium oxalate monohydrate presented a concentration-dependent toxic effect on HK-2 cells which was,however,not merely increased with time lasting.The quantity of protein expressed by HK-2 cells incubated with 10mM oxalic acid or 10Mm plus 200mg/L crystals was significantly smaller than that of control(263.75±75.77ug/L vs 328.75±60.34ug/L and 227.5±54.97ug/ml vs 328.75±60.34ug/ml,respectively,P<0.05).After incubated with 2mM oxalic acid plus 200mg/L COM crystals,HK-2 cells expressed more proteins than normal,but the different was not significant(332.5±51.48ug/ml vs 328.75±60.34ug/ml,P>0.05).
     3.The two-dimensional gel electrophoresis were successfully performed for isolating the proteins of normal HK-2 cells(Control Group) or HK-2 cells incubated with 2mM oxalic acid plus 200mg/L COM crystals(Experiment Group).Visualized spots were 2204±84 in the experiment group and 2347±57 in the control group.Software analysis revealed 16 protein spots showing differential expression between the two groups.In the experiment group,among these 16 protein spots,the up-regulated proteins were 9,while the down-regulated proteins were 7.
     4.Differential protein spots were identified using LC-ESI-MS/MS and analyzed by database searching.A total of 12 proteins were eventually identified,the function of which includes cellular energy metabolism,proliferation,apoptosis,Ca~(2+) channel activity regulation,cell movement and signal transduction.Western blotting confirmed that the injured HK-2 cells had higher expression of ENO1 but lower expression of Cofilin-1.
     Conclusions
     1.Renal papillary calcareous deposits in a part of patients with renal calculi may be initiated in the renal tubular basement membranes and spread into the interstitium.The role of renal calcareous deposits in kidney stone formation may include the following aspects:1) Calcareous deposits act as platforms for crystal adherence,aggregation and growth when piercing into the collection system;2) Detachment of calcareous deposits in the collection system may become the nucleus of stones;3) The interaction between calcareous deposits and local cells may be related to the formation of renal calculi.
     2.BMP-2 and typeⅡcollagen are negatively expressed in the kidney of patients with renal calculi,which suggests that the formation of renal calcareous deposits may not be an osteoblastic reaction resembling arteriosteogenesis.
     3.The toxic effect of oxalic acid and/or COM crystals on HK-2 cells was concentration dependent but is not merely increased with time lasting.
     4.High levels of oxalic acid and COM crystals can cause protein expression profile changes in normal human HK-2 cells.The function of concerned proteins includes energy metabolism,cell proliferation and apoptosis,cell movement,calcium channel activity regulation,signal transduction,protein synthesis and cellular stress reaction.The changes of protein expression may not only self-protect HK-2 cells from being injured,but also be related to kidney stone formation.Further studies on these proteins are required so as to find out new mechanism and pathways leading to stone formation.
     5.This study provides an important knowledge of oxalic acid and COM crystal-treated HK-2 cells' protein expression in vitro and should be helpful for the further elucidatation of the molecular mechanisms involved in the interaction between urinary stone ingredient crystals and renal epithelial cells and kidney stone formation,and provide new methods and for seeking effective precautionary measures for the recurrence of renal calculi.
引文
1.Asplin JR,Favus MJ,Coe FL.Nephrolithiasis.In:Brenner BM,ed.Brenner and Rector's the kidney.5th ed.Philadelphia:Saunders,1996:1893-935.
    2.Parmar MS.Kidney stones.BMJ 2004;328:1420-1424.
    3. Saeed R. Khan. Role of Renal Epithelial Cells in the. Initiation of Calcium Oxalate Stones. Nephron Exp Nephrol. 2004; 98: e55-e60.
    
    4.吴阶平.吴阶平泌尿外科学.济南:山东科学技术出版社,2007:734.
    
    5. Moe OW. Kidney stones: pathophysiology and medical management. Lancet. 2006: 333-344.
    
    6. Gambaro G, D'Angelo A, Fabris A, et al. Crystals,Randall's plaques and renal stones:Do bone and atherosclerosis teach us something? J Nephrol, 2004,17(6): 774-777.
    
    7. Stoller ML, Meng MV, Abrahams HM, et al. The primary stone event: a new hypothesis involving a vascular etiology. J Urol. 2004;171:1920-1924.
    
    8. Fernandez-Conde M, Serrano S, Alcover J, et al. Bone metaplasia of urothelial mucosa: an unusual biological phenomenon causing kidney stones. Bone. 1996; 18(3): 289-291.
    
    9. Coe, FL, Evan, AP and Worcester E. Kidney stone disease J. Clin. Invest., 2005; 115(10): 2598 -2608.
    
    10. Evan, AP, Coe, FL, Rittling. SR., et al. Apatite plaque particles in inner medulla of kidneys of CaOx stone formers: Osteopontin localization. Kidney Intl. 2005; 68:145-154.
    
    11. Liang L, Chen J, Vittal R, et a. Expression profiling of crystal-induced injury in human kidney epithelial cells. Nephron Physiol. 2006; 103(1): p53-62.
    
    12. Jonassen JA, Kohjimoto Y, Scheid CR, et al. Oxalate toxicity in renal cells. Urol Res. 2005; 33(5): 329-39.
    
    13. Moryama MT, Domiki C, Miyazawa K, et al. Effects of oxalate exposure on Madin-Darby canine kidney cells in culture: renal prothrombin fragment-1 mRNA expression. Urol Res. 2005; 33(6): 470-5.
    
    14. Thamilselvan S, Menon M. Vitamin E therapy prevents hyperoxaluria- induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU Int. 2005:96: 117-126.
    
    15. Tungsanga K, Sriboonlue P, Futrakul P, et al. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res. 2005; 33(1): 65-9.
    
    16. Jonassen JA, Cao LC, Honeyman T, et al. Intracellular events in the initiation of calcium oxalate stones. Nephron Exp Nephrol. 2004; 98(2): e61-4.
    
    17. Kumar V, Pena DL, Farell VG, et al. Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int. 2005; 68(4): 1784-92.
    
    18. Koul HK, Menon M, Chaturvedi LS, et al. COM crystals activate the p38 mitogen activated protein kinase signal transduction pathway in renal epithelial cells. J Biol Chem. 2002; 277(39): 36845-52.
    
    19. Verjiekeb CF, Schepers MSJ, Van Bakkegiiuheb ES, et al. Effects of luminal oxalate or calcium oxalate on renal tubular cells. Urological research. 2005; 33: 55, 321-3280
    
    20. Moryama MT, Domiki C, Miyazawa K, et al. Effects of oxalate exposure on Madin-Darby canine kidney cells in culture: renal prothrombin fragment-1 mRNA expression. Urol Res. 2005; 33(6): 470-5.
    1.Moe OW.Kidney stones:pathophysiology and medical management.Lancet.2006:333-344.
    2.吴阶平.吴阶平泌尿外科学.济南:山东科学技术出版社,2007:734.
    3.Evan AP,Lingeman JE,Coe FL,et al.Randall's plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle.J Clin Invest 2003;111:607-16.
    4.Coe,FL,Evan,AP and Worcester E.Kidney stone disease J.Clin.Invest.,2005;115(10):2598-2608.
    5.Evan,AP,Coe,FL,Rittling.SR.,et al.Apatite plaque particles in inner medulla of kidneys of CaOx stone formers:Osteopontin localization.Kidney Intl.2005;68:145-154.
    6.叶章群,邓耀良,董诚.泌尿系结石.北京:人民卫生出版社,2003:213-251
    7.张亮.泌尿系结石分析及其进展.中华医学实践杂志.2007:6(5):396-399.
    8.叶章群,邓耀良,董诚.泌尿系结石[M].北京:人民卫生出版社,2003:213.
    9.Bemardo NO,Smith AD.Chemolysis of urinary calculi.Urol Clin Noah Am.2000;27(2):355-365.
    10.李志明,满瑞林,陈岚.泌尿系结石分析方法的进展.华夏医学.2005:18(6):1072-1074.
    11.叶章群,邓耀良,董诚.泌尿系结石.北京:人民卫生出版社,2003:9.
    12.尼高力中国用户协会.傅立叶变换红外光谱技术及应用研讨会论文集(二).北京:海洋出版社,1993:3.
    13.DaudonM,DonsimoniR,Hennequin C,et al.Sex-and age-related composition of 10 617 calculi analyzed by infrared spectroscopy.Urology Research,2005,23:3192326.
    14.Escolar E,Bellanato J.A nalysis of feline urinary calculi and ureth ral p lugs by infrared spectroscopy and scanning electron m icroscopy.Veterinary Record,2003,152:625-628.
    15.米华,邓耀良.中国尿结石症的流行病学特征.中华泌尿外科杂志.2003:24(10):715-716.
    16.Matlaga BR,Williams JC Jr,Kim SC,et al.Endoscopic evidence of calculus attachment to Randall's plaque.J Urol.2006;175(5):1720-1724.
    17.Evan AP,Coe FL,Lingeman JE,et al.Renal crystal deposits and histopathology in patients with cystine stones.Kidney Int.2006;69(12):2227-2235.
    18.Matlaga BR,Coe FL,Evan AP,et al.The Role of Randall's Plaques in the Pathogenesis of Calcium Stones.J Urol.2007;177(1):31-38.
    19.吴阶平.吴阶平泌尿外科学.济南:山东科学技术出版社.2004.753-754.
    20.Gambaro G,D'Angelo A,Fabris A,et al.Crystals,Randall's plaques and renal stones:Do bone and atherosclerosis teach us something? J Nephrol,2004,17(6):774-777.
    21.Stoller ML,Meng MV,Abrahams HM,et al.The primary stone event:a new hypothesis involving a vascular etiology.J Urol.2004;171:1920-1924.
    22.Fernandez-Conde M,Serrano S,Alcover J,et al.Bone metaplasia of urothelial mucosa:an unusual biological phenomenon causing kidney stones.Bone.1996;18(3):289-291.
    23.Wan,D.C.,Pomerantz,J.H.,Brunet,L.J.,et al.Noggin Suppression Enhances in Vitro Osteogenesis and Accelerates in Vivo Bone Formation.J.Biol.Chem.2007;282:26450-26459.
    24.Peptan IA,Hong L,Evans CA,et al.Multiple differentiation potentials of neonatal dura mater-derived cells.Neurosurgery.2007;60(2):346-352.
    25.Asplin JR,Arsenault D,Parks JH,Coe FL,Hoyer JR:Contribution of human uropontin to inhibition of calcium oxalate crystallization.Kidney Int 1998;53:194-199.
    26.Ophascharoensuk V,Giachelli CM,Gordon K,Hughes J,Pichler R,Brown P,Liaw L Schmidt R,Shankland SJ,Alpers CE,Couser WG,Johnson RJ:Obstructive uropathy in the mouse:role of osteopontin in interstitial fibrosis and apoptosis.Kidney Int 1999;56:571-580.
    27.Mazzali M,Kipari T,Ophascharoensuk V,et al.Osteopontin-a molecule for all seasons.OJM,2002,95(1):3-13.
    28.Riese RJ,Mandel NS,Wiessner JH,et al:Cell polarity and calcium oxalate crystal adherence to cultured collecting duct cells.Am J Physiol 262:F177-F184.
    29.Wesson JA,Johnson RJ,Mazzali M,et al.Osteopontin Is a Critical Inhibitor of Calcium Oxalate Crystal Formation and Retention in Renal Tubules J. Am. Soc. Nephrol. 2003; 14(1): 139—47.
    30. Asselman M, Verhulst A, De Broe ME, et al. Calcium oxalate crystal adherence to hyaluronan-, osteopon-. tin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol. 2003; 14(12): 3155-3166.
    1.Saeed R.Khan.Role of renal epithelial cells in the initiation of calcium oxalate stones.Nephron Exp Nephrol.2004;98:e55-e60.
    2.Liang L,Chen J,Vittal R,et a.Expression profiling of crystal-induced injury in human kidney epithelial cells.Nephron Physiol.2006;103(1):p53-62.
    3.李文峰.草酸作用下的肾脏细胞与泌尿系结石.国外医学(泌尿系统分册).2005:25(5):625-628.
    4.沈绍基,袁之敏.尿石症概论.见:吴阶平.吴阶平泌尿外科学.济南:山东科学技术出版社,2004.713-742.
    5.Tiselius HG.Epidemiology and medical management of stone disease.BJU Int.2003;91:758-767.
    6.Robertson WG.Kidney Models of Calcium Oxalate Stone Formation Nephron Physiology 2004;98:p21-p30.
    7.Khand FD,Gordge,MP,Robertson WG,et al.Mitochondrial superoxide production during oxalate-mediated oxidative stress in renal epithelial cells.Free Rad.Biol.Med.2002;32(12):1339-50.
    8.Rashed T,Menon M,Thamilselvan S.Molecular Mechanism of Oxalate-Induced Free Radical Production and Glutathione Redox Imbalance in Renal Epithelial Cells:effect of antioxidants.Am J Nephrol.2004;24(5):557-568.
    9.Byer K,Khan SR.Citrate provides protection against oxalate and calcium oxalate crystal induced oxidative damage to renal epithelium.J Urol.2005;173(2):640-646.
    10.Huang MY,Chaturvedi LS,Koul S,et al.Oxalate stimulates IL-6 production in HK-2 cells,a line of human renal proximal tubular epithelial cells.Kidney Int.2005;68(2):497-503.
    11.Hsieh N,Shih CH,Chen HY,et al.Effects of Tamm-Horsfall protein on the protection of MCDK cells from oxalate induced free radical injury.Urol Res 2003;31:10-16.
    12.Koul HK,Menon M,Chaturvedi LS,et al.COM crystals activate the p38 mitogen activated protein kinase signal transduction pathway in renal epithelial cells.J Biol Chem.2002;277(39):36845-52.
    13.Verjiekeb CF,Schepers MSJ,Van Bakkegiiuheb ES,et al.Effects of luminal oxalate or calcium oxalate on renal tubular cells.Urological research.2005;33:55,321-3280
    14.Jonassen JA,Kohjimoto Y,Scheid CR,et al.Oxalate toxicity in renal cells.Urol Res.2005;33(5):329-39.
    15.Moryama MT,Domiki C,Miyazawa K,et al.Effects of oxalate exposure on Madin-Darby canine kidney cells in culture:renal prothrombin fragment-1 mRNA expression.Urol Res.2005;33(6):470-5.
    16. Thamilselvan S, Menon M. Vitamin E therapy prevents hyperoxaluria- induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU Int. 2005:96: 117-126.
    17. Tungsanga K, Sriboonlue P, Futrakul P, et al. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res. 2005; 33(1): 65-9.
    18. Baggio B, Budakovic A, Nassuato MA, et al. Plasma phospholipid arachidonic acid content and calcium metabolism in idiopathic calcium nephrolithiasis. Kidney Int. 2000 58(3): 1278-1284.
    19. Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002; 84:131-141.
    20. Jonassen JA, Cao LC, Honeyman TW, Scheid CR. Mechanisms mediating oxalate-induced alterations in renal cell functions. Crit Rev Euk Gene Exp 2003; 13: 55-72.
    21. Jonassen JA, Cao LC, Honeyman T, et al. Intracellular events in the initiation of calcium oxalate stones. Nephron Exp Nephrol 2004;98:e61-e64.
    22. Ryan MJ, Johnson G, Kirk J, et al. HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int, 1994; 45: 48-57.
    23. Wang YY, Zhou GB, Yin T, et al. AML1-ETO and c-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci USA 2005; 102(4):1104-1109.
    24. Kumar V, Pena de la Vega L, Farell G, et al. Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int. 2005; 68(4): 1784-92.
    1.Parikh AA,Johnson JC,Merchant NB.Genomics and proteomics in predicting cancer outcomes.Surg Oncol Clin N Am.2008;17(2):257-77.
    2.Wu B,Wilmouth RC.Proteomics analysis of immunoprecipitated proteins associated with the oncogenic kinase cot.Mol Cells.2008;25(1):43-49.
    3.Netea-Maier RT,Hunsucker SW,Hoevenaars BM et al.Discovery and validation of protein abundance differences between follicular thyroid neoplasms.Cancer Res.2008 Mar 1;68(5):1572-80.
    4.Kamiie J.Progress of Drug Transport Study Based on Absolute Quantitative Method for Membrane Transporter Proteins.Yakugaku Zasshi.2008;128(4):507-512.
    5.Huang MY,Chaturvedi LS,Koul S,et al.Oxalate stimulates IL-6 production in HK-2 cells,a line of human renal proximal tubular epithelial cells.Kidney Int.2005;68(2):497-503.
    6.Koul HK,Menon M,Chaturvedi LS,et al.COM crystals activate the p38 mitogen activated protein kinase signal transduction pathway in renal epithelial cells.J Biol Chem.2002;277(39):36845-52.
    7.Verjiekeb CF,Schepers MSJ,Van Bakkegiiuheb ES,et al.Effects of luminal oxalate or calcium oxalate on renal tubular cells.Urological research.2005;33:55,321-3280
    8.Jonassen JA,Kohjimoto Y,Scheid CR,et al.Oxalate toxicity in renal cells.Urol Res.2005;33(5):329-39.
    9.Moryama MT,Domiki C,Miyazawa K,et al.Effects of oxalate exposure on Madin-Darby canine kidney cells in culture:renal prothrombin fragment-1 mRNA expression.Urol Res.2005;33(6):470-5.
    10.Anderson N,Proteome and proteomics:new technologies,new concepts,and new words.Electrophoresis.1998;19:1853-1861.
    11.Wilkins MR,Sanchez JC,Gooley AA.Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it.Biotechnol Genet Eng Rev.1996;13:19-27.
    12.Matthias L.Proteomics in pancreatic disease.Pancreatology.2004;4:67-75.
    13.贺福初.中国蛋白质组计划.蛋白质组学,2002:33-39.
    14.Hanash S.Disease proteomics.Nature.2003;422:226.
    15.Jungblut PR,Arndt ZU,Eberhart ZE,et al.Proteomics in human disease:cancer,heart and infectious diseases.Electrophoresis.1999;20:2100-2110.
    16.O'Farrell P H.High resolution two-dimensional electrophoresis of proteins.J Viol Chem,1975,250:4007-4021
    17.张国庆,廖杰,于力方.双向电泳技术在蛋白质组研究中的应用.标记免疫分析与临床,2003,10(3):171-173.
    18.王新,王伯良,张宗友,等.蛋白质组分析中双向电泳技术的改良和应用.细胞与分子免疫学杂志,2001,17(2):197-199.
    19.Dutt MJ,Lee KH.Proteomic analysis.Curr opin biotechnol,2000,11:176-179.
    20.Jenny L,Marc R,Ben R,et al.Proteomics:capacity versus utility.Electrophoresis.2000;21(6):1071-1081.
    21.Adessi C,Miege C,Albrieux C,et al.Two-dimensional electrophoresis of membrane proteins:a current challenge for immobilized pH gradients.Electrophoresis.1997;18:127-135.
    22. Gorg A, Weiss W, Dunn MJ.Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004; 4: 3665-3685.
    
    23. Berkelman T, Stenstedt T. 2-D Electrophoresis using immobilized pH gradients. gradients:principles and methods. Amersham Pharmacia Biotech,Piscataway, NJ. 1998:42-43.
    1.Patterson SD.Protein identification and characterization by mass spectrometry.Curr Protoc Mol Biol.2001 May;Chapter 10:Unit 10.22.
    2.Tintaru A,Benchabane Y,Boyer G,et al.Differentiation of heterocyclic regioisomers:a combined tandem mass spectrometry and computational study of N-acridin-4-ylbenzylamide and N-acridin-2-yl-benzylamide.Rapid Commun Mass Spectrom.2008;22(5):687-693.
    3.Favre-Kontula L,Sattonnet-Roche P,Magnenat E,et al.Detection and identification of plasma proteins that bind GlialCAM using ProteinChip arrays,SELDI-TOF MS,and nano-LC MS/MS.Proteomics.2008 Jan;8(2):378-388.
    4.Vlahou A,Fountoulakis M.Proteomic approaches in the search for disease biomarkers.J Chromatogr B Analyt Technol Biomed Life Sci.2005;814(1):11-19.
    5.Feng R,Konishi Y.Analysis of antibodies and other large glycoproteins in the mass range of 150,000-200,000Da by electrospray.Anal Chem,1992,64(18):2090-2095.
    6.Shan L,Jaffe K,Li S,Davis L.et al.Quantitative determination of lysophosphatidic acid by LC/ESI/MS/MS employing a reversed phase HPLC column.J Chromatogr B Analyt Technol Biomed Life Sci.2008 Mar 15;864(1-2):22-28.
    7.罗秀华.电喷雾离子化/质谱法(ESI-MS)及其在生物大分子研究中的应用.生物学杂志,2002,19(2):28-30.
    8.Hoenderop JG,van Leeuwen JP,van der Eerden BC,et al.Renal Ca2+ wasting,hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Inves. 2003; 112:1906-1914.
    
    9. Gkika D, Topala CN, Hoenderop JG, et al. The immunophilin FKBP52 inhibits the activity of the epithelial Ca2+ channel TRPV5. Am J Physiol Renal Physiol. 2006; 290(5):F1253-1259.
    10. Hoenderop JG, van der Kemp AW, Hartog A, et al. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem. 1999; 274: 8375-8378.
    11. Lemann J Jr, Worcester EM, Gray RW. Hypercalciuria and stones.Am J Kidney Dis, 1991,17(4):386-391.
    12. Pancholi V. Multifunctio nal a-enolase: its role in diseases. CMLS, Cell. Mol. Life Sci. 2001; 58: 902-920.
    13. Miles LA, Dahlberg CM, Plescia J, et al. Role of cell-surface lysines in plasminogenbinding to cells: identification of alpha-enolases as a candidate plasminogen receptor. Biochemistry. 1991; 30: 1682-1691
    14. Graaven KK, Zimmerman LH, Dickson EW, et al. Endothelial cell hypoxia associated proteins are cell and stress specific. J. Cell. Physiol.1993; 157: 544-554
    15. Aaronson RM, Graven KK, Tucci M, et al. Non-neuronal enolase is an endothelial hypoxic stress protein. J. Biol. Chem. 1995; 270: 27752-27757.
    16. Baek SH, Min JN, Park EM et al. Role of small heat-shock protein HSP25 in radioresistance and glutathione-redox cycle. J Cell Physiol 2000; 183:100-7.
    17. Patel AB, Robertson WG, Choong S, et al. Heat-shock protein 25 ameliorates calcium oxalate crystal-mediated oxidative stress in renal epithelial cells. BJU International. 2006: 98(5): 1094-1099.
    18. Burtnick L D, Robinson R C, Choe S. Structure and function of gelsolin. Results Probl Cell Differ, 2001, 32: 201- 211.
    19. Cameron L A, Footer M J, van Ondenaarden A, et al. Motility of ActA protein-coated microspheres driven by actin polymerization . Proc Natl Acad Sci USA, 1999, 96(9): 4908- 4913.
    20. Bains NP, Gorbatyuk VY, Nosworthy NJ, et al. Backbone and side chain 1H, 15N, and 13C assignments for chick cofilin. J Biomol NMR, 2002;, 22(2): 193-194.
    21. Back WK, Park JW, Lim JH, et al. Molecular cloning and characterization of the human budding uninhibited by benomyl(BUB 3) promoter. Gene. 2002; 295(1): 117-123.
    22. Basu J, Logarinho E, Herrmann S, et al. Localization of the Drosophila checkpoint control protein Bub3 to the kinetochore requires Bubl but not ZwlO or Rod. Chromosoma. 1998 Dec; 107(6-7): 376-85
    23. Fatica, A. & Tollervey, D. Making ribosomes. Curr. Opin. Cell Biol. 2002. 14(3): 313-318.
    24.Okuda M,Horn HF,Tarapore P,et al.Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication.Cell,2000,103:127-140.
    25.Gao H,Jin S,Song Y,et al.B23 Regulates GADD45a Nuclear Translocation and Contributes to GADD45a-induced Cell Cycle G2-M Arrest.J Biol Chem.2005,280:10988-10996.
    26.Colombo E;Marine JC;Danovi D.et al.Nucleophosmin/B23 regulates the stability and transcriptional activity of p53.Nat Cell Biol.Cell Biol.2002;4:529-533.
    27.Ahn JY.Nucleophosmin/B23,a nuclear PI(3,4,5)P(3) re ceptor,mediates the antiapoptotic actions of NGF by inhibiting CAD.Mol Cell,2005,18(4):435-445.
    28.胡荣贵.核糖体蛋白的核糖体外功能.生命的化学.1997:17(1):23-25.
    1.Saeed R.Khan.Role of Renal Epithelial Cells in the Initiation of Calcium Oxalate Stones. Nephron Exp Nephrol. 2004; 98: e55-e60.
    
    2. Liang L, Chen J, Vittal R, et a. Expression profiling of crystal-induced injury in human kidney epithelial cells. Nephron Physiol. 2006; 103(1): p53-62.
    3. Huang HS, Ma MC, Chen J, et al. Changes in the oxidant-antioxidant balance in the kidney of rats with nephrolithiasis induced by ethylene glycol ].J Urol,2002,167(6):2584-2593.
    4. Khand FD, Gordge, MP, Robertson WG, et al. Mitochondrial superoxide production during oxalate-mediated oxidative stress in renal epithelial cells. Free Rad. Biol. Med. 2002; 32(12): 1339-50.
    5. Rashed T, Menon M, Thamilselvan S. Molecular Mechanism of Oxalate-Induced Free Radical Production and Glutathione Redox Imbalance in Renal Epithelial Cells: effect of antioxidants. Am J Nephrol. 2004; 24(5): 557-568.
    6. Byer K, Khan SR. Citrate provides protection against oxalate and calcium oxalate crystal induced oxidative damage to renal epithelium. J Urol. 2005; 173(2): 640-646.
    7. Baggio B, Budakovic A, Nassuato MA, et al. Plasma phospholipid arachidonic acid content and calcium metabolism in idiopathic calcium nephrolithiasis. Kidney Int. 2000 58(3): 1278-1284.
    8. Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002; 84:131-141.
    9. Jonassen JA, Cao LC, Honeyman TW, Scheid CR. Mechanisms mediating oxalate-induced alterations in renal cell functions. Crit Rev Euk Gene Exp 2003; 13: 55-72.
    10. Jonassen JA, Cao LC, Honeyman T, et al. Intracellular events in the initiation of calcium oxalate stones. Nephron Exp Nephrol 2004;98:e61-e64.
    11. Cao L-C, Jonassen J, Honeyman TW, ScheidC, Oxalate-induced redistribution of phosphatidylserine in renal epithelial cells: Implications for kidney stone disease. Am J Nephrol. 2001; 21: 69-71.
    12. Verkleij AJ, Post JA. Membrane phospholipids asymmetry and signal transduction. J Membr Biol 2000; 178:1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700