虚拟战场环境中雷达作用范围表现技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代战争中,对战场电磁环境的描述一直是制约电子对抗指挥员实施准确、高效指挥的关键环节;能否取得电磁控制权,不仅依赖于投入装备的性能,很大程度上也取决于电子对抗指挥员对电磁情势的准确判断以及对电子对抗作战力量的合理部署及调配。雷达是影响战场电磁环境的主要元素之一,如何将它的作用,尤其是受复杂环境影响后的作用以形象的方式展现给指挥员和训练员,以期从非技术层面上把握优势和暴露问题,使其对瞬息万变的战场环境产生更深刻的理解和领悟,从而能从更高层次掌握战场态势,把握战争全局,是未来数字化战场环境不可回避的问题。
     传统的雷达作用范围表现形式主要是二维的,不够灵活和直观。本文根据不同的应用需求,分别基于雷达方程和雷达波损失两种途径研究了三维雷达作用范围模型的构造问题,设计并实现了模型构造、模型简化与绘制的相关算法,以提高表现的效率和逼真度。
     在理论研究和算法实践过程中,根据所研究的内容以及所要解决的问题,有针对性地提出了一些新思路和新算法。具体来说,论文的创新点和贡献主要体现在以下几个方面:
     ●借鉴三维空间数据场可视化领域中的数据生成、数据精炼与处理、可视化映射、绘制以及显示等五个步骤,按照数据场建立、数据预处理、三维模型生成和集成表现四个步骤提出了一个虚拟战场环境中三维雷达作用范围表现框架。
     ●提出了一种基于雷达方程的三维雷达作用范围可视化算法。利用虚拟战场环境提供的数字地形数据,基于雷达方程估算出雷达的最大作用距离,以自由空间中雷达作用范围的三维表现为基础,研究了单峰对雷达作用范围的影响,进而得到连续地形影响下的三维雷达作用范围模型,主要适用于大规模虚拟战场表现中精度要求相对较低的情况。
     ●从雷达波传播的角度出发,在基于高级传播模型计算平面内网格点传播损失的基础上,提出了一种虚拟三维策略,即联合多个平面数据构造三维传播损失数据场,从数据场可视化的角度提出了基于轮廓线构造雷达最大作用范围模型的算法,为表现雷达作用范围中的内部细节,提出了利用等值面提取构造雷达作用范围三维网格模型的算法。
     ●从简单的四面体情况出发,推演得到基于六面体网格等值面提取的硬件加速算法,从而将等值面提取过程转移到图形处理单元上去执行。在研究数据场数据预处理、输入输出数据到纹理的映射以及等值面提取算法移植等关键问题的基础上,提出了一种三维雷达作用范围模型的硬件加速生成算法。
     ●设计了一种视点相关且支持拓扑结构改变的网格模型动态简化算法。为得到高逼真度的“剧烈”简化,采用一般顶点对收缩作为简化的基本操作,使得在简化需要时能合并空间上不相连的对象。利用自适应距离阈值选择来控制候选顶点对的数目,并通过综合了几何和属性信息的误差权重来确定简化操作的顺序和精度。在此基础上,通过对简化后的数据进行再组织,使其形成一种视点相关的多分辨率结构,从而能够根据视点参数的变化动态地生成适当细节的简化模型,或者在不同细节模型之间进行快速转换。
     ●设计并实现了一个虚拟战场环境中三维雷达作用范围表现的原型系统——3DRCRepresent,对虚拟战场环境中三维雷达作用范围表现框架及其相关技术进行了应用和验证,并在相关的项目中得到了应用。
In modern war, the description of electromagnetic environment is a key factor which restricts the electronic counterwork commander to command well, truly and efficiently. Whether to get predominance in electromagnetic control not only depends on performance of the equipments, but also on nice judgment of electromagnetic situation and reasonably deployment of electronic counterwork power. Radar is one of the most primary elements which affect the electronic environment in battlefield. How to represent the Radar effect vividly to commander and drillmaster, especially the effect under complex environment, so can they hold advantages and discover problems, then generate more profound comprehension and apperception, accordingly hold entire warfare from higher level and hold the battlefield situation in time, becomes a crucial problem in the future Digital Virtual Battlefield Environment.
     Traditional manners of representing Radar coverage are mostly in 2D, which are not intuitive or agile. For different application requirements, this thesis researched two methods to construct 3D Radar coverage model separately based on Radar equation and electromagnetic wave propagation. Furthermore algorithms related to model constructing, model simplifying and rendering were designed and implemented for higher efficiency and fidelity.
     In the process of theory researching and algorithm practicing, based on contents to be researched and problems to be resolved, some creative algorithms and methods have been proposed. In detail, the highlighted ideas and main contributions of this thesis are described as follows:
     For reference, five steps of data filed visualization in 3D space such as datum generation, datum refinement and process, visualization mapping, rendering and displaying were used. A framework of 3D Radar coverage representation in virtual battlefield environment was put forward according to following four steps: data field building, data preprocess, 3D model generation and integrated representation.
     The advantage of digital terrain data provided by virtual battlefield environment was taken to estimate the maximum range Radar can detect based on Radar equation. Based on the 3D representation of Radar coverage in free space, according to geometric optic method, the influence of a single peak was investigated, and then an algorithm was proposed to represent the 3D Radar coverage affected by single peak. Then 3D coverage influenced by continuous peaks was get. This algorithm is best applicable for cosmically virtual battlefield environment which requires relatively low precision.
     Started from electromagnetic wave propagation, propagation loss on grid nodes in plane was calculated based on APM. Then a virtual 3D strategy was designed to combine multi in-plane loss value to construct a 3D data field. From the data field visualization point of view, an algorithm of construct maximum detection coverage model was proposed based on 2D contours. For representation of details in the coverage, another model construction algorithm was put forward based on isosurface extraction.
     For relieving the burden of CPU, started from the simple tetrahedron case, hardware accelerated isosurface extraction algorithm of hexahedron case was deduced. Then the process of isosurface extraction was moved from CPU to GPU. After a series of key problems such as datum preprocess, in/output mapping to texture and isosurface extraction algorithm, etc were resolved, hardware accelerated 3D Radar coverage model construction was implemented.
     A view-dependent mesh dynamic multiresolution data structure was designed which can support topological structure modification. In order to produce high fidelity and drastic simplifications of complex models, the algorithm needed to combine disjoint parts of the models. So the general vertex pair contraction operation was used which could collapse vertex pairs that were not connected by an edge. The number of candidate vertex pairs was limited by adaptively selecting the distance threshold and defining a unified error metric that combines both geometric and attribute error to control the order of simplification. Based on the sequence of vertex pair contraction operations, by reorganizing the simplified data a view dependent multiresolution data structure was built, so could the proper detailed simplified model be generated or the rapid transformation between different LOD models be implemented according to the view point parameters.
     A prototype system of 3D Radar coverage representation in virtual battlefield environment named 3DRCRepresent was designed and implemented, which gave a sound support to our 3D Radar coverage representation framework in virtual battlefield environment and related techniques. And some parts of this system were applied in related projects.
引文
[1]Staadt O.,Gross M.,Gatti R.Fast multiresolution surface meshing.In:Proceedings of IEEE Visualization '95 Conference,Held in Atlanta Georgia,October 1995:135-142.
    [2]Hoppe H.,View-dependent refinement of progressive meshes.Computer Graphics,1997,33(3):189-198.
    [3]Duchaineau M.,Wolinsky M.,et al.ROAMing terrain:real--time optimally adapting meshes.In Proceedings of IEEE Visualization'97.Phoenix,Arizona,United States,1997:81-88.
    [4]Dollner J.,Baumann K.,Hinrichs K.,Texturing Techniques for Terrain Visualization.In Proceedings of the 11th IEEE Visualization Conference.Salt Lake City,Utah,USA,2000:227-234.
    [5]Sander P.,Snyder J.,Gortler S.,et al.Texture mapping progressive meshes.In:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,2001:409-416
    [6]Lindstrom P.,Pascucci V.,Terrain simplification simplified:A general framework for view-dependent out-of-core visualization.IEEE Trans.on Visualization and Computer Graphics,2002,8(3):239-254.
    [7]Abásolo M.J.,Perales F.J.,Wavelet analysis for a new multiresolution model for large-scale textured terrains.Journal of WSCG,2003,11(1):134-142.
    [8]Gioia P.,Aubault O.,Bouville C.,Real-time reconstruction of wavelet-encoded meshes for view-dependent transmission and visualization.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2004.14(7):1009-1020.
    [9]Harabasz J.,Out-of-Core Terrain Rendering with Reparameterized Textures.in proceedings of The 8th Centrel European Seminar on Computer Graphics.Ivan Viola,Andreas Traxler,Helwig Hauser,21,April,2004.
    [10]Losasso F.,Hoppe H.,Geometry Clipmaps:Terrain Rendering Using Nested Regular Grids.ACM Transactions on Graphics,2004.23(3):769-776.
    [11]Blake L.V.,雷达距离性能分析[美].吴秉玮,赵杨,刘元林等译.机械电子工业部第十四研究所,1990:135-366.
    [12]曾振富,未来战争中信息战与雷达的关系.空载雷达,2002(1):1-4+9.
    [13]Johnson C.R.,Top Scientific Visualization Research Problems,IEEE Computer Graphics and Applications,2004,24(4):13-17.
    [14]Barrios A.E.,Advanced Propagation Model,In Proceedings of the 1997Battlespace Atmospheric Conference,SPAWAR Systems Center,Dec 1997,TD 2989: 483-489.
    [15] Durand J.C., Granier P., Radar coverage assessment in nonstandard and ducting conditions:a geometrical optics approach. IEE Proc.,1990,137(2):1464 -1470.
    [16] Deschamps G.A., Ray technique in electromagnetic. proc. IEEE. September 1972,60(9) :1022-1032.
    [17] Awadallah R.S., Brown G.S., Low-Grazing Angle Scattering from Rough Surfaces in a Duct Formed by a Linear-Square Refractive Index Profile. IEEE Transactions on Antennas and Propagation, 2000. 48(9): 1461-1474.
    [18] Awadallah R.S., Lamar M.T., Kuttler J.R., An Accelerated Boundary Integral Equation Scheme for Propagation over the Ocean Surface. Radio Science, 2002.37(5): 8-1-8-16.
    [19] Leontovich M.A., Fock V.A., Solution of propagation of electromagnetic waves along the Earth's surface by the method of parabolic equations. J.Phys. USSR,1946. 10:13-23.
    [20] Watson G.N., The diffraction of radiowaves by the earth. Proc. Roy. Soc.London, Ser.A, 1918,95: 83-99.
    [21] Van der Pol B., Bremmer H., The propagation of radiowaves over a finitely conducting earth. Philos.Mag., 1937. 27: 261-275.
    [22] Malyuzhinets, Progress in understanding diffraction phenomena. Sov. Phys. Usp.,1959. 69: 321-334.
    [23] Hardin R.H., Tappert F.D., Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. SIAM Rev., 1973. 15: 423.
    [24] Claerbout J. F., Fundamentals of Geophysical Data Processing with Application to Petroleum Prospect. New York:McGraw-Hill,1976..
    [25] Tappert F.D., The parabolic approximation method. In: Wave Propagation and Underwater Acoustics (eds. Keller, J. B. et al.), New York: Springer- Verlag,1977: 224-287.
    [26] Jensen F.B., Kuperman W.A., et al., Computational Ocean Acoustics. AIP series in Modern Acoustics and Signal Processing, New York:AIP Press,1994: 271-337
    [27] Dalrymple R.A., Martin P.A., Perfect boundary conditions for parabolic water-wave models. Proc. R. Soc. London A, 1992.437: 41-54.
    [28] Raddre A.C., On the parabolic equatin method for water-wave propagation. J.Fluid. Mech., 1979. 95(part 1): 159-176.
    [29] Yevick D., A guide to electric field propagation techniques for guided-wave optics. Ppt.Quanturn Electron., 1994. 26: S185-S197.
    [30] Feit M.D., Fleck J.A., Light propagation in graded-index fibers. Appl. Opt., 1978.17: 3990-3998.
    [31] Collino F., Joly P., Splitting of operators, alternate directions, and paraxial approximations for the three-dimensional wave equation.SIAM J.Sci.Comput.,1995.16:1019-1048.
    [32]Marcus S.H.,A hybrid(finite difference-surface Green's function) method for computing transmission losses in an inhomogeneous atmosphere over irregular terrain.IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,1992.Vol.AP-40:1451-1458.
    [33]Barrios A.E.,A terrain parabolic equation model for propagation in the troposphere.IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,1994.Vol.42:90-98.
    [34]Hitney H.V.,Hybrid ray optics and parabolic equation methods for radar propagation modeling.In:Radar 92;Proceedings of the International Conference,Brighton,United Kingdom,1992:58-61.
    [35]Levy M.F.,Craig K.H.,TERPEM propagation package for operational forecasting with EEMS.In Proceedings of Battelspace Atmospheric Conference,Technical.Document 2938,NCCOSC,RDT and E Division,San Diego,1996:497-505.
    [36]Patterson W.L.,Advanced Refractive Effects Prediction System(AREPS),Version 1.0 User's Manual.Technical Document 3028,Space and Naval Warfare Systems Center,1998.CA 92152-5001.
    [37]江长荫,张明高等,雷达电波传播折射与衰减手册.中华人民共和国国家军用标准,国防科工委军标出版发行部,1997.
    [38]徐世浙,陈乐寿,大地电磁场三维地形影响的数值模拟.中国科学(D辑),1997,27(1):15-20.
    [39]郑锋,利用地形图计算雷达的探测范围.空军雷达学院学报,1999.13(4):8-11.
    [40]胡绘斌,柴舜连,毛钧杰,基于三维PE方法的雷达波传播损耗估计.微波学报,2005,21(2):4-7.
    [41]Ansari S.,GIS TOOLS FOR VISUALIZATION AND ANALYSIS OF NEXRAD RADAR(WSR-88D).21st International Conference on Interactive Information Processing Systems(IIPS) for Meteorology,Oceanography,and Hydrology,San Diego,CA,2005:J9.6.
    [42]Lynn R.J.,Lakshmanan V.,Virtual radar volumes:Creation,algorithm access and visualization.Preprints,21 st Conf.on Severe Local Storms,Amer.Meteor.Soc.,San Antonio,TX,Amer.Meteor.Sot.,2002:134-137.
    [43]Kostic A.,Rancic D.,Radar coverage analysis in virtual GIS environment.6th International Conference on Telecommunications in modern Satellite,Cable and Broadcasting Service 2003,Serbia and Montenegro,2003:721-724.
    [44]程柏林,张尉,用Matlab语言实现雷达探测范围图的绘制.空军雷达学院学 报,1999.13(4):62-64.
    [45]张尉,程柏林,金素华,搜索雷达探测范围的可视化技术.现代雷达,2000.22(3):44-47.
    [46]林卫明,刘德权,利用OpenGL技术实现雷达探测范围的三维显示.武汉理工大学学报(交通科学与工程版),2002,26(1):72-75.
    [47]王树文,计算机模拟雷达网平面探测范围的一种绘制方法.空军雷达学院学报,1999,13(3):51-53.
    [48]戴凌燕,严振华,李伟,一种计算雷达网覆盖面积的新算法.空军雷达学院学报,2003,17(3):62-63.
    [49]唐泽圣,三维数据场可视化.1999,北京:清华大学出版社.
    [50]Lorensen W.E.,Cline H.E.,Marching Cubes:A High Resolution 3D Surfaces Construction Algorithm.Computer Graphics,1987.21(4):163-169.
    [51]Cline H.E.,Lorensen W.E.,Tow Algorithms for Three-dimensional Reconstruction of Tomograms.Medical physics,1988.15(3):320-327.
    [52]Doi A.,Koide A.,An efficient method of triangulating equi-valued surfaces by using tetrahedral cells.IEICE Trans Commun.Elec.Inf.Syst,1991.E74(1):214-224.
    [53]Zhou Y.,Chen W.,Tang Z.,An elaborate ambiguity detection method for constructing isosurfaces within tetrahedral meshes.Computers & Graphics,1995,19(3):355-364.
    [54]Gallagher R.S.,Span filtering:an optimization scheme for volume visualization oflarge t'mite element models,in IEEE Proceedings on Visualization,San Diego,CA,USA,1991:22-25.
    [55]Paolo C.,Paola M.,et al.,Speeding Up Isosurface Extraction Using Interval Trees.IEEE Transactions on Visualization and Computer Graphics,1997.3(2):158-170.
    [56]Wilhelms J.,Gelder A.V.,Octrees for faster isosurface generation.ACM Transactions on Graphics,1992.11(3):201-227.
    [57]Hung C.,Yang C.,A simple and novel seed-set finding approach for iso-surface extraction,in Eurographics/IEEE-VGTC Symposium on Visualization,Leeds,United Kindom,2005:125-132.
    [58]Takayuki I.,Koji K.,Automatic Isosurface Propagation Using an Extrema Graph and-Sorted Boundary Cell Lists.IEEE Transactions on Visualization and Computer Graphics,1995.1(4):319-327.
    [59]Matsumura M.,Anjyo K.,Accelerated Isosurface Polygonization For Dynamic Volume Data Using Programmable Graphics Hardware.Visualization and Data Analysis,SPIE 2003,Vol.5009:145-152.
    [60] Thomas K., Simon S., Thomas E., Hardware-Accelerated Reconstruction of Polygonal Isosurface Representations on Unstructured Grids, in Proceedings of the Computer Graphics and Applications, 12th Pacific Conference on (PG'04),IEEE Computer Society, Seoul, Korea, 2004: 186-195.
    [61] Nielson G.M., Huang A., Sylvester S., Approximating Normals for Marching Cubes applied to Locally Supported Isosurfaces. in 13th IEEE Visualization (VIS'02), Boston, Massachusetts, 2002: 459-466.
    [62] Wood Z., Hoppe H., et al., Removing Excess Topology From Isosurfaces. ACM Transactions on Graphics, 2004. 23(2): 190-208.
    [63] Gerstner T., Pajarola R., Topology Preserving and Controlled Topology Simplifying Multiresolution Isosurface Extraction. in Proceedings of the conference on Visualization '00, Salt Lake City, Utah, 2000: 259-266.
    [64] Wilhelms J., Gelder A.V., topological considerations in isosurface generation. San Diego Workshop on Volume Visualization, 1990. 24(5): 79-86.
    [65] Chiang Y.J., Silva T. U., et al., Interactive out-of-core isosurface extraction, in Proceedings of the IEEE conference on Visualization '98.,Carolina, United States 1998: 167-174.
    [66] Chiang Y.J., Out-of-core isosurface extraction of time-varying fields over irregular grids. IEEE Visualization, Seattle, Washington, 2003: 217- 224.
    [67] Shi Q., JaJa J., Efficient Isosurface Extraction for Large Scale Time-Varying Data Using the Persistent Hyperoctree(PHOT), in UMIACS-. TR-2006-01, 2006.
    [68] Chiang Y.J., Silva C.T., I/O Optimal Isosurface Extraction. In Proceedings of IEEE Visualization'97, Phoenix, Arizona, 1997: 293-300.
    [69] Levoy M., Display of Surfaces from Volume Data. IEEE Computer Graphics and Applications, 1988. 8(3): 29-37.
    [70] Levoy M., Efficient Ray Tracing of Volume Data. ACM Transactions on Graphics, 1990. 9(3): 145-261.
    [71] Westover L., Footprint Evaluation for Volume Rendering. Computer Graphics,1990. 24(4): 367-376.
    [72] Cameron G.G., Undrill P.E., Rendering Volumetric Medical Image Data on a SIMD-architecture Computer. in Proceedings of the Third Eurographics Workshop on Rendering. Bristol,UK,1992:135-145.
    [73] Lacroute P., Levoy M., Fast volume rendering using a shear-warp factorization of the viewing transformation. In: Proc. of the ACM SIGGRAPH'94. Orlando,1994:451-458..
    [74] Malzbender T., Fourier Volume Rendering. ACM Transactions on Graphics,1993. 12(3): 233-250.
    [75] Totsuka T., Levoy M., Frequency Domain Volume Rendering. SIGGRAPH 93,Anaheim,California,1993:271-278.
    [76]Fuchs H.,Kedem Z.M.,Uselton S.P.,Optimal surface reconstruction from planar contours.Communications of the ACM,1977,20(10):693-702.
    [77]Keppel E.,Approximating Complex Surfaces by Triangulation of Contour Lines.IBM Journal of Research and Development,1975.19(1):2-11.
    [78]Christiansen H.N.,Sederberg T.W.,Conversion of Complex Contour Line Def'mitions into Polygonal Element Mosaics.Computer Graphics,1978.12(1):187-192.
    [79]Ganapathy S.,Dennehy T.G.,A NEW GENERAL TRIANGULATION METHOD FOR PLANAR CONTOURS.in Proceedings of the 9th annual conference on Computer graphics and interactive techniques,Boston,Massachusetts,United States,1982,16(3):69-75.
    [80]Ekoule A.B.,Peyrin F.C.,Odet C.L.,A triangulation algorithm from arbitrary shaped multiple planar contours.ACM Transactions on Graphics,1991,10(2):182-199.
    [81]Meyers D.,Skinner S.,Sloan K.,Surfaces from contours.ACM Transactions on Graphics,1992,11(3):228-258.
    [82]Jones,M.W.and M.Chen,A new approach to the construction of surfaces from contour data.Eurographics,1994.13(3):p.75-84.
    [83]Barequet G.,Goodrich M.T.,et al.,Contour interpolation by straight skeletons.Graphical Models,2004.66(4):245-260.
    [84]Nonato L.G.,Cuadros-Vargas A.J.,et al.,Beta-connection:Generating a family of models from planar cross sections.ACM Transactions on Graphics,2005.24(4):1239-1258.
    [85]http://www.nvidia.corn/object/gpu.html[OL].
    [86]http://developer.nvidia.com/[OL].
    [87]http://www.ati.com/developer/[OL].
    [88]Kr(u|¨)ger J.,Westermann R.,Linear algebra operators for GPU implementation of numerical algorithms.ACM Trans.on Graphics,2003,22(3):908-916.
    [89]Michael M.,The GPU enters computing's mainstream.Computer,2003,36(10):106-108.
    [90]吴恩华,柳有权,基于图形处理器(GPU)的通用计算.计算机辅助设计与图形学学报,2004,16(5):601-612.
    [91]JeffB.,Lan F.,et al.,Sparse matrix solvers on the GPU:Conjugate gradients and multigrid.ACM Transactions on Graphics,2003,22(3):917-924.
    [92]Nolan G.,Cliff W.,et al.,A multigrid solver for boundary value problems using programmable graphics hardware.In Proceedings of Graphics Hardware,San Diego,2003:102-111.
    [93] Carr N.A., Hall J.D., Hart J.C., GPU algorithms for radiosity and subsurface scattering. In Proceedings of Graphics Hardware, San Diego, 2003: 51-59.
    [94] Govindaraju N.K., Redon S., et al., CULLIDE: Interactive collision detection between complex models in large environments using graphics hardware, In Proceedings of Graphics Hardware, San Diego, 2003: 25-32.
    [95] Govindaraju N.K., Sud A., et al., SWITCH: Parallel occlusion culling for interactive walkthroughs using multiple GPUs. Technical Report, TR02-027,UNC-CH, 2002.
    [96] Goodnight N., Woolley C, et al., A multigrid solver for boundary value problems using programmable graphics hardware. In: Proc. of the Graphics Hardware, San Diego, 2003: 102-111.
    [97] Moreland K., Angel E., The FFT on a GPU. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, San Diego,2003:112-119.
    [98] Hopf M., Ertl T., Accelerating 3D convolution using graphics hardware. In:Proceedings of IEEE Visualization, San Francisco, 1999: 471-474.
    [99] Hopf M, Ertl T., Hardware accelerated wavelet transformations. In :Proceedings of EG/IEEE TCVG Sympo sium on Visualization VisSym,Netherlands, 2000: 93-103.
    [100] Buck I., Data Parallel Computing on Graphics Hardware.http://graphics.stanford.edu/projects/brookgpu/.
    [101] Mark W.R., Glanville R.S. et al., Cg: A system for programming graphics hardware in a C-like language. ACM SIGGRAPH, San Diego, California, 2003:896-907.
    [102] Luebke D.P., A Developer's Survey of Polygonal Simplification Algorithms.IEEE Computer Graphics and Applications, 2001, 21(3): 24-35.
    
    [103] 何晖光,田捷等.网格模型化简综述.软件学报, 2002,13(12): 2215-2224.
    
    [104] Xia J., El-Sana J., Varshney A., Adaptive Real-Time Level-of-detail-based Rendering for Polygonal Models. IEEE Transaction on Visualization and Computer Graphics, 1997,3(2): 171-183.
    [105] Hoppe H., Progressive meshes. In: Proc. of the SIGGRAPH '96. New York:ACM Press, 1996:99-108.
    [106] Hoppe H., Smooth view-dependent level-of-detail control and its application to terrain rendering. In: Proc. of the IEEE Visualization'98. Los Alamitos, 1998:35-42.
    [107] Luebke D., Erikson C., View-Dependent simplification of arbitrary polygonal environments. In: Proc. of the SIGGRAPH'97. New York, 1997: 199-208.
    [108] De Floriani L., Magillo P., and Puppo E., Efficient Implementation of Multi-Triangulation.Proceedings of IEEE Visualization'98,Mississippi,1998:43-50.
    [109]El-Sana J.,Varshney A.,Generalized View-Dependent Simplification.Computer Graphics Forum.1999,18(3):83-94.
    [110]Pajarola R.,DeCoro C.,Efficient Implementation of Real-Time View-Dependent Multiresolution Meshing.IEEE Transactions on Visualization and Computer Graphics,2004,10(3):353-368.
    [111]Silva C.,Chiang Y.,E1-Sana J.,et al.,Out-of-Core Algorithms for Scientific Visualization and Computer Graphics.In:Proceedings of IEEE Visualization'02,Boston,2002:Tutorial #4.
    [112]Prince C.,Progressive Meshes for Large Models of Arbitrary Topology.[MS.Dissertation],University of Washington,2000.
    [113]Soetebier I.,Birthelmer H.,Sahrn J.,et al.,Managing Large Progressive Meshes.Computers & Graphics,2004,28(5):691-701.
    [114]冯洁.大型三维网格模型的简化及基于视点的LOD控制[博士学位论文].北京:北京大学,2005.
    [115]Rossignac J.,Borrel P.,Multi-Resolution 3D approximation for rendering complex scenes.In:Falcidieno B,Kunii TL,eds.Geometric Modeling in Computer Graphics.Berlin:Springer-Verlag,1993:455-465.
    [116]Lindstrom P.,Out-of-core simplification of large polygonal models.In:Proceedings of ACM SIGGRAPH'00,New Orleans,Louisana,2000:259-262.
    [117]Garland M.,Heckbert P.S.,Surface Simplification Using Quadric Error Metrics.ACM SIGGRAPH'97,Los Angeles,California,1997:209-216.
    [118]Lindstrom P.,Silva C.T.,A Memory Insensitive Technique for Large Model Simplification.In:Proceedings of IEEE Visualization 2001,San Diego,Califomia,2001:121-126.
    [119]Shaffer E.,Garland M.,Efficient Adaptive Simplification of Massive Meshes.In:Proceedings of IEEE Visualization'01,San Diego,Califomia,2001:127-134.
    [120]费广正,蔡康颖,吴恩华.基于细节迁移的快速外存模型简化方法.软件学报,2001,12(11):1630-1638.
    [121]Fei G.Z.,Cai K.Y.,Guo B.N.,Wu E.H.,An Adaptive Sampling Scheme for Out-of-Core Simplification.Computer Graphics Forum,2002,21(2):111-119.
    [122]费广正.三维复杂模型快速简化及交互方法的研究.[博士学位论文].北京:中国科学院软件研究所,2001.
    [123]蔡康颖,费广正等.一遍完成的平衡布点外存模型简化算法.计算机学报,2002,25(9):936-944.
    [124]Cai K.Y.,Wang W.C.,Fei G.Z.,et al.A Single-pass Approach to Adaptive Simplification of Out-of-Core Models.International Journal of Images and Graphics,2003,3(2):291-309.
    [125]蔡康颖,孙汉秋,吴恩华.基于顶点聚类简化外存模型的保流形算法.计算机辅助设计与图形学学报,2004,16(10):1346-1354.
    [126]EI-Sana J.,Chiang Y.J.,External Memory View-Dependent Simplification.Computer Graphics Forum,2000,19(3):139-150.
    [127]Yoon S.E.,Salomon B.,Gayle R.,et al.Quick-VDR:Interactive View-Dependent Rendering of Massive Models.In:Proceedings of IEEE Visualization'04,2004:131-138.
    [128]冯洁,查红彬.大型三维网格模型的简化及基于视点的LOD控制.计算机辅助设计与图形学学报,2006,18(2):186-193.
    [129]Decoro C.,Pajarola R.,XFastMesh:Fast View-Dependent Meshing from External Memory.Proceedings of IEEE Visualization'02,Boston,2002:363-370.
    [130]Cignoni P.,Montani C.,Rocchini C.,et al.Preserving Attribute Values on Simplified Meshes by Resampling Meshes by Resampling Detail Textures.The Visual Computer,1999,15(10):519-539.
    [131]Lindstrom P.,Out-of-Core Construction and Visualization of Multi-resolution Surfaces.In:Proceedings of ACM SIGGRAPH 2003,Monterey,California,2003:93-102.
    [132]Shaffer E.,Garland M.,A Multiresolution Representation for Massive Meshes.IEEE Transactions on Visualization and Computer Graphics,2005,11(2):1-10.
    [133]斯科尔尼科.雷达手册[美]第二版.王军,林强,林慈中等译.北京:电子工业出版社,2003:20-21.
    [134]Barrios A.E.,Considerations in the development of the advanced propagation model(APM) for U.S.Navy applications,in Proceedings of the International Radar Conference.San Diego,CA,USA,2003:77-82.
    [135]Shipley S.T.,Graffrnan I.A.,Saffle R.E.,Weather Radar Terrain Occultation Modeling using GIS.21st International Conference on Interactive Information Processing Systems(IIPS) for Meteorology,Oceanography,and Hydrology,San Diego,CA,2005:J9.5.
    [136]Lang J.C.,Establishing radar coverage,blockage,and clutter region maps for radar product data based on terrain elevation data.United States Patent 6771207,Issued on August 3,2004,Unisys Corporation:U.S.
    [137]Woodbridge K.,Banahan C.P.,Dynamic range and coverage issues for a mobile bistatic radar system.IEE Proceedings:Radar,Sonar and Navigation,2004.151(4):221-224.
    [138]刘以安,邓亮等,雷达电磁信号的多径传播仿真研究.计算机仿真,2005.22(6):15-19.
    [139]康士峰,葛德彪等,抛物型波方程方法研究复杂环境对雷达和通信传播的影响.电子学报,2000,28(6):68-71.
    [140]Taflove A.,Review of formulation and applications of the finite-difference time domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures.Wave Motion,1998.10(6):547-582.
    [141]Levy M.F.,Parabolic equation methods for electromagnetic wave propagation.IEE Electromagnetic wave series 45,London:lEE Press,2000.
    [142]Flock W.L.,Propagation effects on satellite systems at frequencies below 10GHz,A Handbook for Satellite System Design,Second edition,NASA Reference Publication 1108(02),1987.
    [143]Kerr K.H.,Propagation of short radio waves,Peter Peregfinus,London,1987.
    [144]Garland M.,Heckbert P.,Simplifying Surfaces with Color and Texture using Quadric Error Metrics.IEEE Visualization'98,Los Alamitos,CA,1998:263270.
    [145]丁鹭飞,耿富录,雷达原理(修订版).1995,西安:西安电子科技大学出版社.
    [146]International Radio Consulting Committee(CCIR),XVth Plenary Assembly,Dubrovniks,Electrical Characteristics of the Surface of the Earth;Recommendations 527-1.Recommendations and Reports of the CCIR,Vol.5,Int.Telecommun.Union,Geneva,1986.
    [147]Deygout J.,Multiple knife-edge diffraction of microwaves,IEEE Trans.on Ant.and Prop.,July 1966,AP-14(4):480-489.
    [148]Deygout J.,Correction factor for multiple knife-edge diffraction,IEEE Transactions on Antennas and Propagation,1991,39(8):1256-1258.
    [149]Luebbers R.J.,Propagation prediction for hilly terrain using GTD wedge diffraction,IEEE Transactions on Antennas and Propagation,1984,AP-32(9):951-955.
    [150]Sharpies P.A.,Mehler M.J.,Cascaded cylinder model for predicting terrain diffraction loss at microwave frequencies,Prco.IEE,part H,,1989,136(4):331-337.
    [151]Whitteker J.H.,Fresnel-Kirchhoff theory applied to terrain diffraction problems,Radio Science,1990,25(5):837-851.
    [152]Vogler L.E.,An attenuation function for multiple knifeedge diffraction,Radio Science,1982,17(6):1541-1546.
    [153]International Radio Consulting Committee(CCIR),XVth Plenary Assembly,Dubrovniks,Propagation in Non-Ionized Media,Recommendations and Reports of the CC1R,Vol.5,International Telecommunications Union,Geneva,1986.
    [154]Craig K.H.,Levy M.F.,Parabolic equation modeling of the effects of multipath and ducting on radar systems.IEEE Proc.F,1991.138(2):153-162.
    [155]Awadallah R.i.S.,Gehman J.Z.,et al.,Modeling Radar Propagation in Three-Dimensional Environments.JOHNS HOPKINS APL TECHNICAL DIGEST,2004,25(2):101-111.
    [156]Montani C.,Scateni R.,Scopigno R.,Decreasing isosurface complexity via discrete fitting.Computer Aided Geometric Design,2000,17(3):207-232.
    [157]何晖光,田捷,赵明昌等,基于分割的三维医学图像表面重建算法.软件学报,2002,13(2):219-226。
    [158]Montani C.,Scateni R.,Scopigno R.,Discretized marching cubes.Proceedings of the IEEE Visualization'94,Washinton,D.C..1994:281-287.
    [159]袁国栋,秦开怀,绘制数据场等值面的中点递归剖分算法.中国图象图形学报,2003,8(z1):124-128.
    [160]Payne B.A.,Toga A.W.,Surface Mapping Brain Function on 3D Models.IEEE Computer Graphics & Applications,1990,10(5):33-41.
    [161]Giertsen C.,Volume Visualization of Sparse Irregular Meshes.IEEE Computer Graphics & Applications,1992,12(2):40-48.
    [162]Bloomenthal J.,Polygonization of implicit surfaces.Computer Aided Geometric Design,1988,5(4):341-355.
    [163]Takayuki I.,Yasushi Y.,Koji K.,Volume thinning for automatic isosurface propagation.Proceedings of the 7th conference on Visualization'96.San Francisco,California,1996:303-310.
    [164]吴宇钦,张丽,陈志强,基于GPU的锥束CT体数据等值面重构和显示的改进.CT理论与应用研究,2006,15(4):1-6.
    [165]Max N.,Hanrahan P.,Crawfis R.,Area and Volume Coherence for Efficient Visualization of 3D Scalar Functions.ACM SIGGRAPH Computer Graphics,1990,24(5):27-33.
    [166]吴金钟,刘学慧,吴恩华,超量外存地表模型的实时绘制技术.计算机辅助设计与图形学学报,2005,17(10):2196-2002.
    [167]Schroeder W.J.,Zarge J.A.,et al.Decimation of Triangle Meshes.Computer Graphics,1992,26(2):65-70.
    [168]El-Sana J.,Varshney A.,Controlled Simplification of Genus for Polygonal Models.Proceedings of IEEE Visualization'97,Phoenix,Arizona,1997:403-412.
    [169]吴勃.三维虚拟场景实时绘制技术研究.[博士学位论文].北京:北京航空航天大学,2003.
    [170]Eck M.,DeRose T.,Duchamp T.,et al.Multiresolution Analysis of Arbitrary Meshes.Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques,LOS Angeles,CA,1995:173-182.
    [171]纪庆革.虚拟环境中三角网格模型简化及快速绘制技术.[博士学位论文].哈尔滨:哈尔滨工业大学,2002.
    [172]邹北骥,申煜湘等.一种基于包络控制的三角形收缩简化三维几何模型的新算法.小型微型计算机系统,2004,25(3):374-379.
    [173]Lindstrom P.,Turk G.,Image-Driven Simplification.ACM Transactions on Graphics,2000,19(3):204-241.
    [174]He T.S.,Hong L.C.,Kaufman A.,et al.,Voxel Based Object Simplification.Proceedings of Visualization'95,Los Alamitos,CA,1995:296-303.
    [175]Lindstrom P.,Koller D.,Ribarsky W.,et al.Real-time,Continuous Level of Detail Rendering of Height Fields.Proceedings of SIGGRAPH'96,Los Angeles,Califormia,1996:109-118.
    [176]Borodin P.,Gumhold S.,Guthe M.,et al.High-quality Simplification with Generalized Pair Contractions.Proceedings of GraphiCon'2003,Moscow,Russia,2003:147-154.
    [177]Edkson C.,Manocha D.,GAPS:General and Automatic Polygonal Simplification.ACM SIGGRAPH'99,Los Angeles,1999:79-88.
    [178]Hoppe H.,New Quadric Metric for Simplifying Meshes with Appearance Attributes.Proceedings of IEEE Visualization'99,San Francisco,1999:59-66.
    [179]陶志良,潘志庚,石教英.支持快速恢复的可逆递进网格及其生成方法.软件学报,1999,10(5):503-507.
    [180]伍仁和,信息化战争论.2004,北京:军事科学出版社.
    [181]Wald I.,Realtime Ray Tracing and Interactive Global Illumination[Ph.D.Dissertation].Saarland University,Saarbrucken,Germany,2004.
    [182]Sillion F.X.,Puech C.,Radiosity and Global Illumination.San Francisco,CA,USA:Morgan Kaufrnann Publishers Inc.1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700